Search results for: least square estimation (LSE)
1848 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 2861847 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 1441846 Association between Bottle-Feeding Habit and Occlusal Disorders in Children 4-6 Years Old
Authors: Roberta S. Ilinsky, Livia Eisler, Gustavo Mota, Kurt Faltin Jr., Cristina Lucia Feijó Ortolani
Abstract:
The aim of the present study was to evaluate the presence of occlusal disorders associated with bottle feeding habits in children aged 4-6 years old. A cross-sectional study was performed in a sample of 466 preschool children aged 4-6 years, attending state preschools in the city of Sao Paulo, Brazil. Parents and caregivers answered a questionnaire about children’s oral habits, including bottle-feeding habit, and signed the Informed Consent form. The students underwent an oral examination to evaluate occlusal disorders. Data were analyzed by the SPSS 2.2 program (IBM, USA) and treated with non-parametric chi-square tests and multiple logistic regression with a significance level of p < 0.05. There was association between bottle-feeding and occlusal disorders (OR = 3.058, 95% CI = 1.561-5.991, PI < 0.001), with a higher significance for anterior open bite (OR = 2.855, 95% CI = 1.769-4.606, PI < 0.001) and canine class II (OR = 0.667, 95% CI = 0.449-0.990, PI < 0.045). There was no relationship between bottle-feeding habit and other occlusal disorders examined. It was possible to conclude that children who were bottle fed during childhood are more likely to develop occlusal disorders, especially anterior open bite and canine class II.Keywords: anterior open-bite, bottle-feeding, habits, malocclusion
Procedia PDF Downloads 1781845 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis
Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu
Abstract:
In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.Keywords: supervised, functional principal component analysis, functional response, functional linear regression
Procedia PDF Downloads 751844 The Impact of Board of Directors on CEO Compensation: Evidence from the UK
Authors: Saleh Alagla, Murya Habbash
Abstract:
The paper investigates whether the board of directors plays a monitoring role or not in CEO compensation for the UK firms during the eve of the recent financial crisis, 2004-2008. The use of heteroscedastic and autocorrelated error consistent estimation of the panel data shows, surprisingly, that four board characteristics variables are found to play a significant role in increasing the level of CEO compensation. This insightful result would suggest evidence of the managerial power theory in general and the cronyism hypothesis in particular. Moreover, the interesting evidence supporting managerial power perspective is that CEO-Chair duality reduces long-term compensation while increasing short-term compensation, thus suggesting that CEOs are risk averse who prefer short-term compensation to long-term compensation. Finally, consistent with the agency perspective board size is found to increase all compensation variables as expected.Keywords: corporate governance, CEO compensation, board of directors, internal governance mechanisms, agency theory, managerial power theory, cronyism hypothesis
Procedia PDF Downloads 8021843 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electro-mechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT
Procedia PDF Downloads 2931842 Retirement Planning and Job Satisfaction: Cushion to Avoid Bridge Employment?
Authors: Zaiton Osman, Imbarine Bujang, Azaze-Azizi Abdul Adis, Grace Phang Ing, Mohd Rizwan Abdul Majid, Izyanti Awang Razli
Abstract:
Retirement forces older workers to disconnect with their previous behavioural patterns and economic position. Transition and adjustment from working life to retirement places create psychological pressure and financial distress on older workers, especially those with dependent children. Bridge employment provides a solution for older workers to continue working after retirement while transitioning into retirement slowly and smoothly. As losing the job role has a significant impact on the psychological well-being of retirees, engageing in bridge employment helps to fulfill the important psychological functions of older workers by providing an adaptive style to retirement. This study investigates the influence of retirement planning and job satisfaction on bridge employment. A self-administered questionnaire was used in this study and a total of 523 samples were collected for nine major district in Sabah. Data were analysed using Partial Least Square (PLS) method wersion 2.0. The result shows a significant relationship between retirement planning and job satisfaction on bridge employment, explaining 4.7% the variance in bridge employment and job satisfaction was found to be the strongest predictor of bridge employment.Keywords: ageing population, retirement planning, job satisfaction, bridge employment
Procedia PDF Downloads 3601841 [Keynote Speaker]: Some Similarity Considerations for Design of Experiments for Hybrid Buoyant Aerial Vehicle
Authors: A. U. Haque, W. Asrar, A. A Omar, E. Sulaeman, J. S. M. Ali
Abstract:
Buoyancy force applied on deformable symmetric bodies can be estimated by using Archimedes Principle. Such bodies like ellipsoidal bodies have high volume to surface ratio and are isometrically scaled for mass, length, area and volume to follow square cube law. For scaling up such bodies, it is worthwhile to find out the scaling relationship between the other physical quantities that represent thermodynamic, structural and inertial response etc. So, dimensionless similarities to find an allometric scale can be developed by using Bukingham π theorem which utilizes physical dimensions of important parameters. Base on this fact, physical dependencies of buoyancy system are reviewed to find the set of physical variables for deformable bodies of revolution filled with expandable gas like helium. Due to change in atmospheric conditions, this gas changes its volume and this change can effect the stability of elongated bodies on the ground as well as in te air. Special emphasis was given on the existing similarity parameters which can be used in the design of experiments of such bodies whose shape is affected by the external force like a drag, surface tension and kinetic loads acting on the surface. All these similarity criteria are based on non-dimensionalization, which also needs to be consider for scaling up such bodies.Keywords: Bukhigham pi theorem, similitude, scaling, buoyancy
Procedia PDF Downloads 3761840 Aerodynamic Analysis of Dimple Effect on Aircraft Wing
Authors: E. Livya, G. Anitha, P. Valli
Abstract:
The main objective of aircraft aerodynamics is to enhance the aerodynamic characteristics and maneuverability of the aircraft. This enhancement includes the reduction in drag and stall phenomenon. The airfoil which contains dimples will have comparatively less drag than the plain airfoil. Introducing dimples on the aircraft wing will create turbulence by creating vortices which delays the boundary layer separation resulting in decrease of pressure drag and also increase in the angle of stall. In addition, wake reduction leads to reduction in acoustic emission. The overall objective of this paper is to improve the aircraft maneuverability by delaying the flow separation point at stall and thereby reducing the drag by applying the dimple effect over the aircraft wing. This project includes both computational and experimental analysis of dimple effect on aircraft wing, using NACA 0018 airfoil. Dimple shapes of Semi-sphere, hexagon, cylinder, square are selected for the analysis; airfoil is tested under the inlet velocity of 30m/s at different angle of attack (5˚, 10˚, 15˚, 20˚, and 25˚). This analysis favours the dimple effect by increasing L/D ratio and thereby providing the maximum aerodynamic efficiency, which provides the enhanced performance for the aircraft.Keywords: airfoil, dimple effect, turbulence, boundary layer separation
Procedia PDF Downloads 5321839 Economic Loss due to Ganoderma Disease in Oil Palm
Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho
Abstract:
Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.Keywords: ganoderma, oil palm, regression model, yield loss, economic loss
Procedia PDF Downloads 3891838 System Security Impact on the Dynamic Characteristics of Measurement Sensors in Smart Grids
Authors: Yiyang Su, Jörg Neumann, Jan Wetzlich, Florian Thiel
Abstract:
Smart grid is a term used to describe the next generation power grid. New challenges such as integration of renewable and decentralized energy sources, the requirement for continuous grid estimation and optimization, as well as the use of two-way flows of energy have been brought to the power gird. In order to achieve efficient, reliable, sustainable, as well as secure delivery of electric power more and more information and communication technologies are used for the monitoring and the control of power grids. Consequently, the need for cybersecurity is dramatically increased and has converged into several standards which will be presented here. These standards for the smart grid must be designed to satisfy both performance and reliability requirements. An in depth investigation of the effect of retrospectively embedded security in existing grids on it’s dynamic behavior is required. Therefore, a retrofitting plan for existing meters is offered, and it’s performance in a test low voltage microgrid is investigated. As a result of this, integration of security measures into measurement architectures of smart grids at the design phase is strongly recommended.Keywords: cyber security, performance, protocols, security standards, smart grid
Procedia PDF Downloads 3231837 Impact of Web 2.0 on Digital Divide in Azad Jammu and Kashmir
Authors: Sana Shokat, Rabia Riaz, Raja Shoaib Hussain, Saba Shabir
Abstract:
Digital divide is usually measured in terms of gap between those who can efficiently use new technological tools, such as Internet, and those who cannot. It is also hypothesized that web 2.0 tools motivate people to use technology i.e. Social networking sites can play an important role in bridging digital gap. This study was to determine the presence of digital divide in urban and rural areas of district Muzaffrabad, Azad Jammu & Kashmir taking internet usage as the key element. A cross-sectional community based survey was conducted involving 384 respondents from city Muzaffrabad and village Garhi Doppta. The existence of digital divide was accessed on the basis of the questionnaires given. Chi- square test was used to find the association of different demographic and ICT related factors with internet usage. Age based and area based divide still exist among the targeted population but gender based digital divide is vanishing from the intended area of study. Outcomes of the survey also revealed that web 2.0-based web sites are also becoming popular and attracting people to use internet. Trend of using internet and communication technologies can be increased by solving the highlighted problems.Keywords: Azad Jammu and Kashmir, digital divide, ICT, information and communication technology, Web2.0
Procedia PDF Downloads 3671836 Monthly River Flow Prediction Using a Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to developed an efficient water management system to optimize the allocation water resources.Keywords: river flow, nonlinear prediction method, phase space, local linear approximation
Procedia PDF Downloads 4121835 Mechanical Properties and Microstructural Analysis of Al6061-Red Mud Composites
Authors: M. Gangadharappa, M. Ravi Kumar, H. N. Reddappa
Abstract:
The mechanical properties and morphological analysis of Al6061-Red mud particulate composites were investigated. The compositions of the composite include a matrix of Al6061 and the red mud particles of 53-75 micron size as reinforcement ranging from 0% to 12% at an interval of 2%. Stir casting technique was used to fabricate Al6061-Red mud composites. Density measurement, estimation of percentage porosity, tensile properties, fracture toughness, hardness value, impact energy, percentage elongation and percentage reduction in area. Further, the microstructures and SEM examinations were investigated to characterize the composites produced. The result shows that a uniform dispersion of the red mud particles along the grain boundaries of the Al6061 alloy. The tensile strength and hardness values increases with the addition of Red mud particles, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the red mud, an industrial waste can be used to enhance the properties of Al6061 alloy for engineering applications.Keywords: Al6061, red mud, tensile strength, hardness and microstructures
Procedia PDF Downloads 5621834 Non-Invasive Imaging of Tissue Using Near Infrared Radiations
Authors: Ashwani Kumar Aggarwal
Abstract:
NIR Light is non-ionizing and can pass easily through living tissues such as breast without any harmful effects. Therefore, use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. This blurred reconstructed image has been enhanced using a digital filter which is optimal in mean square sense.Keywords: least-squares optimization, filtering, tomography, laser interaction, light scattering
Procedia PDF Downloads 3161833 Synthesis, Structural Characterization and Biological Activity of Bis{(E)-1-[(2,4,6-Tribromophenyl) Diazenyl] Naphthalen-2-Olato} Copper (II) Dimethyl Sulfoxide Monosolvate
Authors: Hassiba Bougueria, Nesrine Benarous, Souheyla Chetioui
Abstract:
Azo dyes are one of the most widely used compounds in organic chemistry, primarily due to their relatively simple preparation methods. They have therefore been widely used, in particular as colorants for textiles, printing inks, cosmetics, and food additives. In addition to their use as dyes, azo compounds have attracted much attention from chemists as their potential applications are important in coordination chemistry, metal-organic frameworks (MOF) structures, COF (covalent-organic frameworks), and catalysis. Moreover, they have found many applications in different fields, such as nonlinear optics, optical storage, photoluminescence, and magnetism. The compound bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate, the CuII atom is tetracoordinate with a square-planar geometry, surrounded by two bidentate (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalene-2-olate ligands via two N atoms and two O atoms. The O-Cu-O angles and N-Cu-N are of the order of 177.90(16)° and 177.8(2)°, respectively. The distances Cu-O and Cu- N are 1.892(4) Å and 1.976(4) Å, respectively. The cohesion of the crystal is ensured by hydrogen bonds of the C—H…O type and by π=π staking interactions [centroid–centroid distance = 3.679(4)Å]. The DMSO solvent molecule is disordered at two positions with occupancy rates of 0.70 and 0.30.Keywords: azo dyes, DRX, structural characterization, biological activity
Procedia PDF Downloads 871832 Feature Extractions of EMG Signals during a Constant Workload Pedaling Exercise
Authors: Bing-Wen Chen, Alvin W. Y. Su, Yu-Lin Wang
Abstract:
Electromyography (EMG) is one of the important indicators during exercise, as it is closely related to the level of muscle activations. This work quantifies the muscle conditions of the lower limbs in a constant workload exercise. Surface EMG signals of the vastus laterals (VL), vastus medialis (VM), rectus femoris (RF), gastrocnemius medianus (GM), gastrocnemius lateral (GL) and Soleus (SOL) were recorded from fourteen healthy males. The EMG signals were segmented in two phases: activation segment (AS) and relaxation segment (RS). Period entropy (PE), peak count (PC), zero crossing (ZC), wave length (WL), mean power frequency (MPF), median frequency (MDF) and root mean square (RMS) are calculated to provide the quantitative information of the measured EMG segments. The outcomes reveal that the PE, PC, ZC and RMS have significantly changed (p<.001); WL presents moderately changed (p<.01); MPF and MDF show no changed (p>.05) during exercise. The results also suggest that the RS is also preferred for performance evaluation, while the results of the extracted features in AS are usually affected directly by the amplitudes. It is further found that the VL exhibits the most significant changes within six muscles during pedaling exercise. The proposed work could be applied to quantify the stamina analysis and to predict the instant muscle status in athletes.Keywords: electromyographic feature extraction, muscle status, pedaling exercise, relaxation segment
Procedia PDF Downloads 3031831 Method for Evaluating the Monetary Value of a Customized Version of the Digital Twin for the Additive Manufacturing
Authors: Fabio Oettl, Sebastian Hoerbrand, Tobias Wittmeir, Johannes Schilp
Abstract:
By combining the additive manufacturing (AM)- process with digital concepts, like the digital twin (DT) or the downsized and basing concept of the digital part file (DPF), the competitiveness of additive manufacturing is enhanced and new use cases like decentral production are enabled. But in literature, one can´t find any quantitative approach for valuing the usage of a DT or DPF in AM. Out of this fact, such an approach will be developed within this paper in order to further promote or dissuade the usage of these concepts. The focus is set on the production as an early lifecycle phase, which means that the AM-production process gets analyzed regarding the potential advantages of using DPF in AM. These advantages are transferred to a monetary value with this approach. By calculating the costs of the DPF, an overall monetary value is a result. Thereon a tool, based on a simulation environment is constructed, where the algorithms are transformed into a program. The results of applying this tool show that an overall value of 20,81 € for the DPF can be realized for one special use case. For the future application of the DPF there is the recommendation to integrate especially sustainable information because out of this, a higher value of the DPF can be expected.Keywords: additive manufacturing, digital concept costs, digital part file, digital twin, monetary value estimation
Procedia PDF Downloads 2001830 Regression for Doubly Inflated Multivariate Poisson Distributions
Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta
Abstract:
Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios
Procedia PDF Downloads 1561829 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach
Authors: Riznaldi Akbar
Abstract:
In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.Keywords: debt crisis, external debt, artificial neural network, ANN
Procedia PDF Downloads 4421828 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache
Abstract:
This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting
Procedia PDF Downloads 521827 Jirga: A Traditional Approach to Peacebuidling in Conflict Affected Fragile Communities of Khyber Pakhtunkhwa
Authors: Nizar Ahmad, Mushtaq Ahmad Jadoon, Farhat Ullah
Abstract:
This study investigates the peace efforts made by Pakhtun’s traditional institution Jirga in conflict-affected communities of Khyber Pakhtunkhwa. Data were collected through a structured interview schedule from a sample of 278 household members in four selected villages of Dir Upper and Dir Lower Districts. A Chi square test was applied to ascertain relationships between Jirga related factors with the state of peace in the study area. It was found that factors such as Jirga regularly conducted meetings (P=. 000), it inflicted punishment upon local militants (P=. 001), ex-combatants were re-integrated through Jirga (P= .000) and Jirga ordered the local the defiant to leave the community had a significant association with state of peace in the area. It is concluded that Jirga system had played a vital role in the peacebuilding process of the area through provision of support to government in peace operation and mobilizing local people for peace in the area. It is suggested that Jirga shall to be the part of peace process and government needs to provide its possible support to members of the Jirga in order to enhance their capacity of peace work.Keywords: Jirga, peacebuilding, terrorism, traditional mechanism, conflict affect areas
Procedia PDF Downloads 3401826 The Need for the Development of Entrepreneurial Skill in Benue State University Students, Makurdi
Authors: Philomena Ibuh Adzongo, Margaret U. Oluwole, Justina Nguveren Jor.
Abstract:
This paper investigated the need for the development of entrepreneurial skills for Benue State University students. The population consisted of all 1,500 final year students in Benue State University. A sample of 100 students was selected using simple random sampling. A 12-item self-constructed and content validated questionnaire by research experts titled, the Need for the Development of Entrepreneurial Skills in Benue State University Students (NDECBSUS) was used to collect the data. The questionnaire items were rated using a 4-point modified rating scale of Strongly Agree, Agree, Disagree and Strongly Disagree, assigned the following scores of 4,3,2 and 1, respectively. The questionnaire was administered by the researcher with the help of two research assistants through the primary source. Simple percentages and chi-square were used to answer the research questions and test the hypotheses, respectively. The findings revealed that in business management, business management skills, personal skills, and technical skills need to be developed in students for them to become effective and efficient entrepreneurs and concluded that the acquisition of these skills will reduce the challenge of unemployment. The study recommended that funds should be made available by all education stakeholders for such programmes to remain functional.Keywords: entrepreneurial skill, entrepreneurship, need for development, university students
Procedia PDF Downloads 3561825 Modeling Food Popularity Dependencies Using Social Media Data
Authors: DEVASHISH KHULBE, MANU PATHAK
Abstract:
The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses
Procedia PDF Downloads 1151824 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction
Authors: Sudhir Kumar Tiwari
Abstract:
The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.Keywords: multi-disciplinary optimization, aircraft load, finite element analysis, stick model
Procedia PDF Downloads 3521823 Estimation of Respiratory Parameters in Pressure Controlled Ventilation System with Double Lungs on Secretion Clearance
Authors: Qian Zhang, Dongkai Shen, Yan Shi
Abstract:
A new mechanical ventilator with automatic secretion clearance function can improve the secretion clearance safely and efficiently. However, in recent modeling studies on various mechanical ventilators, it was considered that human had one lung, and the coupling effect of double lungs was never illustrated. In this paper, to expound the coupling effect of double lungs, a mathematical model of a ventilation system of a bi-level positive airway pressure (BiPAP) controlled ventilator with secretion clearance was set up. Moreover, an experimental study about the mechanical ventilation system of double lungs on BiPAP ventilator was conducted to verify the mathematical model. Finally, the coupling effect of double lungs of the mathematical ventilation was studied by simulation and orthogonal experimental design. This paper adds to previous studies and can be referred to optimization methods in medical researches.Keywords: double lungs, coupling effect, secretion clearance, orthogonal experimental design
Procedia PDF Downloads 6061822 Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice
Authors: S. Zolghadri, M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani
Abstract:
In this study, the absorbed dose of human organs after injection of 177Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, 177Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy.Keywords: ¹⁷⁷Lu, breast cancer, compartmental modeling, dosimetry
Procedia PDF Downloads 1511821 Observer-Based Control Design for Double Integrators Systems with Long Sampling Periods and Actuator Uncertainty
Authors: Tomas Menard
Abstract:
The design of control-law for engineering systems has been investigated for many decades. While many results are concerned with continuous systems with continuous output, nowadays, many controlled systems have to transmit their output measurements through network, hence making it discrete-time. But it is well known that the sampling of a system whose control-law is based on the continuous output may render the system unstable, especially when this sampling period is long compared to the system dynamics. The control design then has to be adapted in order to cope with this issue. In this paper, we consider systems which can be modeled as double integrator with uncertainty on the input since many mechanical systems can be put under such form. We present a control scheme based on an observer using only discrete time measurement and which provides continuous time estimation of the state, combined with a continuous control law, which stabilized a system with second-order dynamics even in the presence of uncertainty. It is further shown that arbitrarily long sampling periods can be dealt with properly setting the control scheme parameters.Keywords: dynamical system, control law design, sampled output, observer design
Procedia PDF Downloads 1871820 Estimation of Subgrade Resilient Modulus from Soil Index Properties
Authors: Magdi M. E. Zumrawi, Mohamed Awad
Abstract:
Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.Keywords: Consistency factor, resilient modulus, subgrade soil, properties
Procedia PDF Downloads 1931819 Personalized Intervention through Causal Inference in mHealth
Authors: Anna Guitart Atienza, Ana Fernández del Río, Madhav Nekkar, Jelena Ljubicic, África Periáñez, Eura Shin, Lauren Bellhouse
Abstract:
The use of digital devices in healthcare or mobile health (mHealth) has increased in recent years due to the advances in digital technology, making it possible to nudge healthy behaviors through individual interventions. In addition, mHealth is becoming essential in poor-resource settings due to the widespread use of smartphones in areas where access to professional healthcare is limited. In this work, we evaluate mHealth interventions in low-income countries with a focus on causal inference. Counterfactuals estimation and other causal computations are key to determining intervention success and assisting in empirical decision-making. Our main purpose is to personalize treatment recommendations and triage patients at the individual level in order to maximize the entire intervention's impact on the desired outcome. For this study, collected data includes mHealth individual logs from front-line healthcare workers, electronic health records (EHR), and external variables data such as environmental, demographic, and geolocation information.Keywords: causal inference, mHealth, intervention, personalization
Procedia PDF Downloads 132