Search results for: polymer mixed with bitumen (PMB)
2679 Preparation and Properties of PP/EPDM Reinforced with Graphene
Authors: M. Haghnegahdar, G. Naderi, M. H. R. Ghoreishy
Abstract:
Polypropylene(PP)/Ethylene Propylene Diene Monomer (EPDM) samples (80/20) containing 0, 0.5, 1, 1.5, 2, 2.5, and 3 (expressed in mass fraction) graphene were prepared using melt compounding method to investigate microstructure, mechanical properties, and thermal stability as well as electrical resistance of samples. X-Ray diffraction data confirmed that graphene platelets are well dispersed in PP/EPDM. Mechanical properties such as tensile strength, impact strength and hardness demonstrated increasing trend by graphene loading which exemplifies substantial reinforcing nature of this kind of nano filler and it's good interaction with polymer chains. At the same time it is found that thermo-oxidative degradation of PP/EPDM nanocomposites is noticeably retarded with the increasing of graphene content. Electrical surface resistivity of the nanocomposite was dramatically changed by forming electrical percolation threshold and leads to change electrical behavior from insulator to semiconductor. Furthermore, these results were confirmed by scanning electron microscopy(SEM), dynamic mechanical thermal analysis (DMTA), and transmission electron microscopy (TEM).Keywords: nanocomposite, graphene, microstructure, mechanical properties
Procedia PDF Downloads 3302678 A Flexible Piezoelectric - Polymer Composite for Non-Invasive Detection of Multiple Vital Signs of Human
Authors: Sarah Pasala, Elizabeth Zacharias
Abstract:
Vital sign monitoring is crucial for both everyday health and medical diagnosis. A significant factor in assessing a human's health is their vital signs, which include heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings. Vital sign monitoring has been the focus of many system and method innovations recently. Piezoelectrics are materials that convert mechanical energy into electrical energy and can be used for vital sign monitoring. Piezoelectric energy harvesters that are stretchable and flexible can detect very low frequencies like airflow, heartbeat, etc. Current advancements in piezoelectric materials and flexible sensors have made it possible to create wearable and implantable medical devices that can continuously monitor physiological signals in humans. But because of their non-biocompatible nature, they also produce a large amount of e-waste and require another surgery to remove the implant. This paper presents a biocompatible and flexible piezoelectric composite material for wearable and implantable devices that offers a high-performance platform for seamless and continuous monitoring of human physiological signals and tactile stimuli. It also addresses the issue of e-waste and secondary surgery. A Lead-free piezoelectric, SrBi4Ti4O15, is found to be suitable for this application because the properties can be tailored by suitable substitutions and also by varying the synthesis temperature protocols. In the present work, SrBi4Ti4O15 modified by rare-earth has been synthesized and studied. Coupling factors are calculated from resonant (fr) and anti-resonant frequencies (fa). It is observed that Samarium substitution in SBT has increased the Curie temperature, dielectric and piezoelectric properties. From impedance spectroscopy studies, relaxation, and non-Debye type behaviour are observed. The composite of bioresorbable poly(l-lactide) and Lead-free rare earth modified Bismuth Layered Ferroelectrics leads to a flexible piezoelectric device for non-invasive measurement of vital signs, such as heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings and also artery pulse signals in near-surface arteries. These composites are suitable to detect slight movement of the muscles and joints. This Lead-free rare earth modified Bismuth Layered Ferroelectrics – polymer composite is synthesized using a ball mill and the solid-state double sintering method. XRD studies indicated the two phases in the composite. SEM studies revealed the grain size to be uniform and in the range of 100 nm. The electromechanical coupling factor is improved. The elastic constants are calculated and the mechanical flexibility is found to be improved as compared to the single-phase rare earth modified Bismuth Latered piezoelectric. The results indicate that this composite is suitable for the non-invasive detection of multiple vital signs of humans.Keywords: composites, flexible, non-invasive, piezoelectric
Procedia PDF Downloads 372677 Electro-Mechanical Response and Engineering Properties of Piezocomposite with Imperfect Interface
Authors: Rattanan Tippayaphalapholgul, Yasothorn Sapsathiarn
Abstract:
Composites of piezoelectric materials are widely use in practical applications such as nondestructive testing devices, smart adaptive structures and medical devices. A thorough understanding of coupled electro-elastic response and properties of piezocomposite are crucial for the development and design of piezoelectric composite materials used in advanced applications. The micromechanics analysis is employed in this paper to determine the response and engineering properties of the piezocomposite. A mechanical imperfect interface bonding between piezoelectric inclusion and polymer matrix is taken into consideration in the analysis. The micromechanics analysis is based on the Boundary Element Method (BEM) together with the periodic micro-field micromechanics theory. A selected set of numerical results is presented to investigate the influence of volume ratio and interface bonding condition on effective piezocomposite material coefficients and portray basic features of coupled electroelastic response within the domain of piezocomposite unit cell.Keywords: effective engineering properties, electroelastic response, imperfect interface, piezocomposite
Procedia PDF Downloads 2312676 Evaluation of Corrosion by Impedance Spectroscopy of Embedded Steel in an Alternative Concrete Exposed a Chloride Ion
Authors: E. Ruíz, W. Aperador
Abstract:
In this article evaluates the protective effect of the concrete alternative obtained from the fly ash and iron and steel slag mixed in binary form and were placed on structural steel ASTM A 706. The study was conducted comparatively with specimens exposed to natural conditions free of chloride ion. The effect of chloride ion on the specimens was generated of form accelerated under controlled conditions (3.5% NaCl and 25 ° C temperature). The Impedance data were acquired over a range of 1 mHz to 100 kHz. At frequencies high is found the response of the interface means of the exposure-concrete and to frequency low the response of the interface corresponding to concrete-steel.Keywords: alternative concrete, corrosion, alkaline activation, impedance spectroscopy
Procedia PDF Downloads 3592675 Dissociation of Hydrophobic Interactions in Whey Protein Polymers: Molecular Characterization Using Dilute Solution Viscometry
Authors: Ahmed S. Eissa
Abstract:
Whey represents about 85-95% of the milk volume and about 55% of milk nutrients. Whey proteins are of special importance in formulated foods due to their rich nutritional and functional benefits. Whey proteins form large polymers upon heating to a temperature greater than the denaturation temperature. Hydrophobic interactions play an important role in building whey protein polymers. In this study, dissociation of hydrophobic interactions of whey protein polymers was done by adding Sodium Dodecyl Sulphonate (SDS). At low SDS concentrations, protein polymers were dissociated to smaller chains, as revealed by dilution solution viscometry (DSV). Interestingly, at higher SDS concentrations, polymer molecules got larger in size. Intrinsic viscosity was increased to many folds when raising the SDS concentration from 0.5% to 2%. Complex molecular arrangement leads to the formation of larger macromolecules, due to micelle formation. The study opens a venue for manipulating and enhancing whey protein functional properties by manipulating the hydrophobic interactions.Keywords: whey proteins, hydrophobic interactions, SDS
Procedia PDF Downloads 2482674 Mindful Self-Compassion Training to Alleviate Work Stress and Fatigue in Community Workers: A Mixed Method Evaluation
Authors: Catherine Begin, Jeanne Berthod, Manon Truchon
Abstract:
In Quebec, there are more than 8,000 community organizations throughout the province, representing more than 72,000 jobs. Working in a community setting involves several particularities (e.g., contact with the suffering of users, feelings of powerlessness, institutional pressure, unstable funding, etc.), which can put workers at risk of fatigue, burnout, and psychological distress. A 2007 study shows that 52% of community workers surveyed have a high psychological distress index. The Ricochet project, founded in 2019, is an initiative aimed at providing various care and services to community workers in the Quebec City region, with a global health approach. Within this program, mindful self-compassion training (MSC) is offered at a low cost. MSC is one of the effective strategies proposed in the literature to help prevent and reduce burnout. Self-compassion is the recognition that suffering, failure, and inadequacies are inherent in the human experience and that everyone, including oneself, deserves compassion. MSC training targets several behavioral, cognitive, and emotional learnings (e.g., motivating oneself with caring, better managing difficult emotions, promoting resilience, etc.). A mixed-method evaluation was conducted with the participants in order to explore the effects of the training on community workers in the Quebec City region. The participants were community workers (management or caregiver). 15 participants completed satisfaction and perceived impact surveys, and 30 participated in structured interviews. Quantitative results showed that participants were generally completely satisfied or satisfied with the training (94%) and perceived that the training allowed them to develop new strategies for dealing with stress (87%). Participants perceived effects on their mood (93%), their contact with others (80%), and their stress level (67%). Some of the barriers raised were scheduling constraints, length of training, and guilt about taking time for oneself. The qualitative results show that individuals experienced long-term benefits, as they were able to apply the tools they received during the training in their daily lives. Some barriers were noted, such as difficulty in getting away from work or problems with the employer, which prevented enrollment. Overall, the results of this evaluation support the use of MSC (mindful self-compassion) training among community workers. Future research could support this evaluation by using a rigorous design and developing innovative ways to overcome the barriers raised.Keywords: mindful self-compassion, community workers, work stres, burnout, wellbeing at work
Procedia PDF Downloads 1192673 Assessment of Milk Quality in Vehari: Evaluation of Public Health Concerns
Authors: Muhammad Farhan Saeed, Waheed Aslam Khan, Muhammad Nadeem, Iftikhar Ahmad, Zakir Ali
Abstract:
Milk is an important and fundamental nutrition source of human diet. In Pakistan, the milk used by the consumer is of low quality and is often contaminated due to the lack of quality controls. Mycotoxins produced from molds which contaminate the agriculture commodities of animal feed. Mycotoxins are poisons which affect the animals when they consume contaminated feeds. Aflatoxin AFM1 is naturally occurring form of mycotoxins in milk which is carcinogenic. To assess public awareness regarding milk Aflatoxin contamination, a population-based survey using a questionnaire was carried out from general public and from farmers of both rural and urban areas. It was revealed from the data that people of rural area were more satisfied about quality of available milk but the awareness level about milk contamination was found lower in both areas. Total 297 samples of milk were collected from rural (n=156) and urban (n=141) areas of district Vehari during June-July 2015. Milk samples were collected from three different point sources; farmer, milkman and milkshop. These point sources had three types of dairy milk including cow milk, buffalo milk and mixed milk. After performing ELISA test 18 samples with positive ELISA results were maintain per source for further analysis for aflatoxin M1 (AFM1) by High Performance Liquid Chromatography (HPLC). Higher percentages of samples were found exceeding the permissible limit for urban area. In rural area about 15% samples and from urban area about 35% samples were exceeded the permissible limit of AFM1 with 0.05µg/kg set by European Union. From urban areas about 55% of buffalo, 33% of cows and 17% of mixed milk samples were exceeded the permissible AFM1 level as compared with 17%, 11% and 17% for milk samples from rural areas respectively. Samples from urban areas 33%, 44% and 28% were exceeded the permissible AFM1 level for farmer, milkman and of milk shop respectively as compared with 28% and 17% of farmer and milkman’s samples from rural areas respectively. The presence of AFM1 in milk samples demands the implementation of strict regulations and also urges the need for continuous monitoring of milk and milk products in order to minimize the health hazards. Regulations regarding aflatoxins contamination and adulteration should be strictly imposed to prevent health problems related to milk quality. Permissible limits for aflatoxin should be enforced strongly in Pakistan so that economic loss due to aflatoxin contamination can be reduced.Keywords: Vehari, aflatoxins AFM1, milk, HPLC
Procedia PDF Downloads 3742672 The Impact of Physical Activity for Recovering Cancer Patients
Authors: Martyn Queen, Diane Crone, Andrew Parker, Saul Bloxham
Abstract:
Rationale: There is a growing body of evidence that supports the use of physical activity during and after cancer treatment. However, activity levels for patients remain low. As more cancer patients are treated successfully, and treatment costs continue to escalate, physical activity may be a promising adjunct to a person-centred healthcare approach to recovery. Aim: The aim was to further understand how physical activity may enhance the recovery process for a group of mixed-site cancer patients. Objectives: The research investigated longitudinal changes in physical activity and perceived the quality of life between two and six month’s post-exercise interventions. It also investigated support systems that enabled patients to sustain these perceived changes. Method: The respondent cohort comprised 14 mixed-site cancer patients aged 43-70 (11 women, 3 men), who participated in a two-phase physical activity intervention that took place at a university in the South West of England. Phase 1 consisted of an eight-week structured physical activity programme; Phase 2 consisted of four months of non-supervised physical activity. Semi-structured interviews took place three times over six months with each participant. Grounded theory informed the data collection and analysis which, in turn, facilitated theoretical development. Findings: Our findings propose three theories on the impact of physical activity for recovering cancer patients: 1) Knowledge gained through a structured exercise programme can enable recovering cancer patients to independently sustain physical activity to four-month follow-up. 2) Sustaining physical activity for six months promotes positive changes in the quality of life indicators of chronic fatigue, self-efficacy, the ability to self-manage and energy levels. 3) Peer support from patients facilitates adherence to a structured exercise programme and support from a spouse, or life partner facilitates independently sustained physical activity to four-month follow-up. Conclusions: This study demonstrates that qualitative research can provide an evidence base that could be used to support future care plans for cancer patients. Findings also demonstrate that a physical activity intervention can be effective at helping cancer patients recover from the side effects of their treatment, and recommends that physical activity should become an adjunct therapy alongside traditional cancer treatments.Keywords: physical activity, health, cancer recovery, quality of life, support systems, qualitative, grounded theory, person-centred healthcare
Procedia PDF Downloads 2922671 Improving Low English Oral Skills of 5 Second-Year English Major Students at Debark University
Authors: Belyihun Muchie
Abstract:
This study investigates the low English oral communication skills of 5 second-year English major students at Debark University. It aims to identify the key factors contributing to their weaknesses and propose effective interventions to improve their spoken English proficiency. Mixed-methods research will be employed, utilizing observations, questionnaires, and semi-structured interviews to gather data from the participants. To clearly identify these factors, structured and informal observations will be employed; the former will be used to identify their fluency, pronunciation, vocabulary use, and grammar accuracy, and the later will be suited to observe the natural interactions and communication patterns of learners in the classroom setting. The questionnaires will assess their self-perceptions of their skills, perceived barriers to fluency, and preferred learning styles. Interviews will also delve deeper into their experiences and explore specific obstacles faced in oral communication. Data analysis will involve both quantitative and qualitative responses. The structured observation and questionnaire will be analyzed quantitatively, whereas the informal observation and interview transcripts will be analyzed thematically. Findings will be used to identify the major causes of low oral communication skills, such as limited vocabulary, grammatical errors, pronunciation difficulties, or lack of confidence. They are also helpful to develop targeted solutions addressing these causes, such as intensive pronunciation practice, conversation simulations, personalized feedback, or anxiety-reduction techniques. Finally, the findings will guide designing an intervention plan for implementation during the action research phase. The study's outcomes are expected to provide valuable insights into the challenges faced by English major students in developing oral communication skills, contribute to the development of evidence-based interventions for improving spoken English proficiency in similar contexts, and offer practical recommendations for English language instructors and curriculum developers to enhance student learning outcomes. By addressing the specific needs of these students and implementing tailored interventions, this research aims to bridge the gap between theoretical knowledge and practical speaking ability, equipping them with the confidence and skills to flourish in English communication settings.Keywords: oral communication skills, mixed-methods, evidence-based interventions, spoken English proficiency
Procedia PDF Downloads 512670 Characterization and Degradation Analysis of Tapioca Starch Based Biofilms
Authors: R. R. Ali, W. A. W. A. Rahman, R. M. Kasmani, H. Hasbullah, N. Ibrahim, A. N. Sadikin, U. A. Asli
Abstract:
In this study, tapioca starch which acts as natural polymer was added in the blend in order to produce biodegradable product. Low density polyethylene (LDPE) and tapioca starch blends were prepared by extrusion and the test sample by injection moulding process. Ethylene vinyl acetate (EVA) acts as compatibilizer while glycerol as processing aid was added in the blend. The blends were characterized by using melt flow index (MFI), fourier transform infrared (FTIR) and the effects of water absorption to the sample. As the starch content increased, MFI of the blend was decreased. Tensile testing were conducted shows the tensile strength and elongation at break decreased while the modulus increased as the starch increased. For the biodegradation, soil burial test was conducted and the loss in weight was studied as the starch content increased. Morphology studies were conducted in order to show the distribution between LDPE and starch.Keywords: biopolymers, degradable polymers, starch based polyethylene, injection moulding
Procedia PDF Downloads 2862669 A Step-by-Step Analytical Protocol For Detecting and Identifying Minor Differences In Like Materials and Polymers Using Pyrolysis -Gas Chromatography/Mass Spectrometry Technique
Authors: Athena Nguyen, Rojin Belganeh
Abstract:
Detecting and identifying differences in like polymer materials are key factors in failure and deformulation analysis, and reverse engineering. Pyrolysis-GC/MS is an easy solid sample introduction technique which expands the application areas of gas chromatography and mass spectrometry. The Micro furnace pyrolyzer is directly interfaced with the GC injector preventing any potential of cold spot, carryover, and cross contamination. In this presentation, the analysis of the differences in three polystyrene samples is demonstrated. Although the three samples look very similar by Evolve gas analysis (EGA) and Flash pyrolysis, there are indications of small levels of other materials. By performing Thermal desorption-GC/MS, the additive compounds between samples show the differences. EGA, flash pyrolysis, and thermal desorption analysis are the different modes of operations of the micro-furnace pyrolyzer enabling users to perform multiple analytical techniques.Keywords: Gas chromatography/Mass spectrometry, pyrolysis, pyrolyzer, thermal desorption-GC/MS
Procedia PDF Downloads 1872668 Leveraging Play to Foster Healthy Social-emotional Development in Young Children in Poverty
Authors: Smita Mathur
Abstract:
Play is an innate, player-centric, joyful, fundamental activity of early childhood development that significantly contributes to social, emotional, and academic learning. Leveraging the power of play can enhance these domains by creating engaging, interactive, and developmentally appropriate learning experiences for young children. This research aimed to systematically examine young children’s play behaviors with a focus on four primary objectives: (1) the frequency and duration of on-task behaviors, (2) social interactions and emotional expressions during play, (3) the correlation between academic skills and play, and (4) identifying best practices for integrating play-based curricula. To achieve these objectives, a mixed-method study was conducted among young preschool-aged children in low socio-economic populations in the United States. The children were identified using purposive sampling. The children were observed during structured play in classrooms and unstructured play during outdoor playtime and in their home environments. The study sampled 97 preschool-aged children. A total of 3970 minutes of observations were coded to address the research questions. Thirty-seven percent of children lived in linguistically isolated families, and 76% lived in basic budget poverty. Children lived in overcrowded housing situations (67%), and most families had mixed citizenship status (66%). The observational study was conducted using the observation protocol during the Oxford Study Project. On-task behaviors were measured by tracking the frequency and duration of activities where children maintained focus and engagement. In examining social interactions and emotional expressions, the study recorded social interactions, emotional responses, and teacher involvement during play. The study aimed to identify best practices for integrating play-based curricula into early childhood education. By analyzing the effectiveness of different play-based strategies and their impact on on-task behaviors, social-emotional development, and academic skills, the research sought to provide actionable recommendations for educators and caregivers. The findings from study 1. Highlight play behaviors that increase on-task behaviors and academic, & social skills in young children. 2. Offers insights into teacher preparation and designing play-based curriculum 3. Research critiques observation as a data collection technique.Keywords: play, early childhood education, social-emotional development, academic development
Procedia PDF Downloads 272667 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite
Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan
Abstract:
Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.Keywords: natural fibers, polymer matrix composites, jute, compression molding, biodegradation
Procedia PDF Downloads 1452666 The Effect of the Crystal Field Interaction on the Critical Temperatures and the Sublattice Magnetizations of a Mixedspin-3/2 and Spin-5/2 Ferromagnetic System
Authors: Fathi Abubrig, Mohamed Delfag, Suad Abuzariba
Abstract:
The influence of the crystal field interactions on the mixed spin-3/2 and spin-5/2 ferromagnetic Ising system is considered by using the mean field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram is constructed, the phase diagrams of the second-order critical temperatures are obtained, and the thermal variation of the sublattice magnetizations is investigated in detail. We find some interesting phenomena for the sublattice magnetizations at particular values of the crystal field interactions.Keywords: crystal field, Ising system, ferromagnetic, magnetization, phase diagrams
Procedia PDF Downloads 4862665 Punching Shear Strengthening of Reinforced Concrete Flat Slabs Using Internal Square Patches of Carbon Fiber Reinforced Polymer
Authors: Malik Assi
Abstract:
This research presents a strengthening technique for enhancing the punching shear resistance of concrete flat slabs. Internal square patches of CFRP were centrally installed inside 450*450mm concrete panels during casting at a chosen distance from the tension face to produce six simply supported samples. The dimensions of those patches ranged from 50*50mm to 360*360mm. All the examined slabs contained the same amount of tensile reinforcement, had identical dimensions, were designed according to the American Concrete Institute code (ACI) and tested to failure. Compared to the control unstrengthened spacemen, all the strengthened slabs have shown an enhancement in punching capacity and stiffness. This enhancement has been found to be proportional to the area of the installed CFRP patches. In addition to the reasonably enhanced stiffness and punching shear, this strengthening technique can change the slab failure mode from shear to flexural.Keywords: CFRP patches, Flat slabs, Flexural, Stiffness, Punching shear
Procedia PDF Downloads 2662664 Synthesis Using Sintering and Characterisation of FeCrCoNiZn Alloy Using SEM and Nanoindentation
Authors: Steadyman Chikumba, Vasudeva Vereedhi Rao
Abstract:
This paper reports on the synthesis of FeCrCoNiZn and its characterisation using SEM and nanoindentation. The high entropy alloy FeCrCoNiZn was fabricated using spark plasma sintering at a temperature of 1100ᵒC from powders mixed for 9 hours. The powders mixture was equimolar, and the resultant microstructure had a single crystalline structure when studied under SEM. Several nano Vickers hardness measurements were taken on a polished surface etched by Nital solution. The hardness ranged from 711 Vickers to a maximum of 1773.2. The alloy FeCrCoNiZn showed a nano hardness of 1070 Vickers and a modulus of elasticity of 460.4 MPa. The process managed to fabricate a very hard material that can find applications where wear resistance is desired.Keywords: high entropy alloy, FeCrVNiZn, nanohardness, SEM
Procedia PDF Downloads 1002663 The Role of Nano Glass Flakes on Morphology, Dynamic-Mechanical Properties and Crystallization Behavior of Poly (Ethylene Terephthalate)
Authors: Fatemeh Alsadat Miri, Morteza Ehsani, Hossein Ali Khonakdar, Behjat Kavyani
Abstract:
This paper studies the effect of nano glass flakes on morphology, dynamic-mechanical properties, and crystallization behavior of poly (ethylene terephthalate) (PET). The concentration of nano glass flakes was varied from 0.5, 1, 2, and 3% wt of the total formulation. Scanning electron microscopy (SEM) micrographs showed the poor distribution of nano-glass flake particles in PET, as well as low adhesion of particles to the polymer matrix. According to differential scanning calorimetry (DSC), the crystallization rate and crystallization temperature of PET were increased by the addition of nano glass flakes. The crystallization rate of PET was increased from 31.41% to 34.25% by the incorporation of 1%wt of nano glass flakes. Based on the results of the dynamic-mechanical analysis, the storage modulus of PET gets increased by adding nano glass flakes, especially below glass transition temperature (Tg). The glass transition of PET did not change remarkably with the addition of nano glass flakes. Moreover, the use of nano glass flakes reduced the impact strength of PET.Keywords: PET, nano glass flakes, morphology, crystallization
Procedia PDF Downloads 1272662 The Impact of the Mastering My Mental Fitness™-Nurses Workshops on Practical Nursing Students’ Perceived Burnout and Psychological Capital: An Embedded Mixed Methods Study
Authors: Linda Frost, Lindsay Anderson, Jana Borras, Ariel Dysangco, Vimabayi Makwaira
Abstract:
The academic environment in which nursing students are immersed in comes with many demands and expectations. Course load, clinical placements, and financial expenses are examples of the pressures facing students each semester. These pressures contribute to student stress and impact their overall well-being and mental fitness. Students' ability to cope with stress and bounce back from adversity is enhanced when we build their mental fitness. Building mental fitness has the benefit of improving physical health, relationships, self-esteem, resilience, work productivity, and overall contentment, happiness and life satisfaction. While self-care is encouraged to avoid burnout, there is a gap in literature on programs to help build nursing students’ mental health and ability to engage in self-care. There is an opportunity and a need to design programs and implement actions aimed at reducing stress and its adverse effects on nursing students. Nursing students require the support of people who understand the complexities of the nursing profession, multifaceted work environments in which they operate, and the impact these environments have on their mental fitness. Nursing academia is in the best position to ensure that tools are in place to support the next generation of nurses who face a career with significant emotional and physical demands. This is a mixed-method study using an embedded design. We utilized a pretest-posttest design to compare the difference in psychological capital (PsyCap) and burnout in students who have received the Mastering My Mental Fitness-Nurses™ (MMMF-N™) workshops (n=8) and the control group (n=9) who have not. Semi structured interviews were conducted with the eight nursing students in the intervention group, along with data from feedback forms to explore the impact of the workshops on student’s burnout and PsyCap and determine how to improve the workshops for future students. The quantitative and qualitative data will be merged using a side-by-side comparison. This will be in a discussion format that allows for the comparison of the results from both phases. The findings will be available January 2025. We anticipate that students in the control and intervention group will report similar levels of burnout. As well, students in the intervention group will indicate the benefits of the MMMF-N™ workshops through qualitative interviews and workshop feedback forms.Keywords: burnout, mental fitness, nursing students, psychological capital
Procedia PDF Downloads 232661 Educational Innovation and ICT: Before and during 21st Century
Authors: Carlos Monge López, Patricia Gómez Hernández
Abstract:
Educational innovation is a quality factor of teaching-learning processes and institutional accreditation. There is an increasing of these change processes, especially after 2000. However, the publications about this topic are more associated with ICTs in currently century. The main aim of the study was to determine the tendency of educational innovations around ICTs. The used method was mixed research design (content analysis, review of scientific literature and descriptive, comparative and correlation study) with 649 papers. In summary, the results indicated that, progressively, the educational innovation is associated with ICTs, in comparison with this type of change processes without ICTs. In conclusion, although this tendency, scientific literature must divulgate more kinds of pedagogical innovation with the aim of deepening in other new resources.Keywords: descriptive study, knowledge society, pedagogical innovation, technologies
Procedia PDF Downloads 4852660 Upon Poly(2-Hydroxyethyl Methacrylate-Co-3, 9-Divinyl-2, 4, 8, 10-Tetraoxaspiro (5.5) Undecane) as Polymer Matrix Ensuring Intramolecular Strategies for Further Coupling Applications
Authors: Aurica P. Chiriac, Vera Balan, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Elena Stoleru, Loredana E. Nita, Iordana Neamtu, Alina Diaconu, Liliana Mititelu-Tartau
Abstract:
The interest for studying ‘smart’ materials is entirely justified and in this context were realized investigations on poly(2-hydroxyethylmethacrylate-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane), which is a macromolecular compound with sensibility at pH and temperature, gel formation capacity, binding properties, amphilicity, good oxidative and thermal stability. Physico-chemical characteristics in terms of the molecular weight, temperature-sensitive abilities and thermal stability, as well rheological, dielectric and spectroscopic properties were evaluated in correlation with further coupling capabilities. Differential scanning calorimetry investigation indicated Tg at 36.6 °C and a melting point at Tm=72.8°C, for the studied copolymer, and up to 200oC two exothermic processes (at 99.7°C and 148.8°C) were registered with losing weight of about 4 %, respective 19.27%, which indicate just processes of thermal decomposition (and not phenomena of thermal transition) owing to scission of the functional groups and breakage of the macromolecular chains. At the same time, the rheological studies (rotational tests) confirmed the non-Newtonian shear-thinning fluid behavior of the copolymer solution. The dielectric properties of the copolymer have been evaluated in order to investigate the relaxation processes and two relaxation processes under Tg value were registered and attributed to localized motions of polar groups from side chain macromolecules, or parts of them, without disturbing the main chains. According to literature and confirmed as well by our investigations, β-relaxation is assigned with the rotation of the ester side group and the γ-relaxation corresponds to the rotation of hydroxy- methyl side groups. The fluorescence spectroscopy confirmed the copolymer structure, the spiroacetal moiety getting an axial conformation, more stable, with lower energy, able for specific interactions with molecules from environment, phenomena underlined by different shapes of the emission spectra of the copolymer. Also, the copolymer was used as template for indomethacin incorporation as model drug, and the biocompatible character of the complex was confirmed. The release behavior of the bioactive compound was dependent by the copolymer matrix composition, the increasing of 3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane comonomer amount attenuating the drug release. At the same time, the in vivo studies did not show significant differences of leucocyte formula elements, GOT, GPT and LDH levels, nor immune parameters (OC, PC, and BC) between control mice group and groups treated just with copolymer samples, with or without drug, data attesting the biocompatibility of the polymer samples. The investigation of the physico-chemical characteristics of poly(2-hydrxyethyl methacrylate-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) in terms of temperature-sensitive abilities, rheological and dielectrical properties, are bringing useful information for further specific use of this polymeric compound.Keywords: bioapplications, dielectric and spectroscopic properties, dual sensitivity at pH and temperature, smart materials
Procedia PDF Downloads 2822659 Using Heat-Mask in the Thermoforming Machine for Component Positioning in Thermoformed Electronics
Authors: Behnam Madadnia
Abstract:
For several years, 3D-shaped electronics have been rising, with many uses in home appliances, automotive, and manufacturing. One of the biggest challenges in the fabrication of 3D shape electronics, which are made by thermoforming, is repeatable and accurate component positioning, and typically there is no control over the final position of the component. This paper aims to address this issue and present a reliable approach for guiding the electronic components in the desired place during thermoforming. We have proposed a heat-control mask in the thermoforming machine to control the heating of the polymer, not allowing specific parts to be formable, which can assure the conductive traces' mechanical stability during thermoforming of the substrate. We have verified our approach's accuracy by applying our method on a real industrial semi-sphere mold for positioning 7 LEDs and one touch sensor. We measured the LEDs' position after thermoforming to prove the process's repeatability. The experiment results demonstrate that the proposed method is capable of positioning electronic components in thermoformed 3D electronics with high precision.Keywords: 3D-shaped electronics, electronic components, thermoforming, component positioning
Procedia PDF Downloads 972658 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection
Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz
Abstract:
Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide
Procedia PDF Downloads 1692657 Design of Wireless Readout System for Resonant Gas Sensors
Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu
Abstract:
This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.Keywords: gas sensor, GSWR, micromechanical system, UWT, volatile emissions
Procedia PDF Downloads 4832656 Reflective Thinking and Experiential Learning – A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities, Greater Integration of Student Profiles
Authors: Paulo Sérgio Ribeiro de Araújo Bogas
Abstract:
Although several studies have assumed (at least implicitly) that learners' approaches to learning develop into deeper approaches to higher education, there appears to be no clear theoretical basis for this assumption and no empirical evidence. As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation, and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences result from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the student's responses can be described as students who reinforce the initial deep approach, students who maintain the initial deep approach level, and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to the possible adoption of deep approaches to learning since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself, and, on the other hand, the additional effort that this practice required for some of the students.Keywords: experiential learning, higher education, mixed methods, reflective learning, marketing
Procedia PDF Downloads 832655 Chemical Synthesis, Electrical and Antibacterial Properties of Polyaniline/Gold Nanocomposites
Authors: L. N. Shubha, M. Kalpana, P. Madhusudana Rao
Abstract:
Polyaniline/gold (PANI/Au) nanocomposite was prepared by in-situ chemical oxidation polymerization method. The synthesis involved the formation of polyaniline-gold nanocomposite, by in-situ redox reaction and the dispersion of gold nano particles throughout the polyaniline matrix. The nanocomposites were characterized by XRD, FTIR, TEM and UV-visible spectroscopy. The characteristic peaks in FTIR and UV-visible spectra confirmed the expected structure of polymer as reported in the literature. Further, transmission electron microscopy (TEM) confirmed the formation of gold nano particles. The crystallite size of 30 nm for nanoAu was supported by the XRD pattern. Further, the A.C. conductivity, dielectric constant (€’(w)) and dielectric loss (€’’(w)) of PANI/Au nano composite was measured using impedance analyzer. The effect of doping on the conductivity was investigated. The antibacterial activity was examined for this nano composite and it was observed that PANI/Au nanocomposite could be used as an antibacterial agent.Keywords: AC-conductivity, anti-microbial activity, dielectric constant, dielectric loss, polyaniline/gold (PANI/AU) nanocomposite
Procedia PDF Downloads 3832654 Modelisation of a Full-Scale Closed Cement Grinding
Abstract:
An industrial model of cement grinding circuit is proposed on the basis of sampling surveys undertaken in the Meftah cement plant in Algiers, Algeria. The ball mill is described by a series of equal fully mixed stages that incorporates the effect of air sweeping. The kinetic parameters of this material in the energy normalized form obtained using the data of batch dry ball milling are taken into account in developing the present scale-up procedure. The dynamic separator is represented by the air classifier selectivity equation corrected by empirical factors. The model is incorporated in computer program that predict full size distributions and mass flow rates for all streams in a circuit under a particular set of operating conditions.Keywords: grinding circuit, clinker, cement, modeling, population balance, energy
Procedia PDF Downloads 5262653 Fibers Presence Effects on Air Flow of Attenuator of Spun-Bond Production System
Authors: Nasser Ghassembaglou, Abdullah Bolek, Oktay Yilmaz, Ertan Oznergiz, Hikmet Kocabas, Safak Yilmaz
Abstract:
High quality air filters production using nanofibers, as a functional material, has frequently been investigated. As it is more environmentally friendly, melting method has been selected to produce nanofibers. Spun-bond production systems consist of extruder, spin-pump, nozzle package and attenuators. Spin-pump makes molten polymer steady, which flows through extruder. Fibers are formed by regular melts passing through nuzzle holes under high pressure. Attenuator prolongs fibers to micron size to be collected on a conveyor. Different designs of attenuator systems have been studied in this research; new analysis have been done on existed designs considering fibers effect on air flow; it was comprehended that, at fibers presence, there is an air flow which agglomerates fibers as a negative effect. So some new representations have been designed and CFD analysis have been done on them. Afterwards, one of these representations selected as the most optimum and effective design which is brought in this paper.Keywords: attenuator, CFD, nanofiber, spun-bond
Procedia PDF Downloads 4482652 Crystalline Structure of Starch Based Nano Composites
Authors: Farid Amidi Fazli, Afshin Babazadeh, Farnaz Amidi Fazli
Abstract:
In contrast with literal meaning of nano, researchers have been achieving mega adventures in this area and every day more nanomaterials are being introduced to the market. After long time application of fossil-based plastics, nowadays accumulation of their waste seems to be a big problem to the environment. On the other hand, mankind has more attention to safety and living environment. Replacing common plastic packaging materials with degradable ones that degrade faster and convert to non-dangerous components like water and carbon dioxide have more attractions; these new materials are based on renewable and inexpensive sources of starch and cellulose. However, the functional properties of them do not suitable for packaging. At this point, nanotechnology has an important role. Utilizing of nanomaterials in polymer structure will improve mechanical and physical properties of them; nanocrystalline cellulose (NCC) has this ability. This work has employed a chemical method to produce NCC and starch bio nanocomposite containing NCC. X-Ray Diffraction technique has characterized the obtained materials. Results showed that applied method is a suitable one as well as applicable one to NCC production.Keywords: biofilm, cellulose, nanocomposite, starch
Procedia PDF Downloads 4052651 Optimization of Cutting Forces in Drilling of Polimer Composites via Taguchi Methodology
Authors: Eser Yarar, Fahri Vatansever, A. Tamer Erturk, Sedat Karabay
Abstract:
In this study, drilling behavior of multi-layer orthotropic polyester composites reinforced with woven polyester fiber and PTFE particle was investigated. Conventional drilling methods have low cost and ease of use. Therefore, it is one of the most preferred machining methods. The increasing range of use of composite materials in many areas has led to the investigation of the machinability performance of these materials. The drilling capability of the synthetic polymer composite material was investigated by measuring the cutting forces using different tool diameters, feed rate and high cutting speed parameters. Cutting forces were measured using a dynamometer in the experiments. In order to evaluate the results of the experiment, the Taguchi experimental design method was used. According to the results, the optimum cutting parameters were obtained for 0.1 mm/rev, 1070 rpm and 2 mm diameter drill bit. Verification tests were performed for the optimum cutting parameters obtained according to the model. Verification experiments showed the success of the established model.Keywords: cutting force, drilling, polimer composite, Taguchi
Procedia PDF Downloads 1622650 Development of a Process Method to Manufacture Spreads from Powder Hardstock
Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien
Abstract:
It has been over 200 years since margarine was discovered and manufactured using liquid oil, liquified hardstock oils and other oil phase & aqueous phase ingredients. Henry W. Bradley first used vegetable oils in liquid state and around 1871, since then; spreads have been traditionally manufactured using liquified oils. The main objective of this study was to develop a process method to produce spreads using spray dried hardstock fat powders as a structing fats in place of current liquid structuring fats. A high shear mixing system was used to condition the fat phase and the aqueous phase was prepared separately. Using a single scraped surface heat exchanger and pin stirrer, margarine was produced. The process method was developed for to produce spreads with 40%, 50% and 60% fat . The developed method was divided into three steps. In the first step, fat powders were conditioned by melting and dissolving them into liquid oils. The liquified portion of the oils were at 65 °C, whilst the spray dried fat powder was at 25 °C. The two were mixed using a mixing vessel at 900 rpm for 4 minutes. The rest of the ingredients i.e., lecithin, colorant, vitamins & flavours were added at ambient conditions to complete the fat/ oil phase. The water phase was prepared separately by mixing salt, water, preservative, acidifier in the mixing tank. Milk was also separately prepared by pasteurizing it at 79°C prior to feeding it into the aqueous phase. All the water phase contents were chilled to 8 °C. The oil phase and water phase were mixed in a tank, then fed into a single scraped surface heat exchanger. After the scraped surface heat exchanger, the emulsion was fed in a pin stirrer to work the formed crystals and produce margarine. The margarine produced using the developed process had fat levels of 40%, 50% and 60%. The margarine passed all the qualitative, stability, and taste assessments. The scores were 6/10, 7/10 & 7.5/10 for the 40%, 50% & 60% fat spreads, respectively. The success of the trials brought about differentiated knowledge on how to manufacture spreads using non micronized spray dried fat powders as hardstock. Manufacturers do not need to store structuring fats at 80-90°C and even high in winter, instead, they can adapt their processes to use fat powders which need to be stored at 25 °C. The developed process method used one scrape surface heat exchanger instead of the four to five currently used in votator based plants. The use of a single scraped surface heat exchanger translated to about 61% energy savings i.e., 23 kW per ton of product. Furthermore, it was found that the energy saved by implementing separate pasteurization was calculated to be 6.5 kW per ton of product produced.Keywords: margarine emulsion, votator technology, margarine processing, scraped sur, fat powders
Procedia PDF Downloads 90