Search results for: differential pricing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1878

Search results for: differential pricing

288 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction

Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack

Abstract:

We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.

Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization

Procedia PDF Downloads 106
287 Evaluation of the Effect of Lactose Derived Monosaccharide on Galactooligosaccharides Production by β-Galactosidase

Authors: Yenny Paola Morales Cortés, Fabián Rico Rodríguez, Juan Carlos Serrato Bermúdez, Carlos Arturo Martínez Riascos

Abstract:

Numerous benefits of galactooligosaccharides (GOS) as prebiotics have motivated the study of enzymatic processes for their production. These processes have special complexities due to several factors that make difficult high productivity, such as enzyme type, reaction medium pH, substrate concentrations and presence of inhibitors, among others. In the present work the production of galactooligosaccharides (with different degrees of polymerization: two, three and four) from lactose was studied. The study considers the formulation of a mathematical model that predicts the production of GOS from lactose using the enzyme β-galactosidase. The effect of pH in the reaction was studied. For that, phosphate buffer was used and with this was evaluated three pH values (6.0.6.5 and 7.0). Thus it was observed that at pH 6.0 the enzymatic activity insignificant. On the other hand, at pH 7.0 the enzymatic activity was approximately 27 times greater than at 6.5. The last result differs from previously reported results. Therefore, pH 7.0 was chosen as working pH. Additionally, the enzyme concentration was analyzed, which allowed observing that the effect of the concentration depends on the pH and the concentration was set for the following studies in 0.272 mM. Afterwards, experiments were performed varying the lactose concentration to evaluate its effects on the process and to generate the data for the adjustment of the mathematical model parameters. The mathematical model considers the reactions of lactose hydrolysis and transgalactosylation for the production of disaccharides and trisaccharides, with their inverse reactions. The production of tetrasaccharides was negligible and, because of that, it was not included in the model. The reaction was monitored by HPLC and for the quantitative analysis of the experimental data the Matlab programming language was used, including solvers for differential equations systems integration (ode15s) and nonlinear problems optimization (fminunc). The results confirm that the transgalactosylation and hydrolysis reactions are reversible, additionally inhibition by glucose and galactose is observed on the production of GOS. In relation to the production process of galactooligosaccharides, the results show that it is necessary to have high initial concentrations of lactose considering that favors the transgalactosylation reaction, while low concentrations favor hydrolysis reactions.

Keywords: β-galactosidase, galactooligosaccharides, inhibition, lactose, Matlab, modeling

Procedia PDF Downloads 358
286 Investigating the Atmospheric Phase Distribution of Inorganic Reactive Nitrogen Species along the Urban Transect of Indo Gangetic Plains

Authors: Reema Tiwari, U. C. Kulshrestha

Abstract:

As a key regulator of atmospheric oxidative capacity and secondary aerosol formations, the signatures of reactive nitrogen (Nr) emissions are becoming increasingly evident in the cascade of air pollution, acidification, and eutrophication of the ecosystem. However, their accurate estimates in N budget remains limited by the photochemical conversion processes where occurrence of differential atmospheric residence time of gaseous (NOₓ, HNO₃, NH₃) and particulate (NO₃⁻, NH₄⁺) Nr species becomes imperative to their spatio temporal evolution on a synoptic scale. The present study attempts to quantify such interactions under tropical conditions when low anticyclonic winds become favorable to the advections from west during winters. For this purpose, a diurnal sampling was conducted using low volume sampler assembly where ambient concentrations of Nr trace gases along with their ionic fractions in the aerosol samples were determined with UV-spectrophotometer and ion chromatography respectively. The results showed a spatial gradient of the gaseous precursors with a much pronounced inter site variability (p < 0.05) than their particulate fractions. Such observations were confirmed for their limited photochemical conversions where less than 1 ratios of day and night measurements (D/N) for the different Nr fractions suggested an influence of boundary layer dynamics at the background site. These phase conversion processes were further corroborated with the molar ratios of NOₓ/NOᵧ and NH₃/NHₓ where incomplete titrations of NOₓ and NH₃ emissions were observed irrespective of their diurnal phases along the sampling transect. Their calculations with equilibrium based approaches for an NH₃-HNO₃-NH₄NO₃ system, on the other hand, were characterized by delays in equilibrium attainment where plots of their below deliquescence Kₘ and Kₚ values with 1000/T confirmed the role of lower temperature ranges in NH₄NO₃ aerosol formation. These results would help us in not only resolving the changing atmospheric inputs of reduced (NH₃, NH₄⁺) and oxidized (NOₓ, HNO₃, NO₃⁻) Nr estimates but also in understanding the dependence of Nr mixing ratios on their local meteorological conditions.

Keywords: diurnal ratios, gas-aerosol interactions, spatial gradient, thermodynamic equilibrium

Procedia PDF Downloads 128
285 Rheumatoid Arthritis, Periodontitis and the Subgingival Microbiome: A Circular Relationship

Authors: Isabel Lopez-Oliva, Akshay Paropkari, Shweta Saraswat, Stefan Serban, Paola de Pablo, Karim Raza, Andrew Filer, Iain Chapple, Thomas Dietrich, Melissa Grant, Purnima Kumar

Abstract:

Objective: We aimed to explicate the role of the subgingival microbiome in the causal link between rheumatoid arthritis (RA) and periodontitis (PD). Methods: Subjects with/without RA and with/without PD were randomized for treatment with scaling and root planing (SRP) or oral hygiene instructions. Subgingival biofilm, gingival crevicular fluid, and serum were collected at baseline and at 3- and 6-months post-operatively. Correlations were generated between 72 million 16S rDNA sequences, immuno-inflammatory mediators, circulating antibodies to oral microbial antigens, serum inflammatory molecules, and clinical metrics of RA. The dynamics of inter-microbial and host-microbial interactions were modeled using differential network analysis. Results: RA superseded periodontitis as a determinant of microbial composition, and DAS28 score superseded the severity of periodontitis as a driver of microbial assemblages (p=0.001, ANOSIM). RA subjects evidenced higher serum anti-PPAD (p=0.0013), anti-Pg-enolase (p=0.0031), anti-RPP3, anti- Pg-OMP and anti- Pi-OMP (p=0.001) antibodies than non-RA controls (with and without periodontitis). Following SRP, bacterial networks anchored by IL-1b, IL-4, IL-6, IL-10, IL-13, MIP-1b, and PDGF-b underwent ≥5-fold higher rewiring; and serum antibodies to microbial antigens decreased significantly. Conclusions: Our data suggest a circular relationship between RA and PD, beginning with an RA-influenced dysbiosis within the healthy subgingival microbiome that leads to exaggerated local inflammation in periodontitis and circulating antibodies to periodontal pathogens and positive correlation between severity of periodontitis and RA activity. Periodontal therapy restores host-microbial homeostasis, reduces local inflammation, and decreases circulating microbial antigens. Our data highlights the importance of integrating periodontal care into the management of RA patients.

Keywords: rheumatoid arthritis, periodontal, subgingival, DNA sequence analysis, oral microbiome

Procedia PDF Downloads 108
284 Hybrid Nanostructures of Acrylonitrile Copolymers

Authors: A. Sezai Sarac

Abstract:

Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).

Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures

Procedia PDF Downloads 383
283 Comparative Evaluation of Root Uptake Models for Developing Moisture Uptake Based Irrigation Schedules for Crops

Authors: Vijay Shankar

Abstract:

In the era of water scarcity, effective use of water via irrigation requires good methods for determining crop water needs. Implementation of irrigation scheduling programs requires an accurate estimate of water use by the crop. Moisture depletion from the root zone represents the consequent crop evapotranspiration (ET). A numerical model for simulating soil water depletion in the root zone has been developed by taking into consideration soil physical properties, crop and climatic parameters. The governing differential equation for unsaturated flow of water in the soil is solved numerically using the fully implicit finite difference technique. The water uptake by plants is simulated by using three different sink functions. The non-linear model predictions are in good agreement with field data and thus it is possible to schedule irrigations more effectively. The present paper describes irrigation scheduling based on moisture depletion from the different layers of the root zone, obtained using different sink functions for three cash, oil and forage crops: cotton, safflower and barley, respectively. The soil is considered at a moisture level equal to field capacity prior to planting. Two soil moisture regimes are then imposed for irrigated treatment, one wherein irrigation is applied whenever soil moisture content is reduced to 50% of available soil water; and other wherein irrigation is applied whenever soil moisture content is reduced to 75% of available soil water. For both the soil moisture regimes it has been found that the model incorporating a non-linear sink function which provides best agreement of computed root zone moisture depletion with field data, is most effective in scheduling irrigations. Simulation runs with this moisture uptake function result in saving 27.3 to 45.5% & 18.7 to 37.5%, 12.5 to 25% % &16.7 to 33.3% and 16.7 to 33.3% & 20 to 40% irrigation water for cotton, safflower and barley respectively, under 50 & 75% moisture depletion regimes over other moisture uptake functions considered in the study. Simulation developed can be used for an optimized irrigation planning for different crops, choosing a suitable soil moisture regime depending upon the irrigation water availability and crop requirements.

Keywords: irrigation water, evapotranspiration, root uptake models, water scarcity

Procedia PDF Downloads 331
282 MicroRNA in Bovine Corpus Luteum during Early Pregnancy

Authors: Rreze Gecaj, Corina Schanzenbach, Benedikt Kirchner, Michael Pfaffl, Bajram Berisha

Abstract:

The maintenance of corpus lutem (CL) during early pregnancy in cattle is a critical and multifarious process. A luteotrophic mechanism originating from the embryo is widely accepted as the triggering signal for the CL maintenance. In the cattle, it is the interferon-tau (IFNT) secretion form conceptus that prevents CL regression and ensures progesterone production for the establishment of pregnancy. In addition to endocrine and paracrine signals, microRNA (miRNA) can also support CL sustainability during early pregnancy. MiRNA are small non-coding nucleic acids that regulate gene expression post-transcriptionally and are shown to be involved in the modulation of CL function. However, the examination of miRNAs in corpus luteum function at the early pregnancy still remains largely uncovered. This study aims at profiling the expression of miRNA in CL during the early pregnancy in cattle by comparing it with the CL form late cycle and with the regressed CL. Corpora lutea were assigned in two different groups during the cycle (C13 group, late CL: days 13-18 and C18, regressed CL group: day >18) and during the early pregnancy (group P: 1-2 month). The estrous cycle was determined by macroscopic examination and to age the fetus crown-rump length measurement was applied. A total of 9 corpora lutea from individual animals were included in the study, three corpora lutea for each group. MiRNAs population was profiled using small RNA next-generation sequencing and biologically significant miRNAs were evaluated for their differential expression using the DESeq2-methodology. We show that 6 differentially expressed miRNAs (bta-mir-2890, -2332, -2441-3p, -148b, -1248 and -29c) are common to both comparisons, P vs C13 and P vs C18. While for each stage individually we have identified unique miRNAs differentially expressed only for the given comparison. bta-miR-23a and -769 were unique miRNAs differentially expressed in P vs C13, whereas forty-four unique miRNAs were identified as differentially expressed in P vs C18. These data confirm that miRNAs are highly abundant in luteal tissue during early pregnancy and potentially regulate the CL maintenance at this stage of fetus development.

Keywords: bovine, corpus luteum, microRNA, pregnancy, RNA-Seq

Procedia PDF Downloads 259
281 Effect of Anionic Lipid on Zeta Potential Values and Physical Stability of Liposomal Amikacin

Authors: Yulistiani, Muhammad Amin, Fasich

Abstract:

A surface charge of the nanoparticle is a very important consideration in pulmonal drug delivery system. The zeta potential (ZP) is related to the surface charge which can predict stability of nanoparticles as nebules of liposomal amikacin. Anionic lipid such as 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) is expected to contribute to the physical stability of liposomal amikacin and the optimal ZP value. Suitable ZP can improve drug release profiles at specific sites in alveoli as well as their stability in dosage form. This study aimed to analyze the effect of DPPG on ZP values and physical stability of liposomal amikacin. Liposomes were prepared by using the reserved phase evaporation method. Liposomes consisting of DPPG, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), cholesterol and amikacin were formulated in five different compositions 0/150/5/100, 10//150/5/100, 20/150/5/100, 30/150/5/100 and 40/150/5/100 (w/v) respectively. A chloroform/methanol mixture in the ratio of 1 : 1 (v/v) was used as solvent to dissolve lipids. These systems were adjusted in the phosphate buffer at pH 7.4. Nebules of liposomal amikacin were produced by using the vibrating nebulizer and then characterized by the X-ray diffraction, differential scanning calorimetry, particle size and zeta potential analyzer, and scanning electron microscope. Amikacin concentration from liposome leakage was determined by the immunoassay method. The study revealed that presence of DPPG could increase the ZP value. The addition of 10 mg DPPG in the composition resulted in increasing of ZP value to 3.70 mV (negatively charged). The optimum ZP value was reached at -28.780 ± 0.70 mV and particle size of nebules 461.70 ± 21.79 nm. Nebulizing process altered parameters such as particle size, conformation of lipid components and the amount of surface charges of nanoparticles which could influence the ZP value. These parameters might have profound effects on the application of nebules in the alveoli; however, negatively charge nanoparticles were unexpected to have a high ZP value in this system due to increased macrophage uptake and pulmonal clearance. Therefore, the ratio of liposome 20/150/5/100 (w/v) resulted in the most stable colloidal system and might be applicable to pulmonal drug delivery system.

Keywords: anionic lipid, dipalmitoylphosphatidylglycerol, liposomal amikacin, stability, zeta potential

Procedia PDF Downloads 339
280 Study of the Montmorillonite Effect on PET/Clay and PEN/Clay Nanocomposites

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

Nanocomposite polymer / clay are relatively important area of research. These reinforced plastics have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters ie polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/ poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition. This was evidence that both PET/PEN and nPET/nPEN blends are compatible in the entire range of compositions. In addition, the nPET/nPEN blends showed lower Tc and higher Tm values than the corresponding neat PET/PEN blends. In conclusion, the results obtained indicate that n(PET/PEN) blends are different from the pure ones in nanostructure and physical behavior.

Keywords: blends, exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing

Procedia PDF Downloads 298
279 Laparoscopic Uterovaginal Anastomosis in Cervicovaginal Agenesis

Authors: Anamika Choudhary, Neha Qurrat Ain

Abstract:

Background: Congenital agenesis of uterine cervix is a rare anomaly often associated with partial or complete agenesis of vagina. Here is a case report of a 14 year old girl who presented with primary amenorrhea and cyclical abdominal pain since last one year with suprapubic mass palpable. On examination complete absence of a vagina was found, and ultrasound along with magnetic resonance imaging (MRI) suggested cervicovaginal agenesis associated with cryptomenorrhea, which resulted in hematometra and b/l hematosalpinx with pelvic endometriosis. After proper counseling regarding anastomosis failure and the need for future laprotomy or hysterectomy, the patient planned for laparoscopic uterovaginal anastomosis with modified McIndoe vaginoplasty with split skin graft. Case Summary: Chief complaint: The 14 year old girl presented with primary amenorrhea and cyclical abdominal pain. Diagnosis:On history, examination and investigations we made differential diagnoses of cervicovaginal agenesis, cervicovaginal atresia. Post operatively, we concluded it’s a cervicovaginal agenesis. Intervention: Laparoscopic uterovaginal anastomosis was done, and neovagina was created using split skin graft from the thigh and silicone stent. The graft was kept patent, and restenosis was prevented using a dental mould as vaginal dilator. Outcome: Postoperatively 1 year follow-up has been done. We have observed successful uterovaginal anastomosis and good uptake of graft. We also observed the resumption of normal menstrual bleeding. Currently, there has been no restenosis, abnormal vaginal discharge and decreased dysmenorrhea. Conclusion: Laparoscopic-assisted uterovaginal anastomosis can be the treatment of choice in patients with cervical agenesis and atresia instead of hysterectomy, thereby preserving the reproductive function. This conservative approach has better outcomes, as stated in the procedure below. The procedure is successful insofar as the resumption of menstrual function. However, long-term reproductive outcomes, progression of endometriosis, functioning of fallopian tubes, and sexual life in these girls will require further follow-up.

Keywords: cervicovaginal agenesis, uterovaginal anastomosis, dental mould, silicon stent

Procedia PDF Downloads 25
278 Transcriptomic Analysis of Fragrant Rice Reveals the Involvement of Post-transcriptional Regulation in Response to Zn Foliar Application

Authors: Muhammad Imran, Sarfraz Shafiq, Xiangru Tang

Abstract:

Alternative splicing (AS) is an important post-transcriptional regulatory mechanism to generate transcripts variability and proteome diversity in plants. Fragrant rice (Oryza sativa L.) has a high economic and nutritional value, and the application of micronutrients regulate 2-acetyl-1-pyrroline (2-AP) production, which is responsible for aroma in fragrant rice. However, no systematic investigation of AS events in response to micronutrients (Zn) has been performed in fragrant rice. Furthermore, the post-transcriptional regulation of genes involved in 2-AP biosynthesis is also not known. In this study, a comprehensive analysis of AS events under two gradients of Zn treatment in two different fragrant rice cultivars (Meixiangzhan-2 and Xiangyaxiangzhan) was performed. A total of 386 and 598 significant AS events were found in Meixiangzhan-2 treated with low and high doses of Zn, respectively. In Xiangyaxiangzhan, a total of 449 and 598 significant AS events were found in low and high doses of Zn, respectively. Go analysis indicated that these genes were highly enriched in physiological processes, metabolism, and cellular process in both cultivars. However, genotype and dose-dependent AS events were also detected in both cultivars. By comparing differential AS (DAS) events with differentially expressed genes (DEGs), we found a weak overlap among DAS and DEGs in both fragrant rice cultivars, indicating that only a few genes are post-transcriptionally regulated in response to Zn treatment. We further report that Zn differentially regulates the expression of 2-AP biosynthesis-related genes in both cultivars, and Zn treatment altered the editing frequency of SNPs in the genes involved in 2-AP biosynthesis. Finally, we showed that epigenetic modifications associated with active gene transcription are generally enriched over 2-AP biosynthesis-related genes. Taken together, our results provide evidence of the post-transcriptional gene regulation in fragrant rice in response to Zn treatment and highlight that the 2-AP biosynthesis pathway may also be post-transcriptionally regulated through epigenetic modifications. These findings will serve as a cornerstone for further investigation to understand the molecular mechanisms of 2-AP biosynthesis in fragrant rice.

Keywords: fragrant rice, 2-acetyl-1-pyrroline, gene expression, zinc, alternative splicing, SNPs

Procedia PDF Downloads 112
277 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities

Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb

Abstract:

Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.

Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network

Procedia PDF Downloads 61
276 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

Authors: M. A. Talha, M. Osman Gani, M. Ferdows

Abstract:

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

Keywords: convection flow, similarity, numerical analysis, spectral method, Williamson nanofluid, internal heat generation

Procedia PDF Downloads 183
275 The Role of Principals’ Emotional Intelligence on School Leadership Effectiveness

Authors: Daniel Gebreslassie Mekonnen

Abstract:

Effective leadership has a crucial role in excelling in the overall success of a school. Today there is much attention given to school leadership, without which schools can never be successful. Therefore, the study was aimed at investigating the role of principals’ leadership styles and their emotional intelligence on the work motivation and job performance of teachers in Addis Ababa, Ethiopia. The study, thus, first examined the relationship between work motivation and job performance of the teachers in relation to the perceived leadership styles and emotional intelligence of principals. Second, it assessed the mean differences and the interaction effects of the principals’ leadership styles and emotional intelligence on the work motivation and job performance of the teachers. Finally, the study investigated whether principals’ leadership styles and emotional intelligence variables had significantly predicted the work motivation and job performance of teachers. As a means, a quantitative approach and descriptive research design were employed to conduct the study. Three hundred sixteen teachers were selected using multistage sampling techniques as participants of the study from the eight sub-cities in Addis Ababa. The main data-gathering instruments used in this study were the path-goal leadership questionnaire, emotional competence inventory, multidimensional work motivation scale, and job performance appraisal scale. The quantitative data were analyzed by using the statistical techniques of Pearson–product-moment correlation analysis, two-way analysis of variance, and stepwise multiple regression analysis. Major findings of the study have revealed that the work motivation and job performance of the teachers were significantly correlated with the perceived participative leadership style, achievement-oriented leadership style, and emotional intelligence of principals. Moreover, the emotional intelligence of the principals was found to be the best predictor of the teachers’ work motivation, whereas the achievement-oriented leadership style of the principals was identified as the best predictor of the job performance of the teachers. Furthermore, the interaction effects of all four path-goal leadership styles vis-a-vis the emotional intelligence of the principals have shown differential effects on the work motivation and job performance of teachers. Thus, it is reasonable to conclude that emotional intelligence is the sine qua non of effective school leadership. Hence, this study would be useful for policymakers and educational leaders to come up with policies that would enhance the role of emotional intelligence on school leadership effectiveness. Finally, pertinent recommendations were drawn from the findings and the conclusions of the study.

Keywords: emotional intelligence, leadership style, job performance, work motivation

Procedia PDF Downloads 100
274 The Importance of Working Memory, Executive and Attention Functions in Attention Deficit Hyperactivity Disorder and Learning Disabilities Diagnostics

Authors: Dorottya Horváth, Tímea Harmath-Tánczos

Abstract:

Attention deficit hyperactivity disorder (ADHD) and learning disabilities are common neurocognitive disorders that can have a significant impact on a child's academic performance. ADHD is characterized by inattention, hyperactivity, and impulsivity, while learning disabilities are characterized by difficulty with specific academic skills, such as reading, writing, or math. The aim of this study was to investigate the working memory, executive, and attention functions of neurotypical children and children with ADHD and learning disabilities in order to fill the gaps in the Hungarian mean test scores of these cognitive functions in children with neurocognitive disorders. Another aim was to specify the neuropsychological differential diagnostic toolkit in terms of the relationships and peculiarities between these cognitive functions. The research question addressed in this study was: How do the working memory, executive, and attention functions of neurotypical children compare to those of children with ADHD and learning disabilities? A self-administered test battery was used as a research tool. Working memory was measured with the Non-Word Repetition Test, the Listening Span Test, the Digit Span Test, and the Reverse Digit Span Test; executive function with the Letter Fluency, Semantic Fluency, and Verb Fluency Tests; and attentional concentration with the d2-R Test. The data for this study was collected from 115 children aged 9-14 years. The children were divided into three groups: neurotypical children (n = 44), children with ADHD without learning disabilities (n = 23), and children with ADHD with learning disabilities (n = 48). The data was analyzed using a variety of statistical methods, including t-tests, ANOVAs, and correlational analyses. The results showed that the performance of children with neurocognitive involvement in working memory, executive functions, and attention was significantly lower than the performance of neurotypical children. However, the results of children with ADHD and ADHD with learning disabilities did not show a significant difference. The findings of this study are important because they provide new insights into the cognitive profiles of children with ADHD and learning disabilities and suggest that working memory, executive functions, and attention are all impaired in children with neurocognitive involvement, regardless of whether they have ADHD or learning disabilities. This information can be used to develop more effective diagnostic and treatment strategies for these disorders.

Keywords: ADHD, attention functions, executive functions, learning disabilities, working memory

Procedia PDF Downloads 95
273 Responsive Integrative Therapeutic Method: Paradigm for Addressing Core Deficits in Autism by Balkibekova

Authors: Balkibekova Venera Serikpaevna

Abstract:

Background: Autism Spectrum Disorder (ASD) poses significant challenges in both diagnosis and treatment. Existing therapeutic interventions often target specific symptoms, necessitating the exploration of alternative approaches. This study investigates the RITM (Rhythm Integration Tapping Music) developed by Balkibekova, aiming to create imitation, social engagement and a wide range of emotions through brain development. Methods: A randomized controlled trial was conducted with 100 participants diagnosed with ASD, aged 1 to 4 years. Participants were randomly assigned to either the RITM therapy group or a control group receiving standard care. The RITM therapy, rooted in tapping rhythm to music such as: marche on the drums, waltz on bells, lullaby on musical triangle, dancing on tambourine, polka on wooden spoons. Therapy sessions were conducted over a 3 year period, with assessments at baseline, midpoint, and post-intervention. Results: Preliminary analyses reveal promising outcomes in the RITM therapy group. Participants demonstrated significant improvements in social interactions, speech understanding, birth of speech, and adaptive behaviors compared to the control group. Careful examination of subgroup analyses provides insights into the differential effectiveness of the RITM approach across various ASD profiles. Conclusions: The findings suggest that RITM therapy, as developed by Balkibekova, holds promise as intervention for ASD. The integrative nature of the approach, addressing multiple domains simultaneously, may contribute to its efficacy. Further research is warranted to validate these preliminary results and explore the long-term impact of RITM therapy on individuals with ASD. This abstract presents a snapshot of the research, emphasizing the significance, methodology, key findings, and implications of the RITM therapy method for consideration in an autism conference.

Keywords: RITM therapy, tapping rhythm, autism, mirror neurons, bright emotions, social interactions, communications

Procedia PDF Downloads 64
272 Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects

Authors: Lukas Vierus, Thomas Schuster

Abstract:

A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach.

Keywords: attenuated refractive dynamic ray transform of tensor fields, geodesics, transport equation, viscosity solutions

Procedia PDF Downloads 51
271 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun

Abstract:

Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.

Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance

Procedia PDF Downloads 139
270 Intersectionality and Sensemaking: Advancing the Conversation on Leadership as the Management of Meaning

Authors: Clifford Lewis

Abstract:

This paper aims to advance the conversation of an alternative view of leadership, namely ‘leadership as the management of meaning’. Here, leadership is considered as a social process of the management of meaning within an employment context, as opposed to a psychological trait, set of behaviours or relational consequence as seen in mainstream leadership research. Specifically, this study explores the relationship between intersectional identities and the management of meaning. Design: Semi-structured, one-on-one interviews were conducted with women and men of colour working in the South African private sector organisations in various leadership positions. Employing an intersectional approach using gender and race, participants were selected by using purposive and snowball sampling concurrently. Thematic and Axial coding was used to identify dominant themes. Findings: Findings suggest that, both gender and race shape how leaders manage meaning. Findings also confirm that intersectionality is an appropriate approach when studying the leadership experiences of those groups who are underrepresented in organisational leadership structures. The findings points to the need for further research into the differential effects of intersecting identities on organisational leadership experiences and that ‘leadership as the management of meaning’ is an appropriate approach for addressing this knowledge gap. Theoretical Contribution: There is a large body of literature on the complex challenges faced by women and people of colour in leadership but there is relatively little empirical work on how identity influences the management of meaning. This study contributes to the leadership literature by providing insight into how intersectional identities influence the management of meaning at work and how this impacts the leadership experiences of largely marginalised groups. Practical Implications: Understanding the leadership experiences of underrepresented groups is important because of both legal mandates and for building diverse talent for organisations and societies. Such an understanding assists practitioners in being sensitive to simplistic notions of challenges individuals might face in accessing and practicing leadership in organisations. Advancing the conversation on leadership as the management of meaning allows for a better understanding of complex challenges faced by women and people of colour and an opportunity for organisations to systematically remove unfair structural obstacles and develop their diverse leadership capacity.

Keywords: intersectionality, diversity, leadership, sensemaking

Procedia PDF Downloads 272
269 Tracking the Mind's Mouth: Use of Smart Technology for Effective Teaching of Speaking to Pupils with Developmental Co-ordination Disorder

Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Ayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Adham Al Yaari, Sajedah Al Yaari, Fatehi Eissa

Abstract:

Developmental co-ordination disorder (DCD) (also known as dyspraxia) causes a child to speak less well than expected in social conversations. We propose that the smart speaking technology could help improve sound production mechanism at both phonetic and phonological levels, which leads to better articulation of an utterance. The participants are twelve privately beginner pupils aged between 6-12 years old and diagnosed with DCD (apraxia) divided into two groups: Experimental group (n=6) and control group (called apraxic control group) (n=6). A total of fifty typically developing and achieving (TD) pupils participated as control group 2 in both groups and were preassigned into two groups (27 pupils with the treatment group and 23 with the apraxic control group). Weekly quizzes were given to all participants each week for four continuous months and results were analyzed by psychoneurolinguists and a statistician. Although being taught by the same speech-language therapist (SLT), treatment group along with TD groups were taught a full-time speaking course with sociolinguistic themes covering both phonetic and phonological properties. The course lasted for a whole semester whereby smart speaking aids have become dominant while apraxic control group and its TD group were not. Compared with apraxic control group and its TD subgroup, results show obvious changes in speaking behavioral mechanism of the DCD experimental group and its TD subgroup. Improvement could be taken from the scores where the zero marks disappeared in the fourth week (end of the first month of treatment). Good marks (5 +/10) were seen starting from the eighth week and culminating with full marks in the week number 15 of treatment where some participants scored full mark. This study concludes to support the primacy of the smart educational technology for speaking purposes and also shows that such aids can expand the range of academic performance differential categories. Further research is required to evaluate the current demonizing of smart educational aids and weighting more reasonably the relationship specificity that speaking aids can offer to other language skills, as well as their limitations.

Keywords: smart educational technology, speaking aids, pupils with SCD, apraxia

Procedia PDF Downloads 51
268 Development of Novel Amphiphilic Block Copolymer of Renewable ε-Decalactone for Drug Delivery Application

Authors: Deepak Kakde, Steve Howdle, Derek Irvine, Cameron Alexander

Abstract:

The poor aqueous solubility is one of the major obstacles in the formulation development of many drugs. Around 70% of drugs are poorly soluble in aqueous media. In the last few decades, micelles have emerged as one of the major tools for solubilization of hydrophobic drugs. Micelles are nanosized structures (10-100nm) obtained by self-assembly of amphiphilic molecules into the water. The hydrophobic part of the micelle forms core which is surrounded by a hydrophilic outer shell called corona. These core-shell structures have been used as a drug delivery vehicle for many years. Although, the utility of micelles have been reduced due to the lack of sustainable materials. In the present study, a novel methoxy poly(ethylene glycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer was synthesized by ring opening polymerization (ROP) of renewable ε-decalactone (ε-DL) monomers on methoxy poly(ethylene glycol) (mPEG) initiator using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a organocatalyst. All the reactions were conducted in bulk to avoid the use of toxic organic solvents. The copolymer was characterized by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).The mPEG-b-PεDL block copolymeric micelles containing indomethacin (IND) were prepared by nanoprecipitation method and evaluated as drug delivery vehicle. The size of the micelles was less than 40nm with narrow polydispersity pattern. TEM image showed uniform distribution of spherical micelles defined by clear surface boundary. The indomethacin loading was 7.4% for copolymer with molecular weight of 13000 and drug/polymer weight ratio of 4/50. The higher drug/polymer ratio decreased the drug loading. The drug release study in PBS (pH7.4) showed a sustained release of drug over a period of 24hr. In conclusion, we have developed a new sustainable polymeric material for IND delivery by combining the green synthetic approach with the use of renewable monomer for sustainable development of polymeric nanomedicine.

Keywords: dopolymer, ε-decalactone, indomethacin, micelles

Procedia PDF Downloads 295
267 Using GIS for Assessment and Modelling of Oil Spill Risk at Vulnerable Coastal Resources: Of Misratah Coast, Libya

Authors: Abduladim Maitieg

Abstract:

The oil manufacture is one of the main productive activities in Libya and has a massive infrastructure, including offshore drilling and exploration and wide oil export platform sites that located in coastal area. There is a threat to marine and coastal area of oil spills is greatest in those sites with a high spills comes from urban and industry, parallel to that, monitoring oil spills and risk emergency strategy is weakness, An approach for estimating a coastal resources vulnerability to oil spills is presented based on abundance, environmental and Scio-economic importance, distance to oil spill resources and oil risk likelihood. As many as 10 coastal resources were selected for oil spill assessment at the coast. This study aims to evaluate, determine and establish vulnerable coastal resource maps and estimating the rate of oil spill comes for different oil spill resources in Misratah marine environment. In the study area there are two type of oil spill resources, major oil resources come from offshore oil industries which are 96 km from the Coast and Loading/Uploading oil platform. However, the miner oil resources come from urban sewage pipes and fish ports. In order to analyse the collected database, the Geographic information system software has been used to identify oil spill location, to map oil tracks in front of study area, and developing seasonal vulnerable costal resources maps. This work shows that there is a differential distribution of the degree of vulnerability to oil spills along the coastline, with values ranging from high vulnerability and low vulnerability, and highlights the link between oil spill movement and coastal resources vulnerability. The results of assessment found most of costal freshwater spring sites are highly vulnerable to oil spill due to their location on the intertidal zone and their close to proximity to oil spills recourses such as Zreag coast. Furthermore, the Saltmarsh coastline is highly vulnerable to oil spill risk due to characterisation as it contains a nesting area of sea turtles and feeding places for migratory birds and the . Oil will reach the coast in winter season according to oil spill movement. Coastal tourist beaches in the north coast are considered as highly vulnerable to oil spill due to location and closeness to oil spill resources.

Keywords: coastal recourses vulnerability, oil spill trajectory, gnome software, Misratah coast- Libya, GIS

Procedia PDF Downloads 315
266 Rare Diagnosis in Emergency Room: Moyamoya Disease

Authors: Ecem Deniz Kırkpantur, Ozge Ecmel Onur, Tuba Cimilli Ozturk, Ebru Unal Akoglu

Abstract:

Moyamoya disease is a unique chronic progressive cerebrovascular disease characterized by bilateral stenosis or occlusion of the arteries around the circle of Willis with prominent arterial collateral circulation. The occurrence of Moyamoya disease is related to immune, genetic and other factors. There is no curative treatment for Moyamoya disease. Secondary prevention for patients with symptomatic Moyamoya disease is largely centered on surgical revascularization techniques. We present here a 62-year old male presented with headache and vision loss for 2 days. He was previously diagnosed with hypertension and glaucoma. On physical examination, left eye movements were restricted medially, both eyes were hyperemic and their movements were painful. Other neurological and physical examination were normal. His vital signs and laboratory results were within normal limits. Computed tomography (CT) showed dilated vascular structures around both lateral ventricles and atherosclerotic changes inside the walls of internal carotid artery (ICA). Magnetic resonance imaging (MRI) and angiography (MRA) revealed dilated venous vascular structures around lateral ventricles and hyper-intense gliosis in periventricular white matter. Ischemic gliosis around the lateral ventricles were present in the Digital Subtracted Angiography (DSA). After the neurology, ophthalmology and neurosurgery consultation, the patient was diagnosed with Moyamoya disease, pulse steroid therapy was started for vision loss, and super-selective DSA was planned for further investigation. Moyamoya disease is a rare condition, but it can be an important cause of stroke in both children and adults. It generally affects anterior circulation, but posterior cerebral circulation may also be affected, as well. In the differential diagnosis of acute vision loss, occipital stroke related to Moyamoya disease should be considered. Direct and indirect surgical revascularization surgeries may be used to effectively revascularize affected brain areas, and have been shown to reduce risk of stroke.

Keywords: headache, Moyamoya disease, stroke, visual loss

Procedia PDF Downloads 267
265 Unveiling the Mystery: Median Arcuate Ligament Syndrome in a Middle-Aged Female Presenting with Abdominal Pain

Authors: Thaer Khaleel Swaid, Maryam Al Ahmad, Ishtiaq Ahmad

Abstract:

47-year-old female, known to have a liver cyst and hemangiomas, presented to the gastroenterology clinic for chronic moderate postprandial epigastric pain, which is aggravated by food, leaning forward and relieved on lying flat. The pain was associated with nausea, vomiting, heartburn and excessive burping. She opened her bowel daily, having well-formed stools without blood or mucus. The patient denied NSAID intake, smoking or alcohol. On physical examination during the episode of pain abdomen revealed a soft, lax abdomen and mild tenderness in the epigastric region without organomegaly. Bowel sounds were audible. Her routine hematological and biochemical parameters were within normal, including CBC, Celiac serology, Lipase, Metabolic profile and H pylori stool antigen. The patient underwent an Ultrasound of the abdomen which showed multiple liver cysts, hemangioma, normal GB and biliary tree. Based on the clinical picture and to narrow our differential diagnosis, an ultrasound Doppler for the abdomen was ordered, and it showed celiac artery peak systolic velocity in expiration is 270cm/s, suggestive of median arcuate ligament syndrome. She Had computerized tomography abdomen done and showed a Narrowing of the celiac artery at the origin, likely secondary to low insertion of the median arcuate ligament. Furthermore, Gastroscopy and, later on colonoscopy were done, which was unremarkable. A laparoscopic decompression of the celiac trunk was indicated, for which the patient was referred to vascular surgery. This case confirms that Median Arcuate Ligament syndrome is an unusual diagnosis and is always challenging. Usually, patients undergo extensive workups before a final diagnosis is achieved. Our case highlights the challenge of diagnosing MALS since this entity is rare. It is a good choice to perform abdominal ultrasound with Doppler imaging on a patient with symptoms such as postprandial angina.

Keywords: Unveiling the Mystery, MALS, rare entity, Rare vascular phenomenon

Procedia PDF Downloads 17
264 Simulation of Elastic Bodies through Discrete Element Method, Coupled with a Nested Overlapping Grid Fluid Flow Solver

Authors: Paolo Sassi, Jorge Freiria, Gabriel Usera

Abstract:

In this work, a finite volume fluid flow solver is coupled with a discrete element method module for the simulation of the dynamics of free and elastic bodies in interaction with the fluid and between themselves. The open source fluid flow solver, caffa3d.MBRi, includes the capability to work with nested overlapping grids in order to easily refine the grid in the region where the bodies are moving. To do so, it is necessary to implement a recognition function able to identify the specific mesh block in which the device is moving in. The set of overlapping finer grids might be displaced along with the set of bodies being simulated. The interaction between the bodies and the fluid is computed through a two-way coupling. The velocity field of the fluid is first interpolated to determine the drag force on each object. After solving the objects displacements, subject to the elastic bonding among them, the force is applied back onto the fluid through a Gaussian smoothing considering the cells near the position of each object. The fishnet is represented as lumped masses connected by elastic lines. The internal forces are derived from the elasticity of these lines, and the external forces are due to drag, gravity, buoyancy and the load acting on each element of the system. When solving the ordinary differential equations system, that represents the motion of the elastic and flexible bodies, it was found that the Runge Kutta solver of fourth order is the best tool in terms of performance, but requires a finer grid than the fluid solver to make the system converge, which demands greater computing power. The coupled solver is demonstrated by simulating the interaction between the fluid, an elastic fishnet and a set of free bodies being captured by the net as they are dragged by the fluid. The deformation of the net, as well as the wake produced in the fluid stream are well captured by the method, without requiring the fluid solver mesh to adapt for the evolving geometry. Application of the same strategy to the simulation of elastic structures subject to the action of wind is also possible with the method presented, and one such application is currently under development.

Keywords: computational fluid dynamics, discrete element method, fishnets, nested overlapping grids

Procedia PDF Downloads 416
263 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: structural healthcare monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation

Procedia PDF Downloads 433
262 Design, Construction and Evaluation of a Mechanical Vapor Compression Distillation System for Wastewater Treatment in a Poultry Company

Authors: Juan S. Vera, Miguel A. Gomez, Omar Gelvez

Abstract:

Water is Earth's most valuable resource, and the lack of it is currently a critical problem in today’s society. Non-treated wastewaters contribute to this situation, especially those coming from industrial activities, as they reduce the quality of the water bodies, annihilating all kind of life and bringing disease to people in contact with them. An effective solution for this problem is distillation, which removes most contaminants. However, this approach must also be energetically efficient in order to appeal to the industry. In this endeavour, most water distillation treatments fail, with the exception of the Mechanical Vapor Compression (MVC) distillation system, which has a great efficiency due to energy input by a compressor and the latent heat exchange. This paper presents the process of design, construction, and evaluation of a Mechanical Vapor Compression (MVC) distillation system for the main Colombian poultry company Avidesa Macpollo SA. The system will be located in the principal slaughterhouse in the state of Santander, and it will work along with the Gas Energy Mixing system (GEM) to treat the wastewaters from the plant. The main goal of the MVC distiller, rarely used in this type of application, is to reduce the chlorides, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) levels according to the state regulations since the GEM cannot decrease them enough. The MVC distillation system works with three components, the evaporator/condenser heat exchanger where the distillation takes place, a low-pressure compressor which gives the energy to create the temperature differential between the evaporator and condenser cavities and a preheater to save the remaining energy in the distillate. The model equations used to describe how the compressor power consumption, heat exchange area and distilled water are related is based on a thermodynamic balance and heat transfer analysis, with correlations taken from the literature. Finally, the design calculations and the measurements of the installation are compared, showing accordance with the predictions in distillate production and power consumption, changing the temperature difference of the evaporator/condenser.

Keywords: mechanical vapor compression, distillation, wastewater, design, construction, evaluation

Procedia PDF Downloads 159
261 Proteomic Evaluation of Sex Differences in the Plasma of Non-human Primates Exposed to Ionizing Radiation for Biomarker Discovery

Authors: Christina Williams, Mehari Weldemariam, Ann M. Farese, Thomas J. MacVittie, Maureen A. Kane

Abstract:

Radiation exposure results in dose-dependent and time-dependent multi-organ damage. Drug development of medical countermeasures (MCM) for radiation-induced injury occurs under the FDA Animal Rule because human efficacy studies are not ethical or feasible. The FDA Animal Rule requires the representation of both sexes and describes several uses for biomarkers in MCM drug development studies. Currently, MCMs are limited and there is no FDA-approved biomarker for any radiation injury. Sex as a variable is essential to identifying biomarkers and developing effective MCMs for acute radiation exposure (ARS) and delayed effects of acute radiation exposure (DEARE). These studies aim to address the death of information on sex differences that have not been determined by studies that included only male, single-sex cohorts. Studies have reported differences in radiosensitivity according to sex. As such, biomarker discovery for radiation-induced damage must consider sex as a variable. This study evaluated the plasma proteomic profile of Rhesus macaque non-human primates after different exposures and doses, as well as time points after radiation. Exposures and doses included total body irradiation between 5-7.5 Gy and partial body irradiation with 5% bone marrow sparing at 9, 9.5 and 10 Gy. Timepoints after irradiation included days 1, 3, 60, and 180, which encompassed both acute radiation syndromes and delayed effects of acute radiation exposure. Bottom-up proteomic analyses of plasma included equal numbers of males and females. In the control animals, few proteomic differences are observed between the sexes. In the irradiated animals, there are a few sex differences, with changes mostly consisting of proteins upregulated in the female animals. Multiple canonical pathways were upregulated in irradiated animals relative to the control animals when subjected to pathway analysis, but differential responses between the sexes are limited. These data provide critical baseline differences according to sex and establish sex differences in non-human primate models relevant to drug development of MCM under the FDA Animal Rule.

Keywords: ionizing radiation, sex differences, plasma proteomics, biomarker discovery

Procedia PDF Downloads 90
260 Investigation of Turbulent Flow in a Bubble Column Photobioreactor and Consequent Effects on Microalgae Cultivation Using Computational Fluid Dynamic Simulation

Authors: Geetanjali Yadav, Arpit Mishra, Parthsarathi Ghosh, Ramkrishna Sen

Abstract:

The world is facing problems of increasing global CO2 emissions, climate change and fuel crisis. Therefore, several renewable and sustainable energy alternatives should be investigated to replace non-renewable fuels in future. Algae presents itself a versatile feedstock for the production of variety of fuels (biodiesel, bioethanol, bio-hydrogen etc.) and high value compounds for food, fodder, cosmetics and pharmaceuticals. Microalgae are simple microorganisms that require water, light, CO2 and nutrients for growth by the process of photosynthesis and can grow in extreme environments, utilize waste gas (flue gas) and waste waters. Mixing, however, is a crucial parameter within the culture system for the uniform distribution of light, nutrients and gaseous exchange in addition to preventing settling/sedimentation, creation of dark zones etc. The overarching goal of the present study is to improve photobioreactor (PBR) design for enhancing dissolution of CO2 from ambient air (0.039%, v/v), pure CO2 and coal-fired flue gas (10 ± 2%) into microalgal PBRs. Computational fluid dynamics (CFD), a state-of-the-art technique has been used to solve partial differential equations with turbulence closure which represents the dynamics of fluid in a photobioreactor. In this paper, the hydrodynamic performance of the PBR has been characterized and compared with that of the conventional bubble column PBR using CFD. Parameters such as flow rate (Q), mean velocity (u), mean turbulent kinetic energy (TKE) were characterized for each experiment that was tested across different aeration schemes. The results showed that the modified PBR design had superior liquid circulation properties and gas-liquid transfer that resulted in creation of uniform environment inside PBR as compared to conventional bubble column PBR. The CFD technique has shown to be promising to successfully design and paves path for a future research in order to develop PBRs which can be commercially available for scale-up microalgal production.

Keywords: computational fluid dynamics, microalgae, bubble column photbioreactor, flue gas, simulation

Procedia PDF Downloads 231
259 Enhanced Kinetic Solubility Profile of Epiisopiloturine Solid Solution in Hipromellose Phthalate

Authors: Amanda C. Q. M. Vieira, Cybelly M. Melo, Camila B. M. Figueirêdo, Giovanna C. R. M. Schver, Salvana P. M. Costa, Magaly A. M. de Lyra, Ping I. Lee, José L. Soares-Sobrinho, Pedro J. Rolim-Neto, Mônica F. R. Soares

Abstract:

Epiisopiloturine (EPI) is a drug candidate that is extracted from Pilocarpus microphyllus and isolated from the waste of Pilocarpine. EPI has demonstrated promising schistosomicidal, leishmanicide, anti-inflammatory and antinociceptive activities, according to in vitro studies that have been carried out since 2009. However, this molecule shows poor aqueous solubility, which represents a problem for the release of the drug candidate and its absorption by the organism. The purpose of the present study is to investigate the extent of enhancement of kinetic solubility of a solid solution (SS) of EPI in hipromellose phthalate HP-55 (HPMCP), an enteric polymer carrier. SS was obtained by the solvent evaporation methodology, using acetone/methanol (60:40) as solvent system. Both EPI and polymer (drug loading 10%) were dissolved in this solvent until a clear solution was obtained, and then dried in oven at 60ºC during 12 hours, followed by drying in a vacuum oven for 4 h. The results show a considerable modification in the crystalline structure of the drug candidate. For instance, X-ray diffraction (XRD) shows a crystalline behavior for the EPI, which becomes amorphous for the SS. Polarized light microscopy, a more sensitive technique than XRD, also shows completely absence of crystals in SS sample. Differential Scanning Calorimetric (DSC) curves show no signal of EPI melting point in SS curve, indicating, once more, no presence of crystal in this system. Interaction between the drug candidate and the polymer were found in Infrared microscopy, which shows a carbonyl 43.3 cm-1 band shift, indicating a moderate-strong interaction between them, probably one of the reasons to the SS formation. Under sink conditions (pH 6.8), EPI SS had its dissolution performance increased in 2.8 times when compared with the isolated drug candidate. EPI SS sample provided a release of more than 95% of the drug candidate in 15 min, whereas only 45% of EPI (alone) could be dissolved in 15 min and 70% in 90 min. Thus, HPMCP demonstrates to have a good potential to enhance the kinetic solubility profile of EPI. Future studies to evaluate the stability of SS are required to conclude the benefits of this system.

Keywords: epiisopiloturine, hipromellose phthalate HP-55, pharmaceuticaltechnology, solubility

Procedia PDF Downloads 607