Search results for: forest cover-type dataset
463 Conservation and Restoration of Biodiversity in Khagrachari
Authors: Anima Ashraf
Abstract:
Over the past few decades biodiversity has become the issue of global concern for its rapid reduction worldwide. Bangladesh is no exception. The country is exceptionally endowed with a vast variety of flora and fauna, but due to tremendous population pressure, rural poverty and unemployment it has been decreased alarmingly. Since, both biodiversity and sustainable development are the part of human life in modern era and both work together to make our life safer and comfortable therefore balance should be kept in development and biodiversity conservation and priority should be given to alternative and sustainable development paths. This paper is based on study of two projects undertaken by Arannayk Foundation jointly with its local NGO partners. The aim was to understand previous, current and future scenarios for the hilly biodiversity of Khagrachari in the Chittagong Hill Tracts (CHT) of Bangladesh. It is also observed how alternative income generating activities (AIGA) improve livelihood of the tribal inhabitants of the area, decrease their dependency on forest resources and also aid conservation activities. Intensive field visits were made and interviews were conducted with key informants to see the progress and achievements of local NGOs working with the tribal community for the past seven years to restore the denuded hills of Khagrachari. The paper also covers the impacts and interventions of the projects and the methods used to aid conservation activities. Raising awareness among the villagers has reduced extraction of forests resources by 47% and granting funds and access to microcredit to adopt AIGAs have increased their average annual income by 25%. Finally, the paper concludes that effective community-based conservation practices are fundamental to ensure biodiversity conservation in the Chittagong Hill Tracts. In order to conserve biodiversity and restore the forests of CHT, livelihood development of the villagers has to be considered as the main component of the projects undertaken by all NGOs and the Government.Keywords: biodiversity, conservation, forests, livelihood
Procedia PDF Downloads 277462 Measuring the Unmeasurable: A Project of High Risk Families Prediction and Management
Authors: Peifang Hsieh
Abstract:
The prevention of child abuse has aroused serious concerns in Taiwan because of the disparity between the increasing amount of reported child abuse cases that doubled over the past decade and the scarcity of social workers. New Taipei city, with the most population in Taiwan and over 70% of its 4 million citizens are migrant families in which the needs of children can be easily neglected due to insufficient support from relatives and communities, sees urgency for a social support system, by preemptively identifying and outreaching high-risk families of child abuse, so as to offer timely assistance and preventive measure to safeguard the welfare of the children. Big data analysis is the inspiration. As it was clear that high-risk families of child abuse have certain characteristics in common, New Taipei city decides to consolidate detailed background information data from departments of social affairs, education, labor, and health (for example considering status of parents’ employment, health, and if they are imprisoned, fugitives or under substance abuse), to cross-reference for accurate and prompt identification of the high-risk families in need. 'The Service Center for High-Risk Families' (SCHF) was established to integrate data cross-departmentally. By utilizing the machine learning 'random forest method' to build a risk prediction model which can early detect families that may very likely to have child abuse occurrence, the SCHF marks high-risk families red, yellow, or green to indicate the urgency for intervention, so as to those families concerned can be provided timely services. The accuracy and recall rates of the above model were 80% and 65%. This prediction model can not only improve the child abuse prevention process by helping social workers differentiate the risk level of newly reported cases, which may further reduce their major workload significantly but also can be referenced for future policy-making.Keywords: child abuse, high-risk families, big data analysis, risk prediction model
Procedia PDF Downloads 135461 Unpacking the Summarising Event in Trauma Emergencies: The Case of Pre-briefings
Authors: Professor Jo Angouri, Polina Mesinioti, Chris Turner
Abstract:
In order for a group of ad-hoc professional to perform as a team, a shared understanding of the problem at hand and an agreed action plan are necessary components. This is particularly significant in complex, time sensitive professional settings such as in trauma emergencies. In this context, team briefings prior to the patient arrival (pre-briefings) constitute a critical event for the performance of the team; they provide the necessary space for co-constructing a shared understanding of the situation through summarising information available to the team: yet the act of summarising is widely assumed in medical practice but not systematically researched. In the vast teamwork literature, terms such as ‘shared mental model’, ‘mental space’ and ‘cognate labelling’ are used extensively, and loosely, to denote the outcome of the summarising process, but how exactly this is done interactionally remains under researched. This paper reports on the forms and functions of pre-briefings in a major trauma centre in the UK. Taking an interactional approach, we draw on 30 simulated and real-life trauma emergencies (15 from each dataset) and zoom in on the use of pre-briefings, which we consider focal points in the management of trauma emergencies. We show how ad hoc teams negotiate sharedness of future orientation through summarising, synthesising information, and establishing common understanding of the situation. We illustrate the role, characteristics, and structure of pre-briefing sequences that have been evaluated as ‘efficient’ in our data and the impact (in)effective pre-briefings have on teamwork. Our work shows that the key roles in the event own the act of summarising and we problematise the implications for leadership in trauma emergencies. We close the paper with a model for pre-briefing and provide recommendations for clinical practice, arguing that effective pre-briefing practice is teachable.Keywords: summarising, medical emergencies, interaction analysis, shared/mental models
Procedia PDF Downloads 95460 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area
Authors: A. Bahmanpour, I. Eames, C. Klettner, A. Dimakopoulos
Abstract:
We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment.Keywords: computational fluid dynamics, extreme events, loading, tsunami
Procedia PDF Downloads 115459 Recession Rate of Gangotri and Its Tributary Glacier, Garhwal Himalaya, India through Kinematic GPS Survey and Satellite Data
Authors: Harish Bisht, Bahadur Singh Kotlia, Kireet Kumar
Abstract:
In order to reconstruct past retreating rates, total area loss, volume change and shift in snout position were measured through multi-temporal satellite data from 1989 to 2016 and kinematic GPS survey from 2015 to 2016. The results obtained from satellite data indicate that in the last 27 years, Chaturangi glacier snout has retreated 1172.57 ± 38.3 m (average 45.07 ± 4.31 m/year) with a total area and volume loss of 0.626 ± 0.001 sq. Km and 0.139 Km³, respectively. The field measurements through differential global positioning system survey revealed that the annual retreating rate was 22.84 ± 0.05 m/year. The large variations in results derived from both the methods are probably because of higher difference in their accuracy. Snout monitoring of the Gangotri glacier during the ablation season (May to September) in the years 2005 and 2015 reveals that the retreating rate has been comparatively more declined than that shown by the earlier studies. The GPS dataset shows that the average recession rate is 10.26 ± 0.05 m/year. In order to determine the possible causes of decreased retreating rate, a relationship between debris thickness and melt rate was also established by using ablation stakes. The present study concludes that remote sensing method is suitable for large area and long term study, while kinematic GPS is more appropriate for the annual monitoring of retreating rate of glacier snout. The present study also emphasizes on mapping of all the tributary glaciers in order to assess the overall changes in the main glacier system and its health.Keywords: Chaturangi glacier, Gangotri glacier, glacier snout, kinematic global positioning system, retreat rate
Procedia PDF Downloads 146458 C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example
Authors: Chi-Ching Lee, Po-Jung Huang, Kuo-Yang Huang, Petrus Tang
Abstract:
Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples.Keywords: cancer, visualization, database, functional annotation
Procedia PDF Downloads 619457 Real-Time Course Recommendation System for Online Learning Platforms
Authors: benabbess anja
Abstract:
This research presents the design and implementation of a real-time course recommendation system for online learning platforms, leveraging user competencies and expertise levels. The system begins by extracting and classifying the complexity levels of courses from Udemy datasets using semantic enrichment techniques and resources such as WordNet and BERT. A predictive model assigns complexity levels to each course, adding columns that represent the course category, sub-category, and complexity level to the existing dataset. Simultaneously, user profiles are constructed through questionnaires capturing their skills, sub-skills, and proficiency levels. The recommendation process involves generating embeddings with BERT, followed by calculating cosine similarity between user profiles and courses. Courses are ranked based on their relevance, with the BERT model delivering the most accurate results. To enable real-time recommendations, Apache Kafka is integrated to track user interactions (clicks, comments, time spent, completed courses, feedback) and update user profiles. The embeddings are regenerated, and similarities with courses are recalculated to reflect users' evolving needs and behaviors, incorporating a progressive weighting of interactions for more personalized suggestions. This approach ensures dynamic and real-time course recommendations tailored to user progress and engagement, providing a more personalized and effective learning experience. This system aims to improve user engagement and optimize learning paths by offering courses that precisely match users' needs and current skill levels.Keywords: recommendation system, online learning, real-time, user skills, expertise level, personalized recommendations, dynamic suggestions
Procedia PDF Downloads 7456 Faster Pedestrian Recognition Using Deformable Part Models
Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia
Abstract:
Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.Keywords: autonomous vehicles, deformable part model, dpm, pedestrian detection, real time
Procedia PDF Downloads 282455 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 188454 Ecocriticism and Sustainable Development: A Study of Kamila Shamsie's a God in Every Stone
Authors: Shaista Maseeh
Abstract:
English Literature from the beginning itself has had psychological, social and environment concerns. Virgil, Shakespeare, John Milton, William Wordsworth to the most current Robert Hass have shown and proved their environmental and ecological interests as well as distress related to its loss. Pastoral literature is also one such genre that links literature with environment. Thanks to the contemporary literary theories that they successfully are relating Literature formally to the subjects other than written text. One of such literary theory is 'Ecocriticism.' It stands under the umbrella of the Economics term, Sustainable Development,' or it can also be understood as an ecological extension of it. Ecocriticism helps the reader to study the dynamic relation between literature and our degrading environment. It draws attention towards the ravaged condition of nature and animals, that how nature is exploited by human beings for their own benefit leaving nature at a repairable loss. For instance, deforestation is reducing the size of forest every year, injuring permanently flora, fauna and also the habitat of animals. This paper will study the ecological and environmental concerns in the latest novel by Pakistani British writer Kamila Shamsie, A God in every Stone (2014). The book is not only a literary masterpiece in elegant prose, but also a novel posing a lot of questions about 'nature and environment' in general and 'animals' in particular. It gives the glimpses of the interesting history of Temple of Zeus in Greece and Ancient Caria, and covers many episodes of history the Indian freedom struggle. In course of novel's narrative Kamila Shamsie poses disturbing question about environmental abuse, about how human beings are more 'beasts' than so call beasts, poor animals. She also glorifies the simplicity of past. The novel has enough instances to prove Shamsie's positive stand on saving the earth that is being more abused than used by human beings. This paper will provide an ecocritical approach to study A God in Every Stone (2014).Keywords: animals, ecocriticism, environment, nature
Procedia PDF Downloads 430453 Antibacterial Studies on Cellulolytic Bacteria for Termite Control
Authors: Essam A. Makky, Chan Cai Wen, Muna Jalal, Mashitah M. Yusoff
Abstract:
Termites are considered as important pests that could cause severe wood damage and economic losses in urban, agriculture and forest of Malaysia. The ability of termites to degrade cellulose depends on association of gut cellulolytic microflora or better known as mutual symbionts. With the idea of disrupting the mutual symbiotic association, better pest control practices can be attained. This study is aimed to isolate cellulolytic bacteria from the gut of termites and carry out antibacterial studies for the termite. Confirmation of cellulase activity is done by qualitative and quantitative methods. Impacts of antibiotics and their combinations, as well as heavy metals and disinfectants, are conducted by using disc diffusion method. Effective antibacterial agents are then subjected for termite treatment to study the effectiveness of the agents as termiticides. 24 cellulolytic bacteria are isolated, purified and screened from the gut of termites. All isolates were identified as Gram-negative with either rod or cocci in shape. For antibacterial studies result, isolates were found to be 100% sensitive to 4 antibiotics (rifampicin, tetracycline, gentamycin, and neomycin), 2 heavy metals (cadmium and mercury) and 3 disinfectants (lactic acid, formalin, and hydrogen peroxide). 22 out of 36 antibiotic combinations showed synergistic effect while 15 antibiotic combinations showed an antagonistic effect on isolates. The 2 heavy metals and 3 disinfectants that showed 100% effectiveness, as well as 22 antibiotic combinations, that showed synergistic effect were used for termite control. Among the 27 selected antibacterial agents, 12 of them were found to be effective to kill all the termites within 1 to 6 days. Mercury, lactic acid, formalin and hydrogen peroxide were found to be the most effective termiticides in which all termites were killed within 1 day only. These effective antibacterial agents possess a great potential to be a new application to control the termite pest species in the future.Keywords: antibacterial, cellulase, termicide, termites
Procedia PDF Downloads 468452 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models
Authors: Ethan James
Abstract:
Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina
Procedia PDF Downloads 183451 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 87450 Status of Alien Invasive Trees on the Grassland Plateau in Nyika National Park
Authors: Andrew Kanzunguze, Sopani Sichinga, Paston Simkoko, George Nxumayo, Cosmas, V. B. Dambo
Abstract:
Early detection of plant invasions is a necessary prerequisite for effective invasive plant management in protected areas. This study was conducted to determine the distribution and abundance of alien invasive trees in Nyika National Park (NNP). Data on species' presence and abundance were collected from belt transects (n=31) in a 100 square kilometer area on the central plateau. The data were tested for normality using the Shapiro-Wilk test; Mann-Whitney test was carried out to compare frequencies and abundances between the species, and geographical information systems were used for spatial analyses. Results revealed that Black Wattle (Acacia mearnsii), Mexican Pine (Pinus patula) and Himalayan Raspberry (Rubus ellipticus) were the main alien invasive trees on the plateau. A. mearnsii was localized in the areas where it was first introduced, whereas P. patula and R. ellipticus were spread out beyond original points of introduction. R. ellipticus occurred as dense, extensive (up to 50 meters) thickets on the margins of forest patches and pine stands, whilst P. patula trees were frequent in the valleys, occurring most densely (up to 39 stems per 100 square meters) south-west of Chelinda camp on the central plateau with high variation in tree heights. Additionally, there were no significant differences in abundance between R. ellipticus (48) and P. patula (48) in the study area (p > 0.05) It was concluded that R. ellipticus and P. patula require more attention as compared to A. mearnsii. Howbeit, further studies into the invasion ecology of both P. patula and R. ellipticus on the Nyika plateau are highly recommended so as to assess the threat posed by the species on biodiversity, and recommend appropriate conservation measures in the national park.Keywords: alien-invasive trees, Himalayan raspberry, Nyika National Park, Mexican pine
Procedia PDF Downloads 208449 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals
Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou
Abstract:
In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life
Procedia PDF Downloads 135448 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study
Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos
Abstract:
This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.Keywords: in-place devices, IoT, human-centred data-analytics, spatial design
Procedia PDF Downloads 197447 Effects of Cacao Agroforestry and Landscape Composition on Farm Biodiversity and Household Dietary Diversity
Authors: Marlene Yu Lilin Wätzold, Wisnu Harto Adiwijoyo, Meike Wollni
Abstract:
Land-use conversion from tropical forests to cash crop production in the form of monocultures has drastic consequences for biodiversity. Meanwhile, high dependence on cash crop production is often associated with a decrease in other food crop production, thereby affecting household dietary diversity. Additionally, deforestation rates have been found to reduce households’ dietary diversity, as forests often offer various food sources. Agroforestry systems are seen as a potential solution to improve local biodiversity as well as provide a range of provisioning ecosystem services, such as timber and other food crops. While a number of studies have analyzed the effects of agroforestry on biodiversity, as well as household livelihood indicators, little is understood between potential trade-offs or synergies between the two. This interdisciplinary study aims to fill this gap by assessing cacao agroforestry’s role in enhancing local bird diversity, as well as farm household dietary diversity. Additionally, we will take a landscape perspective and investigate in what ways the landscape composition, such as the proximity to forests and forest patches, are able to contribute to the local bird diversity, as well as households’ dietary diversity. Our study will take place in two agro-ecological zones in Ghana, based on household surveys of 500 cacao farm households. Using a subsample of 120 cacao plots, we will assess the degree of shade tree diversity and density using drone flights and a computer vision tree detection algorithm. Bird density and diversity will be assessed using sound recordings that will be kept in the cacao plots for 24 hours. Landscape compositions will be assessed via remote sensing images. The results of our study are of high importance as they will allow us to understand the effects of agroforestry and landscape composition in improving simultaneous ecosystem services.Keywords: agroforestry, biodiversity, landscape composition, nutrition
Procedia PDF Downloads 113446 Effects of Small Impoundments on Leaf Litter Decomposition and Methane Derived Carbon in the Benthic Foodweb in Streams
Authors: John Gichimu Mbaka, Jan Helmrich Martin von Baumbach, Celia Somlai, Denis Köpfer, Andreas Maeck, Andreas Lorke, Ralf Schäfer
Abstract:
Leaf litter decomposition is an important process providing energy to biotic communities. Additionally, methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food webs.Flow regulation and dams can strongly alter freshwater ecosystems, but little is known about the effect of small impoundments on leaf litter decomposition and methane derived carbon in streams. In this study, we tested the effect of small water storage impoundments on leaf litter decomposition rates and methane derived carbon. Leaf litter decomposition rates were assessed by comparing treatment sites located close to nine impoundments (Rheinland Pfalz state, Germany) and reference sites located far away from the impoundments.CH4 concentrations were measured in eleven impoundments and correlated with the δ13C values of two subfamilies of chironomid larvae (i.e. Chironomini and Tanypodinae). Leaf litter break down rates were significantly lower in study sites located immediately above the impoundments, especially associated with a reduction in the abundance of shredders. Chironomini larvae had the lower mean δ13C values (‒29.2 to ‒25.5 ‰), than Tanypodinae larvae (‒26.9 to ‒25.3 ‰).No significant relationships were established between CH4 concentrations and δ13C values of chironomids (p> 0.05).Mean δ13C values of chironomid larvae (mean: ‒26.8‰, range: ‒ 29.2‰ to ‒ 25.3‰) were similar to those of sedimentary organic matter (SOM) (mean: ‒28.4‰, range: ‒ 29.3‰ to ‒ 27.1‰) and tree leaf litter (mean: ‒29.8 ‰, range: ‒ 30.5‰ to ‒ 29.1‰). In conclusion, this study demonstrates that small impoundments may have a negative effect on leaf litter decomposition in forest streams and that CH4 has limited influence on the benthic food web in stream impoundments.Keywords: river functioning, chironomids, Alder tree, stable isotopes, methane oxidation, shredder
Procedia PDF Downloads 734445 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models
Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana
Abstract:
The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.Keywords: electricity demand forecasting, load shedding, demand side management, data science
Procedia PDF Downloads 61444 Tribal Food Security Assessment and Its Measurement Index: A Study of Tribes and Particularly Vulnerable Tribal Groups in Jharkhand, India
Authors: Ambika Prasad Gupta, Harshit Sosan Lakra
Abstract:
Food security is an important issue that has been widely discussed in literature. However, there is a lack of research on the specific food security challenges faced by tribal communities. Tribal food security refers to the ability of indigenous or tribal communities to consistently access and afford an adequate and nutritious supply of food. These communities often have unique cultural, social, and economic contexts that can impact their food security. The study aims to assess the food security status of all thirty-two major tribes, including Particularly Vulnerable Tribal Groups (PVTG) people living in various blocks of Jharkhand State. The methodology of this study focuses on measuring the food security index of indigenous people by developing and redefining a new Tribal Food Security Index (TFSI) as per the indigenous community-level indicators identified by the Global Food Security Index and other indicators relevant to food security. Affordability, availability, quality and safety, and natural resources were the dimensions used to calculate the overall Tribal Food Security Index. A survey was conducted for primary data collection of tribes and PVTGs at the household level in various districts of Jharkhand with a considerable tribal population. The result shows that due to the transition from rural to urban areas, there is a considerable change in TFSI and a decrease in forest dependency of tribal communities. Socioeconomic factors like occupation and household size had a significant correlation with TFSI. Tribal households living in forests have a higher food security index than tribal households residing in urban transition areas. The study also shows that alternative methodology adopted to measure specific community-level food security creates high significant impact than using commonly used indices.Keywords: indigenous people, tribal food security, particularly vulnerable tribal groups, Jharkhand
Procedia PDF Downloads 83443 A Comparative Analysis of (De)legitimation Strategies in Selected African Inaugural Speeches
Authors: Lily Chimuanya, Ehioghae Esther
Abstract:
Language, a versatile and sophisticated tool, is fundamentally sacrosanct to mankind especially within the realm of politics. In this dynamic world, political leaders adroitly use language to engage in a strategic show aimed at manipulating or mechanising the opinion of discerning people. This nuanced synergy is marked by different rhetorical strategies, meticulously synced with contextual factors ranging from cultural, ideological, and political to achieve multifaceted persuasive objectives. This study investigates the (de)legitimation strategies inherent in African presidential inaugural speeches, as African leaders not only state their policy agenda through inaugural speeches but also subtly indulge in a dance of legitimation and delegitimation, performing a twofold objective of strengthening the credibility of their administration and, at times, undermining the performance of the past administration. Drawing insights from two different legitimation models and a dataset of 4 African presidential inaugural speeches obtained from authentic websites, the study describes the roles of authorisation, rationalisation, moral evaluation, altruism, and mythopoesis in unmasking the structure of political discourse. The analysis takes a mixed-method approach to unpack the (de)legitimation strategy embedded in the carefully chosen speeches. The focus extends beyond a superficial exploration and delves into the linguistic elements that form the basis of presidential discourse. In conclusion, this examination goes beyond the nuanced landscape of language as a potent tool in politics, with each strategy contributing to the overall rhetorical impact and shaping the narrative. From this perspective, the study argues that presidential inaugural speeches are not only linguistic exercises but also viable weapons that influence perceptions and legitimise authority.Keywords: CDA, legitimation, inaugural speeches, delegitmation
Procedia PDF Downloads 69442 Scalable and Accurate Detection of Pathogens from Whole-Genome Shotgun Sequencing
Authors: Janos Juhasz, Sandor Pongor, Balazs Ligeti
Abstract:
Next-generation sequencing, especially whole genome shotgun sequencing, is becoming a common approach to gain insight into the microbiomes in a culture-independent way, even in clinical practice. It does not only give us information about the species composition of an environmental sample but opens the possibility to detect antimicrobial resistance and novel, or currently unknown, pathogens. Accurately and reliably detecting the microbial strains is a challenging task. Here we present a sensitive approach for detecting pathogens in metagenomics samples with special regard to detecting novel variants of known pathogens. We have developed a pipeline that uses fast, short read aligner programs (i.e., Bowtie2/BWA) and comprehensive nucleotide databases. Taxonomic binning is based on the lowest common ancestor (LCA) principle; each read is assigned to a taxon, covering the most significantly hit taxa. This approach helps in balancing between sensitivity and running time. The program was tested both on experimental and synthetic data. The results implicate that our method performs as good as the state-of-the-art BLAST-based ones, furthermore, in some cases, it even proves to be better, while running two orders magnitude faster. It is sensitive and capable of identifying taxa being present only in small abundance. Moreover, it needs two orders of magnitude less reads to complete the identification than MetaPhLan2 does. We analyzed an experimental anthrax dataset (B. anthracis strain BA104). The majority of the reads (96.50%) was classified as Bacillus anthracis, a small portion, 1.2%, was classified as other species from the Bacillus genus. We demonstrate that the evaluation of high-throughput sequencing data is feasible in a reasonable time with good classification accuracy.Keywords: metagenomics, taxonomy binning, pathogens, microbiome, B. anthracis
Procedia PDF Downloads 137441 Adaptive Energy-Aware Routing (AEAR) for Optimized Performance in Resource-Constrained Wireless Sensor Networks
Authors: Innocent Uzougbo Onwuegbuzie
Abstract:
Wireless Sensor Networks (WSNs) are crucial for numerous applications, yet they face significant challenges due to resource constraints such as limited power and memory. Traditional routing algorithms like Dijkstra, Ad hoc On-Demand Distance Vector (AODV), and Bellman-Ford, while effective in path establishment and discovery, are not optimized for the unique demands of WSNs due to their large memory footprint and power consumption. This paper introduces the Adaptive Energy-Aware Routing (AEAR) model, a solution designed to address these limitations. AEAR integrates reactive route discovery, localized decision-making using geographic information, energy-aware metrics, and dynamic adaptation to provide a robust and efficient routing strategy. We present a detailed comparative analysis using a dataset of 50 sensor nodes, evaluating power consumption, memory footprint, and path cost across AEAR, Dijkstra, AODV, and Bellman-Ford algorithms. Our results demonstrate that AEAR significantly reduces power consumption and memory usage while optimizing path weight. This improvement is achieved through adaptive mechanisms that balance energy efficiency and link quality, ensuring prolonged network lifespan and reliable communication. The AEAR model's superior performance underlines its potential as a viable routing solution for energy-constrained WSN environments, paving the way for more sustainable and resilient sensor network deployments.Keywords: wireless sensor networks (WSNs), adaptive energy-aware routing (AEAR), routing algorithms, energy, efficiency, network lifespan
Procedia PDF Downloads 39440 Sericulture a Way for Bio-Diversity Conservation, Employment Generation and Socio-Economic Change: A-Comparison of Two Tribal Block of Raigarh, India
Authors: S. K. Dewangan, K. R. Sahu, S. Soni
Abstract:
Unemployment is today’s basic socio-economic problem eroding national income and living standards, aggravating national development and poverty alleviation. The farmers are encouraged to take up non-agriculture practices which are integrated with Sericulture. Sericulture is one of the primary occupations for livelihood of poor people in tribal area. Most of tribal are involved in Sericulture. Tasar, Eri are the main forest-based cultivation. Among these sericultures is the major crop adopted by the Tribal’s and practiced in respective areas. Out of the 6, 38,588 villages in India, sericultures are practiced in about 69000 villages providing employment to about 7.85 million people. Sericulture is providing livelihood for 9, 47,631 families. India continues to be the second largest producer of silk in the World. Among the four varieties of silk produced, as in 2012-13, Mulberry accounts for 18,715 MT, Eri 3116 MT, Tasar 1729 MT and Muga 119MT of the total raw silk production in the country. Sericulture with its unique features plays an important role in upgrading the socio-economic conditions of the rural folk and with employment opportunities to the educated rural youth and women. In view of the importance of sericulture enterprise for the biodiversity conservation as well as its cultural bondage, the paper tries to enlighten and discuss the significance of sericulture and strategies to be taken for the employment generation in Indian sericulture industry. The present paper explores the possible employment opportunities derived from problem analysis and strategies to be adopted aiming at revolutionary biodiversity conservation in the study area. The paper highlights the sericulture is a way for biodiversity conservation, employment generation in Raigarh district, their utilization and needs as they act as a tool for socio-economic change for tribal. The study concludes with some suggestions to improve the feasibility of sericulture in long term.Keywords: bio-diversity, employment, sericulture, tribal, income, socio-economic
Procedia PDF Downloads 367439 In-Depth Analysis on Sequence Evolution and Molecular Interaction of Influenza Receptors (Hemagglutinin and Neuraminidase)
Authors: Dong Tran, Thanh Dac Van, Ly Le
Abstract:
Hemagglutinin (HA) and Neuraminidase (NA) play an important role in host immune evasion across influenza virus evolution process. The correlation between HA and NA evolution in respect to epitopic evolution and drug interaction has yet to be investigated. In this study, combining of sequence to structure evolution and statistical analysis on epitopic/binding site specificity, we identified potential therapeutic features of HA and NA that show specific antibody binding site of HA and specific binding distribution within NA active site of current inhibitors. Our approach introduces the use of sequence variation and molecular interaction to provide an effective strategy in establishing experimental based distributed representations of protein-protein/ligand complexes. The most important advantage of our method is that it does not require complete dataset of complexes but rather directly inferring feature interaction from sequence variation and molecular interaction. Using correlated sequence analysis, we additionally identified co-evolved mutations associated with maintaining HA/NA structural and functional variability toward immunity and therapeutic treatment. Our investigation on the HA binding specificity revealed unique conserved stalk domain interacts with unique loop domain of universal antibodies (CR9114, CT149, CR8043, CR8020, F16v3, CR6261, F10). On the other hand, NA inhibitors (Oseltamivir, Zaninamivir, Laninamivir) showed specific conserved residue contribution and similar to that of NA substrate (sialic acid) which can be exploited for drug design. Our study provides an important insight into rational design and identification of novel therapeutics targeting universally recognized feature of influenza HA/NA.Keywords: influenza virus, hemagglutinin (HA), neuraminidase (NA), sequence evolution
Procedia PDF Downloads 164438 Hands-off Parking: Deep Learning Gesture-based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Joshue Perez, Javier Araluce
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, the following paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for indepth gesture classification. This tandem of MediaPipe's extraction prowess and MPL's analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System (ROS), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.Keywords: gesture detection, mediapipe, multiperceptron layer, robot operating system
Procedia PDF Downloads 103437 The Distribution, Productivity and Conservation of Camphor Tree, Dryobalanops Aromatica in West Coast of Sumatra, Indonesia
Authors: Aswandi Anas Husin, Cut Rizlani Kholibrina
Abstract:
Harvesting camphor resin has been carried out since the beginning of civilization on the west coast of Sumatra. Oil or crystals that containing borneol are harvested from the camphor tree (Dryobalanops aromatica). Non-timber forest products are utilized for the manufacture of fragrances, antiseptics, anti-inflammatory, analgesic as well as effective for the treatment of blocked arteries. Based on exploration on the west coast of Sumatra, these endemic tree species were found remaining growing in groups on small spots in the lowlands to the hills. Some populations are found at an altitude of 700 meters above sea level in Kadabuhan, Jongkong and Sultan Daulat in Subulussalam district, Singkohor and Lake Paris in Aceh Singkil district, and Sirandorung and Manduamas in the north of Barus, Central Tapanuli district. These multi-purpose tree species was also identified as being able to adapt to the Singkil Peat Swamp. The decline in tree population has a direct impact on reducing their productivity. Conventionally, the crystals are harvested by cutting and splitting the stem into wooden blocks. In this way about 1.5-2.5 kg of crystals are obtained with various qualities. Camphor retrieval can also be done by making a notch on a standing tree trunk and collecting liquid resin (ombil) that is removed from the injured resin channel. Twigs and leaves also contain borneol. The aromatic content in this section opens opportunities for the supply of borneol through the distillation process. Vegetative propagation technology is needed to overcome the limitations of available seeds. This breeding strategy for vulnerable species starts with gathering genetic material from various provenances which are then used to support the provision of basic populations, breeding populations, multiplication populations and production populations for extensive development of camphor tree plantationsKeywords: camphor, conservation, natural borneol, productivity, vulnerable species
Procedia PDF Downloads 126436 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer
Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom
Abstract:
Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN
Procedia PDF Downloads 78435 Review of the Road Crash Data Availability in Iraq
Authors: Abeer K. Jameel, Harry Evdorides
Abstract:
Iraq is a middle income country where the road safety issue is considered one of the leading causes of deaths. To control the road risk issue, the Iraqi Ministry of Planning, General Statistical Organization started to organise a collection system of traffic accidents data with details related to their causes and severity. These data are published as an annual report. In this paper, a review of the available crash data in Iraq will be presented. The available data represent the rate of accidents in aggregated level and classified according to their types, road users’ details, and crash severity, type of vehicles, causes and number of causalities. The review is according to the types of models used in road safety studies and research, and according to the required road safety data in the road constructions tasks. The available data are also compared with the road safety dataset published in the United Kingdom as an example of developed country. It is concluded that the data in Iraq are suitable for descriptive and exploratory models, aggregated level comparison analysis, and evaluation and monitoring the progress of the overall traffic safety performance. However, important traffic safety studies require disaggregated level of data and details related to the factors of the likelihood of traffic crashes. Some studies require spatial geographic details such as the location of the accidents which is essential in ranking the roads according to their level of safety, and name the most dangerous roads in Iraq which requires tactic plan to control this issue. Global Road safety agencies interested in solve this problem in low and middle-income countries have designed road safety assessment methodologies which are basing on the road attributes data only. Therefore, in this research it is recommended to use one of these methodologies.Keywords: road safety, Iraq, crash data, road risk assessment, The International Road Assessment Program (iRAP)
Procedia PDF Downloads 256434 Gluability of Bambusa balcooa and Bambusa vulgaris for Development of Laminated Panels
Authors: Daisy Biswas, Samar Kanti Bose, M. Mozaffar Hossain
Abstract:
The development of value added composite products from bamboo with the application of gluing technology can play a vital role in economic development and also in forest resource conservation of any country. In this study, the gluability of Bambusa balcooa and Bambusa vulgaris, two locally grown bamboo species of Bangladesh was assessed. As the culm wall thickness of bamboos decreases from bottom to top, a culm portion of up to 5.4 m and 3.6 m were used from the base of B. balcooa and B. vulgaris, respectively, to get rectangular strips of uniform thickness. The color of the B. vulgaris strips was yellowish brown and that of B. balcooa was reddish brown. The strips were treated in borax-boric, bleaching and carbonization for extending the service life of the laminates. The preservative treatments changed the color of the strips. Borax–boric acid treated strips were reddish brown. When bleached with hydrogen peroxide, the color of the strips turned into whitish yellow. Carbonization produced dark brownish strips having coffee flavor. Chemical constituents for untreated and treated strips were determined. B. vulgaris was more acidic than B. balcooa. Then the treated strips were used to develop three-layered bamboo laminated panel. Urea formaldehyde (UF) and polyvinyl acetate (PVA) were used as binder. The shear strength and abrasive resistance of the panel were evaluated. It was found that the shear strength of the UF-panel was higher than the PVA-panel for all treatments. Between the species, gluability of B. vulgaris was better and in some cases better than hardwood species. The abrasive resistance of B. balcooa is slightly higher than B. vulgaris; however, the latter was preferred as it showed well gluability. The panels could be used as structural panel, floor tiles, flat pack furniture component, and wall panel etc. However, further research on durability and creep behavior of the product in service condition is warranted.Keywords: Bambusa balcooa, Bambusa vulgaris, polyvinyl acetate, urea formaldehyde
Procedia PDF Downloads 263