Search results for: correlation and prediction
4348 Correlation of Nutritional Status and Anemia Among School-Aged Children in Indonesian Urban Area
Authors: William Cheng, Yuni Astria, Rini Sekartini
Abstract:
Background: Prevalence of anemia among school-aged children is relatively high (25.4%). This condition can affect children’s life, including cognitive function. One of the most common factors that is associated with anemia in children is nutritional status. This simple indicator will be very helpful in identifying more population at risk. The aim of this study is to correlate the clinical implication of nutritional status to the prevalence of anemia in children, with intention to determine a more effective nutritional status indicator in detecting anemia. Method: Anthropometric and haemoglobin status were gathered from children between 5 to 7-years-old in one of the urban areas in Jakarta in 2012. We identified children with haemoglobin level under 11.5 as anemia and correlated them to their WHO z-score from each of these indicators: Body Weight for Age (normal weight and underweight), Height for Age (not stunted and stunted), and Body Mass Index for Age (not wasted and wasted). Results: A total of 195 children were included in this research and 57 of them (29,2%) were diagnosed as anemia. The majority of the children had good nutritional status, however, 30 (15,4%) of them were found to be underweight, 33 (16,9%) were stunted, and 1 children (0,5%) was wasted. There were no overweight result found in this population. From the three nutritional status indicators, none proved to be statistically significant in relation to the incidence of anemia (p>0.05). Out of 33 children who were diagnosed as stunted, 36.36 % were found to have anemia, in comparison to 27,7% of children who were not stunted. Meanwhile, among 30 children who were diagnosed as underweight, 33,3 % of them were anemic whereas only 28,4% of the normal weight group were anemic. Conclusion: In this study, there is no significant correlation between anemia with any nutritional status indicator. However, more than a third of the stunted children are proven to have low haemoglobin status. The finding of stunting in children should be given more attention to further investigate for anemia.Keywords: school-aged children, nutritional status, anemia, pediatrics
Procedia PDF Downloads 5594347 Pattern and Clinical Profile of Children and Adolescent Visiting Psychiatry Out Patient Department of Tertiary Health Center Amidst COVID Pandemic- a Cross Sectional Study
Authors: Poornima Khadanga, Gaurav Pawar, Madhavi Rairikar
Abstract:
Background: The COVID 19 pandemic, with its unparalleled mental health repercussions, has impacted people globally and has catalyzed a Mental Health pandemic among the youth. The detrimental effects on mental health needs to be pondered at the earliest. Aims: To study the behavioral problems among children and adolescents visiting Psychiatry Outpatient Department Tertiary Health Care during COVID pandemic and its correlation with socio-demographic profiles. Methods: A cross sectional study was conducted by interviewing 120 participants between 4 to 17 years of age and their parents, visiting Psychiatry OPD. Behavioral problems were assessed using the Strength and Difficulties Questionnaire and diagnosed by DSM-5. Statistical analysis was done by SPSS-21. Results: Male participants showed significant association with conduct (t=2.36, p=0.02) and hyperactive problems (t=5.07, p<0.05). Increase in screen time showed a positive correlation with conduct problems (r=0.22. p=0.02). Attention Deficit Hyperkinetic Disorder (18.3%) was the most commonly diagnosed psychiatric illness. Total difficulty score was significantly associated with difficult temperament (F=68.69, p<0.05). Conclusion: The study brings to light the pattern of behavioral problems that emerged during recent times of uncertainties among the young ones, including those with special needs. The increase in disruptive behaviors with increase screen time needs to be addressed at the earliest.Keywords: behavioral problems, pandemic, screen time, temperament
Procedia PDF Downloads 1664346 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure
Authors: Esra Zengin, Sinan Akkar
Abstract:
Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.Keywords: ground motion selection, scaling, uncertainty, fragility curve
Procedia PDF Downloads 5834345 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 1364344 Estimation of PM10 Concentration Using Ground Measurements and Landsat 8 OLI Satellite Image
Authors: Salah Abdul Hameed Saleh, Ghada Hasan
Abstract:
The aim of this work is to produce an empirical model for the determination of particulate matter (PM10) concentration in the atmosphere using visible bands of Landsat 8 OLI satellite image over Kirkuk city- IRAQ. The suggested algorithm is established on the aerosol optical reflectance model. The reflectance model is a function of the optical properties of the atmosphere, which can be related to its concentrations. The concentration of PM10 measurements was collected using Particle Mass Profiler and Counter in a Single Handheld Unit (Aerocet 531) meter simultaneously by the Landsat 8 OLI satellite image date. The PM10 measurement locations were defined by a handheld global positioning system (GPS). The obtained reflectance values for visible bands (Coastal aerosol, Blue, Green and blue bands) of landsat 8 OLI image were correlated with in-suite measured PM10. The feasibility of the proposed algorithms was investigated based on the correlation coefficient (R) and root-mean-square error (RMSE) compared with the PM10 ground measurement data. A choice of our proposed multispectral model was founded on the highest value correlation coefficient (R) and lowest value of the root mean square error (RMSE) with PM10 ground data. The outcomes of this research showed that visible bands of Landsat 8 OLI were capable of calculating PM10 concentration with an acceptable level of accuracy.Keywords: air pollution, PM10 concentration, Lansat8 OLI image, reflectance, multispectral algorithms, Kirkuk area
Procedia PDF Downloads 4424343 Bone Mineral Density and Trabecular Bone Score in Ukrainian Men with Obesity
Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Dzerovych, Roksolana Povoroznyuk
Abstract:
Osteoporosis and obesity are widespread diseases in people over 50 years associated with changes in structure and body composition. Нigher body mass index (BMI) values are associated with greater bone mineral density (BMD). However, trabecular bone score (TBS) indirectly explores bone quality, independently of BMD. The aim of our study was to evaluate the relationship between the BMD and TBS parameters in Ukrainian men suffering from obesity. We examined 396 men aged 40-89 years. Depending on their BMI all the subjects were divided into two groups: Group I – patients with obesity whose BMI was ≥ 30 kg/m2 (n=129) and Group II – patients without obesity and BMI of < 30 kg/m2 (n=267). The BMD of total body, lumbar spine L1-L4, femoral neck and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1- L4 was assessed by means of TBS iNsight® software installed on DXA machine (product of Med-Imaps, Pessac, France). In general, obese men had a significantly higher BMD of lumbar spine L1-L4, femoral neck, total body and ultradistal forearm (p < 0.001) in comparison with men without obesity. The TBS of L1-L4 was significantly lower in obese men compared to non-obese ones (p < 0.001). BMD of lumbar spine L1-L4, femoral neck and total body significantly differ in men aged 40-49, 50-59, 60-69, and 80-89 years (p < 0.05). At the same time, in men aged 70-79 years, BMD of lumbar spine L1-L4 (p=0.46), femoral neck (p=0.18), total body (p=0.21), ultra-distal forearm (p=0.13), and TBS (p=0.07) did not significantly differ. A significant positive correlation between the fat mass and the BMD at different sites was observed. However, the correlation between the fat mass and TBS of L1-L4 was also significant, though negative.Keywords: bone mineral density, trabecular bone score, obesity, men
Procedia PDF Downloads 4634342 Assessment of Tidal Influence in Spatial and Temporal Variations of Water Quality in Masan Bay, Korea
Abstract:
Slack-tide sampling was carried out at seven stations at high and low tides for a tidal cycle, in summer (7, 8, 9) and fall (10), 2016 to determine the differences of water quality according to tides in Masan Bay. The data were analyzed by Pearson correlation and factor analysis. The mixing state of all the water quality components investigated is well explained by the correlation with salinity (SAL). Turbidity (TURB), dissolved silica (DSi), nitrite and nitrate nitrogen (NNN) and total nitrogen (TN), which find their way into the bay from the streams and have no internal source and sink reaction, showed a strong negative correlation with SAL at low tide, indicating the property of conservative mixing. On the contrary, in summer and fall, dissolved oxygen (DO), hydrogen sulfide (H2S) and chemical oxygen demand with KMnO4 (CODMn) of the surface and bottom water, which were sensitive to an internal source and sink reaction, showed no significant correlation with SAL at high and low tides. The remaining water quality parameters showed a conservative or a non-conservative mixing pattern depending on the mixing characteristics at high and low tides, determined by the functional relationship between the changes of the flushing time and the changes of the characteristics of water quality components of the end-members in the bay. Factor analysis performed on the concentration difference data sets between high and low tides helped in identifying the principal latent variables for them. The concentration differences varied spatially and temporally. Principal factors (PFs) scores plots for each monitoring situation showed high associations of the variations to the monitoring sites. At sampling station 1 (ST1), temperature (TEMP), SAL, DSi, TURB, NNN and TN of the surface water in summer, TEMP, SAL, DSi, DO, TURB, NNN, TN, reactive soluble phosphorus (RSP) and total phosphorus (TP) of the bottom water in summer, TEMP, pH, SAL, DSi, DO, TURB, CODMn, particulate organic carbon (POC), ammonia nitrogen (AMN), NNN, TN and fecal coliform (FC) of the surface water in fall, TEMP, pH, SAL, DSi, H2S, TURB, CODMn, AMN, NNN and TN of the bottom water in fall commonly showed up as the most significant parameters and the large concentration differences between high and low tides. At other stations, the significant parameters showed differently according to the spatial and temporal variations of mixing pattern in the bay. In fact, there is no estuary that always maintains steady-state flow conditions. The mixing regime of an estuary might be changed at any time from linear to non-linear, due to the change of flushing time according to the combination of hydrogeometric properties, inflow of freshwater and tidal action, And furthermore the change of end-member conditions due to the internal sinks and sources makes the occurrence of concentration difference inevitable. Therefore, when investigating the water quality of the estuary, it is necessary to take a sampling method considering the tide to obtain average water quality data.Keywords: conservative mixing, end-member, factor analysis, flushing time, high and low tide, latent variables, non-conservative mixing, slack-tide sampling, spatial and temporal variations, surface and bottom water
Procedia PDF Downloads 1304341 Measuring Enterprise Growth: Pitfalls and Implications
Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić
Abstract:
Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises
Procedia PDF Downloads 2524340 An Appraisal of the Relationship between Socio-Economic Status and Mental Toughness of Cricketers
Authors: Punam Shaw
Abstract:
Relationship often refers to the acquaintance or association between two or more things, which are interrelated and interdependent. The socio-economic status is obviously a blending of two states, would, therefore, be a ranking of an individual by the society he or she lives in, and in terms of his/her material belonging, cultural possessions along with the degree of respect, power and influence wield. Hence, education, income and occupation of an individual play a significant role in society. Positive mental attitude leads to achieve the set goal, and improve performance particularly in team cohesiveness, which may be determined by various interrelated aspects, which can predict the future assessment in their respective field accordingly. The study intended to examine and explore the relationship between Socio-economic Status and Mental Toughness of cricketers. For the present study descriptive survey research method was used and selected 40 (male=20 female=20) U-17 years registered players under Cricket Association of Bengal (CAB), as the sample population. Modified Socio-Economic Status Scale was used to collect the data regarding players, socioeconomic Status and to assess the mental toughness; Scott Barry Kaufman questionnaire was used. The data had been analysed through applying Pearson’s Correlation Coefficient and t-test as statistical techniques. The findings of the study showed that there is a positive correlation between socioeconomic Status and Mental Toughness among cricketers, it was found that significant difference was presented between male and female SES group. It was further revealed that there is no significant difference between male and female cricketers and in their different socioeconomic class with respect to their mental toughness.Keywords: cricketers, mental toughness, relationship, socio-economic status
Procedia PDF Downloads 1254339 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: recurrent neural network, players lineup, basketball data, decision making model
Procedia PDF Downloads 1334338 The Influence of Intrinsic Motivation on the Second Language Learners’ Writing Skill: The Case of Third Year Students of English at Constantine 1 University
Authors: Chadia Nasri
Abstract:
Researches in the field of foreign language learning have indicated the importance of the mastery of the four language skills; speaking, listening, writing and reading. As far as writing is concerned, recent studies have shown that this skill is unavoidable for learning a second language successfully. Writing is characterized as a complex system not easy to achieve. Writing has been proved to be affected by a variety of factors, particularly psychological ones; anxiety, intrinsic motivation, aptitude, etc. Intrinsic motivation is said to be the most influential factors in the foreign language learning process and is considered as the key factor for success. To investigate these two aspects; writing and intrinsic motivation, and the positive correlation between them, our hypothesis is designed on the basis that the degree of learners’ intrinsic motivation helps in facilitating their engagement in the writing tasks. Two questionnaires, one for teachers and the other for students, have been carried out to check the validity of the research hypothesis. As for the teachers’ questionnaire, the results have indicated their awareness of the importance of intrinsic motivation in the learning process and the role it plays in the mastery of their students’ writing skill. In addition, teachers have mentioned various procedures aiming at raising their students’ intrinsic motivation to write. The students’ questionnaire, on the other hand, has investigated students’ reasons for learning a foreign language with regard to their attitudes towards writing as an important skill that they need to master. Their answers to the questionnaire together with the marks they got in the second term test they have had in the writing module have been compared to see whether students’ writing proficiency can be determined by the degree of their intrinsic motivation. The comparison of the collected data has shown the positive correlation between both aspects.Keywords: foreign language learning, intrinsic motivation, motivation, writing proficiency
Procedia PDF Downloads 2934337 Reconstructing the Trace of Mesozoic Subduction and Its Implication on Stratigraphy Correlation between Deep Marine Sediment and Granite: Case Study of Garba Complex, South Sumatera
Authors: Fadlan Atmaja Nursiwan, Ugi Kurnia Gusti
Abstract:
Garba Hill, located in Tekana Village, South Sumatera Province is comprised to South Sumatra Basin and classified as back arc basin. This area is entered as an active margin of Sundaland which experiences subduction several times since Mesozoic to recent time. The traces of Mesozoic subduction in the southern part of Sumatra island are exposed in Garba Hill area. The aim of this investigation is to study the tectonic changes in the first phase in Mesozoic era at the active margin of Sundaland which causes the rocks assemblage in Garba hill consist of continental and oceanic plate rocks which the correlation between those rocks show indistinct relation. This investigation is conducted by field observation in Tekana village and Lubar Village, Muara Dua, South Sumatra along with laboratory analysis included fossil and geochemistry analysis of radiolarian chert, petrography analysis of granite and basalt, and structural modelling. Fossil and geochemistry analysis of radiolarian chert and geochemistry of granite rocks shown the relation between the two rocks and Mesozoic subduction of Woyla terrane on western margin of Sundaland. Petrography analysis from granite and basalt depict the tectonic affinity of rocks. Moreover, structural analysis showed the changes of lineation direction from N-S to WNW-ESE.Keywords: granite, mesozoic, radiolarian, subduction traces
Procedia PDF Downloads 3374336 Diversification of Productivity of the Oxfordian Subtidal Carbonate Factory in the Holy Cross Mountains
Authors: Radoslaw Lukasz Staniszewski
Abstract:
The aim of the research was to verify lateral extent and thickness variability of individual limestone layers within early-Jurassic medium- and thick-bedded limestone interbedded with marlstones. Location: The main research area is located in the south-central part of Poland in the south-western part of Permo-Mesozoic margin of the Holy Cross Mountains. It includes outcroppings located on the line between Mieczyn and Wola Morawicka. The analyses were carried out on six profiles (Mieczyn, Gniezdziska, Tokarnia, Wola Morawicka, Morawica and Wolica) representing three early-Jurassic links: Jasna Gora layers, grey limestone, Morawica limestone. Additionally, an attempt was made to correlate the thickness sequence from the Holy Cross Mountains to the profile from the quarry in Zawodzie located 3 km east of Czestochowa. The distance between the outermost profiles is 122 km in a straight line. Methodology of research: The Callovian-Oxfordian border was taken as the reference point during the correlation. At the same time, ammonite-based stratigraphic studies were carried out, which allowed to identify individual packages in the remote outcroppings. The analysis of data collected during fieldwork was mainly devoted to the correlation of thickness sequences of limestone layers in subsequent profiles. In order to check the objectivity of the subsequent outcroppings, the profiles have been presented in the form of the thickness functions of the subsequent layers. The generated functions were auto-correlated, and the Pearson correlation coefficient was calculated. The next step in the research was to statistically determine the percentage increment of the individual layers thickness in the subsequent profiles, and on this basis to plot the function of relative carbonate productivity. Results: The result of the above-mentioned procedures consists in illustrating the extent of 34 rock layers across the examined area in demonstrating the repeatability of their success in subsequent outcroppings. It can also be observed that the thickness of individual layers in the Holy Cross Mountains is increasing from north-west towards south-east. Despite changes in the thickness of the layers in the profiles, their relations within the sequence remain constant. The lowest matching ratio of thickness sequence calculated using the Pearson correlation coefficient formula is 0.67, while the highest is 0.84. The thickness of individual layers changes between 4% and 230% over the examined area. Interpretation: Layers in the outcroppings covered by the research show continuity throughout the examined area and it is possible to precisely correlate them, which means that the process determining the formation of the layers was regional and probably included both the fringe of the Holy Cross Mountains and the north-eastern part of the Krakow-Czestochowa Jura Upland. Local changes in the sedimentation environment affecting the productivity of the subtidal carbonate factory only cause the thickness of the layers to change without altering the thickness proportions of the profiles. Based on the percentage of changes in the thickness of individual layers in the subsequent profiles, it can be concluded that the local productivity of the subtidal carbonate factory is increasing logarithmically.Keywords: Oxfordian, Holy Cross Mountains, carbonate factory, Limestone
Procedia PDF Downloads 1164335 Characterization and Selection of Phosphorus Deficiency Tolerant Genotypes in Nigeria Based on Morpho-Physiologic Traits
Authors: Umego Chukwudi T., Ntui Valentine O., Uyoh Edak A.
Abstract:
Phosphorus (P) deficiency has been identified as a major hindrance to rice production the world over. Eleven (11) rice genotypes predominantly used by local farmers in Nigeria were studied for their responses to P deficient conditions. The characterization was based on morpho-physiologic parameters. The genotypes were screened using a hydroponic system in a modified Hoagland’s solution. Morphological and physiologic parameters, including Plant height (PH), number of tillers per plant, shoot dry weight (SDW), shoot phosphate concentration (SPC), and chlorophyll content, were recorded after exposure to three levels of phosphate concentration (0µM, 400 µM, and 800 µM). The data obtained were subjected to analysis of variance (ANOVA), and the means were separated using least significance difference tests. The results obtained showed that P starvation caused a significant (p≤0.05) reduction in PH, SDW, and tillering and also triggered a significant (p≤0.05) increase in root length among the genotypes. The Pearsons correlation coefficient was used to estimate the relationships among studied parameters, and a significant negative correlation was observed between plant height and root length. FARO63 was identified as a highly tolerant genotype to P deficiency with a low (0.24) SPC and higher (4.81) phosphate utilization efficiency (PUE). This study has identified FARO63 as a true tolerant genotype to Phosphate deficiency, which will be useful in breeding for phosphate deficiency tolerance in rice and thus combating food insecurity.Keywords: phosphate deficiency, rice genotypes, hydroponic system, food security
Procedia PDF Downloads 1094334 Circulating Oxidized LDL and Insulin Resistance among Obese School Students
Authors: Nayera E. Hassan, Sahar A. El-Masry, Mones M. Abu Shady, Rokia A. El Banna, Muhammad Al-Tohamy, Mehrevan M. Abd El-Moniem, Mona Anwar
Abstract:
Circulating oxidized LDL (ox-LDL) is associated with obesity, insulin resistance (HOMA), metabolic syndrome, and cardiovascular disease in adults. Little is known about relations in children. Aim: To assess association of ox-LDL with fat distribution and insulin resistance in a group of obese Egyptian children. Methods: Study is cross-sectional consisting of 68 obese children, with a mean age of 9.96 ± 1.32. Each underwent a complete physical examination; blood pressure (SBP, DBP) and anthropometric measurements (weight, height, BMI; waist, hip circumferences, waist/hip ratio), biochemical tests of fasting blood glucose (FBS), insulin levels; lipid profile (TC, LDL,HDL, TG) and ox-LDL; calculated HOMA. Sample was classified according to waist/hip ratio into: group I with and group II without central obesity. Results: ox-LDL showed significant positive correlation with LDL and TC in all groups of obesity. After adjustment for age and sex, significant positive correlation was detected between ox-LDL with SBP, DBP, TC, LDL, insulin, and HOMA in group II and with TC and FBS in group I. Insignificant association was detected between ox-LDL and other anthropometric parameters including BMI in any group of obese children (p > 0.05). Conclusions: ox-LDL, as a marker of oxidative stress is not correlated with BMI among all studied obese children (aged 6-12 years). Increased oxidative stress has causal effects on insulin resistance in obese children without central obesity and on fasting blood sugar in those with central obesity. These findings emphasize the importance of obesity during childhood and suggest that the metabolic complications of obesity and body fat distribution are detectable early in life.Keywords: ox-LDL, obesity, insulin resistance, children
Procedia PDF Downloads 3584333 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 4294332 Expression of Ki-67 in Multiple Myeloma: A Clinicopathological Study
Authors: Kangana Sengar, Sanjay Deb, Ramesh Dawar
Abstract:
Introduction: Ki-67 can be a useful marker in determining proliferative activity in patients with multiple myeloma (MM). However, using Ki-67 alone results in the erroneous inclusion of non-myeloma cells leading to false high counts. We have used Dual IHC (immunohistochemistry) staining with Ki-67 and CD138 to enhance specificity in assessing proliferative activity of bone marrow plasma cells. Aims and objectives: To estimate the proportion of proliferating (Ki-67 expressing) plasma cells in patients with MM and correlation of Ki-67 with other known prognostic parameters. Materials and Methods: Fifty FFPE (formalin fixed paraffin embedded) blocks of trephine biopsies of cases diagnosed as MM from 2010 to 2015 are subjected to H & E staining and Dual IHC staining for CD 138 and Ki-67. H & E staining is done to evaluate various histological parameters like percentage of plasma cells, pattern of infiltration (nodular, interstitial, mixed and diffuse), routine parameters of marrow cellularity and hematopoiesis. Clinical data is collected from patient records from Medical Record Department. Each of CD138 expressing cells (cytoplasmic, red) are scored as proliferating plasma cells (containing a brown Ki¬67 nucleus) or non¬proliferating plasma cells (containing a blue, counter-stained, Ki-¬67 negative nucleus). Ki-67 is measured as percentage positivity with a maximum score of hundred percent and lowest of zero percent. The intensity of staining is not relevant. Results: Statistically significant correlation of Ki-67 in D-S Stage (Durie & Salmon Stage) I vs. III (p=0.026) and ISS (International Staging System) Stage I vs. III (p=0.019), β2m (p=0.029) and percentage of plasma cells (p < 0.001) is seen. No statistically significant correlation is seen between Ki-67 and hemoglobin, platelet count, total leukocyte count, total protein, albumin, S. calcium, S. creatinine, S. LDH, blood urea and pattern of infiltration. Conclusion: Ki-67 index correlated with other known prognostic parameters. However, it is not determined routinely in patients with MM due to little information available regarding its relevance and paucity of studies done to correlate with other known prognostic factors in MM patients. To the best of our knowledge, this is the first study in India using Dual IHC staining for Ki-67 and CD138 in MM patients. Routine determination of Ki-67 will help to identify patients who may benefit with more aggressive therapy. Recommendation: In this study follow up of patients is not included, and the sample size is small. Studying with larger sample size and long follow up is advocated to prognosticate Ki-67 as a marker of survival in patients with multiple myeloma.Keywords: bone marrow, dual IHC, Ki-67, multiple myeloma
Procedia PDF Downloads 1554331 Effect of 10 Weeks of Aerobic Exercise Training on Serum Concentrations of Surfactant Protein D and Insulin Resistance in Women with Type 2 Diabetes
Authors: Sajjad Rezaei, Mahdieh Molanouri Shamsi, Azadeh Jamali
Abstract:
Background and purpose: Surfactant protein D (SP-D) is a lung-specific protein that is detectable in human plasma. Effect of exercise training on SP-D levels as well as its relation to metabolic indices is not known. The present study then aimed to investigate the effects of 10 weeks of aerobic training on serum levels of SP-D and insulin resistance in women with type 2 diabetes. Materials and methods: Twenty-two overweight women with type 2 diabetes mellitus were recruited through deliberate sampling and randomly assigned to intervention and control groups (11 in each group). The intervention group underwent a progressive aerobic training program for 10 weeks, 3 days per week, 30-55 min/day at 50-75% heart rate reserve (HRR). Control group continued with its everyday routine. Blood samples were obtained before and after training for biochemical analysis. Within-group and between-group differences were analyzed with paired and independent t-tests in spss software, respectively, and the relation between variables was analyzed with Pearson’s correlation coefficient (all at P = 0.05). Results: Significant differences were observed between groups in leptin, glucose, waist circumference and VO2 max after training. SP-D was decreased and VO2 max was increased significantly in intervention group. However, no significant correlation was observed between SP-D and other variables. Conclusion: Since there was no corresponding decrease in insulin resistance with decreased levels of SP-D, it seems unlikely for SP-D to mediate the association between obesity and insulin resistance in type 2 diabetics.Keywords: exercise training, SP-D, insulin resistance, type 2 diabetes
Procedia PDF Downloads 4164330 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 1284329 Correlation Volumic Shrinkage, Conversion Degree of Dental Composites
Authors: A. Amirouche, M. Mouzali, D. C. Watts
Abstract:
During polymerization of dental composites, the volumic shrinkage is related to the conversion degree. The variation of the volumic shrinkage (S max according to the degree of conversion CD.), was examined for the experimental composites: (BisGMA/TEGDMA): (50/50), (75/25), (25/75) mixed with seven radiopac fillers: La2O3, BaO, BaSO4, SrO, ZrO2 , SrZrO3 and BaZrO 3 with different contents in weight, from 0 to 80%. We notice that whatever the filler and the composition in monomers, Smax increases with the increase in CD. This variation is, linear in particular in the case of the fillers containing only one heavy metal, and that whatever the composition in monomers. For a given salt, the increase of BisGMA composition leads to significant increase of S max more pronounced than the increase in CD. The variation of ratio (S max / CD.) with the increase of filler content is negligible. However the fillers containing two types of heavy metals have more effect on the volumic shrinkage than on the degree of conversion. Whatever the composition in monomer, and the content of filler containing only one heavy atom, S max increases with the increase in CD. Nevertheless, S max is affected by the viscosity of the medium compared with CD. For high percentages of mineral fillers (≥ 70% in weight), the diagrams S max according to CD are deviated of the linearity, owing to the fact that S max is affected by the high percentage of fillers compared with CD. The number of heavy atoms influences directly correlation (S max / CD.). In the case of the two mineral fillers: SrZrO3 and BaZrO3 ratio (S max / CD) moves away from the proportionality. The linearity of the diagrams Smax according to CD is less regular, due to the viscosity of high content of BisGMA. The study of Smax and DC of four commercial composites are presented and compared to elaborate experimental composites.Keywords: Dental composites, degree of conversion, volumic shrinkage, photopolymerization
Procedia PDF Downloads 3734328 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction
Authors: C. S. Subhashini, H. L. Premaratne
Abstract:
Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.Keywords: landslides, influencing factors, neural network model, hidden markov model
Procedia PDF Downloads 3844327 An Assessment of Vegetable Farmers’ Perceptions about Post-harvest Loss Sources in Ghana
Authors: Kofi Kyei, Kenchi Matsui
Abstract:
Loss of vegetable products has been a major constraint in the post-harvest chain. Sources of post-harvest loss in the vegetable industry start from the time of harvesting to its handling and at the various market centers. Identifying vegetable farmers’ perceptions about post-harvest loss sources is one way of addressing this issue. In this paper, we assessed farmers’ perceptions about sources of post-harvest losses in the Ashanti Region of Ghana. We also identified the factors that influence their perceptions. To clearly understand farmers’ perceptions, we selected Sekyere-Kumawu District in the Ashanti Region. Sekyere-Kumawu District is one of the major producers of vegetables in the Region. Based on a questionnaire survey, 100 vegetable farmers growing tomato, pepper, okra, cabbage, and garden egg were purposely selected from five communities in Sekyere-Kumawu District. For farmers’ perceptions, the five points Likert scale was employed. On a scale from 1 (no loss) to 5 (extremely high loss), we processed the scores for each vegetable harvest. To clarify factors influencing farmers’ perceptions, the Pearson Correlation analysis was used. Our findings revealed that farmers perceive post-harvest loss by pest infestation as the most extreme loss. However, vegetable farmers did not perceive loss during transportation as a serious source of post-harvest loss. The Pearson Correlation analysis results further revealed that farmers’ age, gender, level of education, and years of experience had an influence on their perceptions. This paper then discusses some recommendations to minimize the post-harvest loss in the region.Keywords: Ashanti Region, pest infestation, post-harvest loss, vegetable farmers
Procedia PDF Downloads 1824326 Identification of Flooding Attack (Zero Day Attack) at Application Layer Using Mathematical Model and Detection Using Correlations
Authors: Hamsini Pulugurtha, V.S. Lakshmi Jagadmaba Paluri
Abstract:
Distributed denial of service attack (DDoS) is one altogether the top-rated cyber threats presently. It runs down the victim server resources like a system of measurement and buffer size by obstructing the server to supply resources to legitimate shoppers. Throughout this text, we tend to tend to propose a mathematical model of DDoS attack; we discuss its relevancy to the choices like inter-arrival time or rate of arrival of the assault customers accessing the server. We tend to tend to further analyze the attack model in context to the exhausting system of measurement and buffer size of the victim server. The projected technique uses an associate in nursing unattended learning technique, self-organizing map, to make the clusters of identical choices. Lastly, the abstract applies mathematical correlation and so the standard likelihood distribution on the clusters and analyses their behaviors to look at a DDoS attack. These systems not exclusively interconnect very little devices exchanging personal data, but to boot essential infrastructures news standing of nuclear facilities. Although this interconnection brings many edges and blessings, it to boot creates new vulnerabilities and threats which might be conversant in mount attacks. In such sophisticated interconnected systems, the power to look at attacks as early as accomplishable is of paramount importance.Keywords: application attack, bandwidth, buffer correlation, DDoS distribution flooding intrusion layer, normal prevention probability size
Procedia PDF Downloads 2254325 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging
Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie
Abstract:
To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction
Procedia PDF Downloads 1834324 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective
Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli
Abstract:
In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks
Procedia PDF Downloads 824323 Abridging Pharmaceutical Analysis and Drug Discovery via LC-MS-TOF, NMR, in-silico Toxicity-Bioactivity Profiling for Therapeutic Purposing Zileuton Impurities: Need of Hour
Authors: Saurabh B. Ganorkar, Atul A. Shirkhedkar
Abstract:
The need for investigations protecting against toxic impurities though seems to be a primary requirement; the impurities which may prove non - toxic can be explored for their therapeutic potential if any to assist advanced drug discovery. The essential role of pharmaceutical analysis can thus be extended effectively to achieve it. The present study successfully achieved these objectives with characterization of major degradation products as impurities for Zileuton which has been used for to treat asthma since years. The forced degradation studies were performed to identify the potential degradation products using Ultra-fine Liquid-chromatography. Liquid-chromatography-Mass spectrometry (Time of Flight) and Proton Nuclear Magnetic Resonance Studies were utilized effectively to characterize the drug along with five major oxidative and hydrolytic degradation products (DP’s). The mass fragments were identified for Zileuton and path for the degradation was investigated. The characterized DP’s were subjected to In-Silico studies as XP Molecular Docking to compare the gain or loss in binding affinity with 5-Lipooxygenase enzyme. One of the impurity of was found to have the binding affinity more than the drug itself indicating for its potential to be more bioactive as better Antiasthmatic. The close structural resemblance has the ability to potentiate or reduce bioactivity and or toxicity. The chances of being active biologically at other sites cannot be denied and the same is achieved to some extent by predictions for probability of being active with Prediction of Activity Spectrum for Substances (PASS) The impurities found to be bio-active as Antineoplastic, Antiallergic, and inhibitors of Complement Factor D. The toxicological abilities as Ames-Mutagenicity, Carcinogenicity, Developmental Toxicity and Skin Irritancy were evaluated using Toxicity Prediction by Komputer Assisted Technology (TOPKAT). Two of the impurities were found to be non-toxic as compared to original drug Zileuton. As the drugs are purposed and repurposed effectively the impurities can also be; as they can have more binding affinity; less toxicity and better ability to be bio-active at other biological targets.Keywords: UFLC, LC-MS-TOF, NMR, Zileuton, impurities, toxicity, bio-activity
Procedia PDF Downloads 1954322 Empirical Analyses of Students’ Self-Concepts and Their Mathematics Achievements
Authors: Adetunji Abiola Olaoye
Abstract:
The study examined the students’ self-concepts and mathematics achievement viz-a-viz the existing three theoretical models: Humanist self-concept (M1), Contemporary self-concept (M2) and Skills development self-concept (M3). As a qualitative research study, it comprised of one research question, which was transformed into hypothesis viz-a-viz the existing theoretical models. Sample to the study comprised of twelve public secondary schools from which twenty-five mathematics teachers, twelve counselling officers and one thousand students of Upper Basic II were selected based on intact class as school administrations and system did not allow for randomization. Two instruments namely 10 items ‘Achievement test in Mathematics’ (r1=0.81) and 10 items Student’s self-concept questionnaire (r2=0.75) were adapted, validated and used for the study. Data were analysed through descriptive, one way ANOVA, t-test and correlation statistics at 5% level of significance. Finding revealed mean and standard deviation of pre-achievement test scores of (51.322, 16.10), (54.461, 17.85) and (56.451, 18.22) for the Humanist Self-Concept, Contemporary Self-Concept and Skill Development Self-Concept respectively. Apart from that study showed that there was significant different in the academic performance of students along the existing models (F-cal>F-value, df = (2,997); P<0.05). Furthermore, study revealed students’ achievement in mathematics and self-concept questionnaire with the mean and standard deviation of (57.4, 11.35) and (81.6, 16.49) respectively. Result confirmed an affirmative relationship with the Contemporary Self-Concept model that expressed an individual subject and specific self-concept as the primary determinants of higher academic achievement in the subject as there is a statistical correlation between students’ self-concept and mathematics achievement viz-a-viz the existing three theoretical models of Contemporary (M2) with -Z_cal<-Z_val, df=998: P<0.05*. The implication of the study was discussed with recommendations and suggestion for further studies proffered.Keywords: contemporary, humanists, self-concepts, skill development
Procedia PDF Downloads 2374321 A Multivariate Exploratory Data Analysis of a Crisis Text Messaging Service in Order to Analyse the Impact of the COVID-19 Pandemic on Mental Health in Ireland
Authors: Hamda Ajmal, Karen Young, Ruth Melia, John Bogue, Mary O'Sullivan, Jim Duggan, Hannah Wood
Abstract:
The Covid-19 pandemic led to a range of public health mitigation strategies in order to suppress the SARS-CoV-2 virus. The drastic changes in everyday life due to lockdowns had the potential for a significant negative impact on public mental health, and a key public health goal is to now assess the evidence from available Irish datasets to provide useful insights on this issue. Text-50808 is an online text-based mental health support service, established in Ireland in 2020, and can provide a measure of revealed distress and mental health concerns across the population. The aim of this study is to explore statistical associations between public mental health in Ireland and the Covid-19 pandemic. Uniquely, this study combines two measures of emotional wellbeing in Ireland: (1) weekly text volume at Text-50808, and (2) emotional wellbeing indicators reported by respondents of the Amárach public opinion survey, carried out on behalf of the Department of Health, Ireland. For this analysis, a multivariate graphical exploratory data analysis (EDA) was performed on the Text-50808 dataset dated from 15th June 2020 to 30th June 2021. This was followed by time-series analysis of key mental health indicators including: (1) the percentage of daily/weekly texts at Text-50808 that mention Covid-19 related issues; (2) the weekly percentage of people experiencing anxiety, boredom, enjoyment, happiness, worry, fear and stress in Amárach survey; and Covid-19 related factors: (3) daily new Covid-19 case numbers; (4) daily stringency index capturing the effect of government non-pharmaceutical interventions (NPIs) in Ireland. The cross-correlation function was applied to measure the relationship between the different time series. EDA of the Text-50808 dataset reveals significant peaks in the volume of texts on days prior to level 3 lockdown and level 5 lockdown in October 2020, and full level 5 lockdown in December 2020. A significantly high positive correlation was observed between the percentage of texts at Text-50808 that reported Covid-19 related issues and the percentage of respondents experiencing anxiety, worry and boredom (at a lag of 1 week) in Amárach survey data. There is a significant negative correlation between percentage of texts with Covid-19 related issues and percentage of respondents experiencing happiness in Amárach survey. Daily percentage of texts at Text-50808 that reported Covid-19 related issues to have a weak positive correlation with daily new Covid-19 cases in Ireland at a lag of 10 days and with daily stringency index of NPIs in Ireland at a lag of 2 days. The sudden peaks in text volume at Text-50808 immediately prior to new restrictions in Ireland indicate an association between a rise in mental health concerns following the announcement of new restrictions. There is also a high correlation between emotional wellbeing variables in the Amárach dataset and the number of weekly texts at Text-50808, and this confirms that Text-50808 reflects overall public sentiment. This analysis confirms the benefits of the texting service as a community surveillance tool for mental health in the population. This initial EDA will be extended to use multivariate modeling to predict the effect of additional Covid-19 related factors on public mental health in Ireland.Keywords: COVID-19 pandemic, data analysis, digital health, mental health, public health, digital health
Procedia PDF Downloads 1434320 Study of Circulatory MiR-122 and MiR-130a Expression among Chronic Hepatitis C Egyptian Patients
Authors: Hend K. Moosa, Eman A. Rashwan, Ezzat M. Hassan, Amany A. Ghazy, Amel G. Sheredy
Abstract:
The stability of microRNA (miR) in the circulation can show a great progress toward the discovery of non-invasive diagnostic and prognostic biomarkers in many diseases. In the present study, circulatory miR-122 and miR-130a were analysed in chronic hepatitis C Egyptian patients in predicting the clinical outcome of interferon treatment. In addition, their expression levels were correlated to viral RNA levels, necro-inflammatory markers (AST, ALT) and to each other. This study was conducted on 51 subjects where 36 were chronic HCV patients in which they were divided into naive and interferon treated HCV patients (responders and non-responders) and 15 matched healthy controls. Serum quantification of miR-122 and miR-130a were performed by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The results showed a significant upregulation of miR-122 in non-responder patients (P=0.049). By receiver operating characteristic analysis curve, miR-122 revealed 65% sensitivity and 92.3% specificity in predicting non-responsiveness of patients to IFN treatment, while miR-130a showed a sensitivity of 100% and specificity of 53.85%. Remarkably, there was a significant positive correlation between miR-122 and miR-130a in naive HCV patients (r=0.714, p=0.003). However, there was no significant correlation between serum miR-122, miR-130a expression levels and necro-inflammatory markers (AST, ALT). To conclude, miR-122 and miR-130a have a significant association with viral RNA levels and accordingly, they may have a synergistic power in promoting viral replication. Interestingly, miR-122 and miR-130a have a predictive power in predicting clinical outcome of IFN treatment which can be further studied in currently used drugs in order to reduce the socio-economic burden of potentially non-responders.Keywords: hepatitis C, microRNA, miR-122, miR-130a
Procedia PDF Downloads 1704319 The Importance of Self-Efficacy and Collective Competence Beliefs in Managerial Competence of Sports Managers'
Authors: Şenol Yanar, Sinan Çeli̇kbi̇lek, Mehmet Bayansalduz, Yusuf Can
Abstract:
Managerial competence defines as the skills that managers in managerial positions have in relation to managerial responsibilities and managerial duties. Today's organizations, which are in a competitive environment, have the desire to work with effective managers in order to be more advantageous position than the other organizations they are competing with. In today's organizations, self-efficacy and collective competence belief that determine managerial competencies of managers to assume managerial responsibility are of special importance. In this framework, the aim of this study is to examine the effects of sports managers' perceptions of self-efficacy and collective competence in managerial competence perceptions. In the study, it has also been analyzed if there is a significant difference between self-efficacy, collective competence and managerial competence levels of sports managers in terms of their gender, age, duty status, year of service and level of education. 248 sports managers, who work at the department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the self-efficacy scale which was developed by Schwarzer, R. & Jerusalem, M. (1995), collective competence scale developed by Goddard, Hoy and Woolfolk-Hoy (2000) and managerial competence scale developed by Cetinkaya (2009) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, Pearson Correlation Analysis has been used for defining the correlation among self-efficacy, collective competence belief, and managerial competence levels in sports managers and regression analysis have been used to define the affect of self-efficacy and collective competence belief on the perception of managerial competence. T-test for binary grouping and ANOVA analysis have been used for more than binary groups in order to determine if there is any significant difference in the level of self-efficacy, collective and managerial competence in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between sports managers' self-efficacy, collective competence beliefs, and managerial competence levels. According to the results of the regression analysis, it is understood that the managers’ perception of self-efficacy and collective competence belief significantly defines the perception of managerial competence. Also, the results show that there is no significant difference in self-efficacy, collective competence, and level of managerial competence of sports managers in terms of duty status, year of service and level of education.Keywords: sports manager, self-efficacy, collective competence, managerial competence
Procedia PDF Downloads 234