Search results for: compressive strength prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6002

Search results for: compressive strength prediction

4412 Effect of Tool Geometry and Welding Parameters on Macrostructure and Weld Strength in Friction Stir Welded of High Density Polyethylene Sheets

Authors: Mustafa Kemal Bilici, Memduh Kurtulmuş, İlyas Kartal, Ahmet İrfan Yükler

Abstract:

Friction stir welding is a solid-state joining process that has gained acceptable progress in recent years. This method which was first used for welding of aluminum and its alloys is now employed for welding of other materials such as polymers and composites. The aim of the present work is to investigate the mechanical properties of butt joints produced by friction stir welding (FSW) in high density polyethylene sheets of 4 mm thickness. The effects of critical welding parameters and tool design have affected on mechanical properties, weld surface and macrostructure of friction stir welded polyethylene. Experiments were performed at tool rotational speeds of 600, 900, 1200 and 1500 r/min and traverse speeds of 30, 45 and 60 mm/min, tool diameters (d) of 4, 5, 6 mm and tool shoulder diameters (D) 20, 25, 30 mm. A strength value of 80 % of the base material was achieved at the isolated optimum welding condition. According to the tool design, the welding parameters and the mechanical properties changed to a great extent. The highest tensile strength was achieved at low feed rates, high tool rotation speeds and shoulder diameters/pin diameters ratio.

Keywords: friction stir welding, mechanical properties, polyethylene, high density polyethylene, tool design

Procedia PDF Downloads 394
4411 Influence of Some Psychological Factors on the Learning Gains of Distance Learners in Mathematics in Ibadan, Nigeria

Authors: Adeola Adejumo, Oluwole David Adebayo, Muraina Kamilu Olanrewaju

Abstract:

The purpose of this study was to investigate the influence of some psychological factors (i.e, school climate, parental involvement and classroom interaction) on the learning gains of university undergraduates in Mathematics in Ibadan, Nigeria. Three hundred undergraduates who are on open distance learning education programme in the University of Ibadan and thirty mathematics lecturers constituted the study’s sample. Both the independent and dependent variables were measured with relevant standardized instruments and the data obtained was analyzed using multiple regression statistical method. The instruments used were school climate scale, parental involvement scale and classroom interaction scale. Three research questions were answered in the study. The result showed that there was significant relationship between the three independent variables (school climate, parental involvement and classroom interaction) on the students’ learning gain in mathematics and that the independent variables both jointly and relatively contributed significantly to the prediction of students’ learning gain in mathematics. On the strength of these findings, the need to enhance the school climate, improve the parents’ involvement in the student’s education and encourage students’ classroom interaction were stressed and advocated.

Keywords: school climate, parental involvement, ODL, learning gains, mathematics

Procedia PDF Downloads 522
4410 Strength Properties of Concrete Paving Blocks with Fly Ash and Glass Powder

Authors: Joel Santhosh, N. Bhavani Shankar Rao

Abstract:

Problems associated with construction site have been known for many years. Construction industry has to support a world of continuing population growth and economic development. The rising costs of construction materials and the need to adhere to sustainability, alternative construction techniques and materials are being sought. To increase the applications of concrete paving blocks, greater understanding of products produced with locally available materials and indigenously produced mineral admixtures is essential. In the present investigation, concrete paving blocks may be produced with locally available aggregates, cement, fly ash and waste glass powder as the mineral admixture. The ultimate aim of this work is to ascertain the performance of concrete paving blocks containing fly ash and glass powder and compare it with the performance of conventional concrete paving blocks. Mix design is carried out to form M40 grade of concrete by using IS: 10262: 2009 and specification given by IRC: SP: 63: 2004. The paving blocks are tested in accordance to IS: 15658: 2006. It showed that the partial replacement of cement by fly ash and waste glass powder satisfies the minimum requirement as specified by the Indian standard IS: 15658: 2006 for concrete paving blocks to be used in non traffic, light traffic and medium-heavy traffic areas. The study indicated that fly ash and waste glass powder can effectively be used as cement replacement without substantial change in strength.

Keywords: paving block, fly ash, glass powder, strength, abrasion resistance, durability

Procedia PDF Downloads 299
4409 Evaluation of Heat of Hydration and Strength Development in Natural Pozzolan-Incorporated Cement from the Gulf Region

Authors: S. Al-Fadala, J. Chakkamalayath, S. Al-Bahar, A. Al-Aibani, S. Ahmed

Abstract:

Globally, the use of pozzolan in blended cement is gaining great interest due to the desirable effect of pozzolan from the environmental and energy conservation standpoint and the technical benefits they provide to the performance of cement. The deterioration of concrete structures in the marine environment and extreme climates demand the use of pozzolana cement in concrete construction in the Gulf region. Also, natural sources of cement clinker materials are limited in the Gulf region, and cement industry imports the raw materials for the production of Portland cement, resulting in an increase in the greenhouse gas effect due to the CO₂ emissions generated from transportation. Even though the Gulf region has vast deposits of natural pozzolana, it is not explored properly for the production of high performance concrete. Hence, an optimum use of regionally available natural pozzolana for the production of blended cement can result in sustainable construction. This paper investigates the effect of incorporating natural pozzolan sourced from the Gulf region on the performance of blended cement in terms of heat evolution and strength development. For this purpose, a locally produced Ordinary Portland Cement (OPC) and pozzolan-incorporated blended cements containing different amounts of natural pozzolan (volcanic ash) were prepared on laboratory scale. The strength development and heat evolution were measured and quantified. Promising results of strength development were obtained for blends with the percentages of Volcanic Ash (VA) replacement varying from 10 to 30%. Results showed that the heat of hydration decreased with increase in percentage of replacement of OPC with VA, indicating increased retardation in hydration due to the addition of VA. This property could be used in mass concreting in which a reduction in heat of hydration is required to reduce cracking in concrete, especially in hot weather concreting.

Keywords: blended cement, hot weather, hydration, volcanic ash

Procedia PDF Downloads 325
4408 Development of Terrorist Threat Prediction Model in Indonesia by Using Bayesian Network

Authors: Hilya Mudrika Arini, Nur Aini Masruroh, Budi Hartono

Abstract:

There are more than 20 terrorist threats from 2002 to 2012 in Indonesia. Despite of this fact, preventive solution through studies in the field of national security in Indonesia has not been conducted comprehensively. This study aims to provide a preventive solution by developing prediction model of the terrorist threat in Indonesia by using Bayesian network. There are eight stages to build the model, started from literature review, build and verify Bayesian belief network to what-if scenario. In order to build the model, four experts from different perspectives are utilized. This study finds several significant findings. First, news and the readiness of terrorist group are the most influent factor. Second, according to several scenarios of the news portion, it can be concluded that the higher positive news proportion, the higher probability of terrorist threat will occur. Therefore, the preventive solution to reduce the terrorist threat in Indonesia based on the model is by keeping the positive news portion to a maximum of 38%.

Keywords: Bayesian network, decision analysis, national security system, text mining

Procedia PDF Downloads 392
4407 Precious Gold and Diamond Accessories Versus False Fashion Diamond and Stained Accessories

Authors: Amira Yousef Mahrous Yousef

Abstract:

This paper includes fast fashion verses sustainable fashion or slow fashion Indian based consumers. The expression ‘Fast fashion’ is generally referred to low-cost clothing collections that considered first hand copy of luxury brands, sometime interchangeably used with ‘mass fashion’. Whereas slow fashion or limited fashion which are consider to be more organic or eco-friendly. "Sustainable fashion is ethical fashion and here the consumer is just not design conscious but also social-environment conscious". Paper will deal with desire of young Indian consumer towards such luxury brands present in India, and their understanding of sustainable fashion, how to maintain the equilibrium between never newer fashion, style, and fashion sustainability. The green fashion market is growing rapidly as eco-friendly consumers are willing to expand their organic lifestyle to include clothing. With an increasing share of fashion consumers globally, Indian consumers are observed to consider the social and environmental ethics while making purchasing decisions. While some research clearly identifies the efforts of responsible consumers towards green fashion, some argue that fashion-orientated consumers who are sensitive towards environment do not actively participate towards supporting green fashion. This study aims to analyze the current perception of green fashion among Indian consumers. A small-scale exploratory study is conducted where consumers’ perception of green fashion is examined followed by an analysis of translation of this perception into purchase decision making. This research paper gives insight into consumer awareness on green fashion and provides scope towards the expansion of ethical fashion consumption .

Keywords: inclusions, temperature gradient, HPHT synthetic fibers, polyamide fibers, fiber volume, compressive strength. gold nano clusters, copper ions, wool keratin, fluorescence

Procedia PDF Downloads 48
4406 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.

Keywords: fire prediction, drone, smoke toxicity, analyser, fire management

Procedia PDF Downloads 89
4405 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
4404 The Effect of Different Strength Training Methods on Muscle Strength, Body Composition and Factors Affecting Endurance Performance

Authors: Shaher A. I. Shalfawi, Fredrik Hviding, Bjornar Kjellstadli

Abstract:

The main purpose of this study was to measure the effect of two different strength training methods on muscle strength, muscle mass, fat mass and endurance factors. Fourteen physical education students accepted to participate in this study. The participants were then randomly divided into three groups, traditional training group (TTG), cluster training group (CTG) and control group (CG). TTG consisted of 4 participants aged ( ± SD) (22.3 ± 1.5 years), body mass (79.2 ± 15.4 kg) and height (178.3 ± 11.9 cm). CTG consisted of 5 participants aged (22.2 ± 3.5 years), body mass (81.0 ± 24.0 kg) and height (180.2 ± 12.3 cm). CG consisted of 5 participants aged (22 ± 2.8 years), body mass (77 ± 19 kg) and height (174 ± 6.7 cm). The participants underwent a hypertrophy strength training program twice a week consisting of 4 sets of 10 reps at 70% of one-repetition maximum (1RM), using barbell squat and barbell bench press for 8 weeks. The CTG performed 2 x 5 reps using 10 s recovery in between repetitions and 50 s recovery between sets, while TTG performed 4 sets of 10 reps with 90 s recovery in between sets. Pre- and post-tests were administrated to assess body composition (weight, muscle mass, and fat mass), 1RM (bench press and barbell squat) and a laboratory endurance test (Bruce Protocol). Instruments used to collect the data were Tanita BC-601 scale (Tanita, Illinois, USA), Woodway treadmill (Woodway, Wisconsin, USA) and Vyntus CPX breath-to-breath system (Jaeger, Hoechberg, Germany). Analysis was conducted at all measured variables including time to peak VO2, peak VO2, heart rate (HR) at peak VO2, respiratory exchange ratio (RER) at peak VO2, and number of breaths per minute. The results indicate an increase in 1RM performance after 8 weeks of training. The change in 1RM squat was for the TTG = 30 ± 3.8 kg, CTG = 28.6 ± 8.3 kg and CG = 10.3 ± 13.8 kg. Similarly, the change in 1RM bench press was for the TTG = 9.8 ± 2.8 kg, CTG = 7.4 ± 3.4 kg and CG = 4.4 ± 3.4 kg. The within-group analysis from the oxygen consumption measured during the incremental exercise indicated that the TTG had only a statistical significant increase in their RER from 1.16 ± 0.04 to 1.23 ± 0.05 (P < 0.05). The CTG had a statistical significant improvement in their HR at peak VO2 from 186 ± 24 to 191 ± 12 Beats Per Minute (P < 0.05) and their RER at peak VO2 from 1.11 ± 0.06 to 1.18 ±0.05 (P < 0.05). Finally, the CG had only a statistical significant increase in their RER at peak VO2 from 1.11 ± 0.07 to 1.21 ± 0.05 (P < 0.05). The between-group analysis showed no statistical differences between all groups in all the measured variables from the oxygen consumption test during the incremental exercise including changes in muscle mass, fat mass, and weight (kg). The results indicate a similar effect of hypertrophy strength training irrespective of the methods of the training used on untrained subjects. Because there were no notable changes in body-composition measures, the results suggest that the improvements in performance observed in all groups is most probably due to neuro-muscular adaptation to training.

Keywords: hypertrophy strength training, cluster set, Bruce protocol, peak VO2

Procedia PDF Downloads 250
4403 Precious Gold and Diamond Accessories Versus False Fashion Diamond and Stained Accessories

Authors: Felib Ayman Shawky Salem

Abstract:

This paper includes fast fashion verses sustainable fashion or slow fashion Indian based consumers. The expression ‘Fast fashion’ is generally referred to low-cost clothing collections that considered first hand copy of luxury brands, sometime interchangeably used with ‘mass fashion’. Whereas slow fashion or limited fashion which are consider to be more organic or eco-friendly. "Sustainable fashion is ethical fashion and here the consumer is just not design conscious but also social-environment conscious". Paper will deal with desire of young Indian consumer towards such luxury brands present in India, and their understanding of sustainable fashion, how to maintain the equilibrium between never newer fashion, style, and fashion sustainability. The green fashion market is growing rapidly as eco-friendly consumers are willing to expand their organic lifestyle to include clothing. With an increasing share of fashion consumers globally, Indian consumers are observed to consider the social and environmental ethics while making purchasing decisions. While some research clearly identifies the efforts of responsible consumers towards green fashion, some argue that fashion-orientated consumers who are sensitive towards environment do not actively participate towards supporting green fashion. This study aims to analyze the current perception of green fashion among Indian consumers. A small-scale exploratory study is conducted where consumers’ perception of green fashion is examined followed by an analysis of translation of this perception into purchase decision making. This research paper gives insight into consumer awareness on green fashion and provides scope towards the expansion of ethical fashion consumption

Keywords: diamond, inclusions, temperature gradient, HPHT synthetic fibers, polyamide fibers, fiber volume, compressive strength. gold nano clusters, copper ions, wool keratin, fluorescence

Procedia PDF Downloads 34
4402 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 133
4401 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method

Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood

Abstract:

Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.

Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime

Procedia PDF Downloads 379
4400 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

Authors: Gaurav D. Sonawane, Vikas G. Sargade

Abstract:

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

Keywords: cutting temperature, DSS2205, dry turning, HiPIMS, surface integrity

Procedia PDF Downloads 134
4399 Assessment of Post-surgical Donor-Site Morbidity in Vastus lateralis Free Flap for Head and Neck Reconstructive Surgery: An Observational Study

Authors: Ishith Seth, Lyndel Hewitt, Takako Yabe, James Wykes, Jonathan Clark, Bruce Ashford

Abstract:

Background: Vastus lateralis (VL) can be used to reconstruct defects of the head and neck. Whilst the advantages are documented, donor-site morbidity is not well described. This study aimed to assess donor-site morbidity after VL flap harvest. The results will determine future directions for preventative and post-operative care to improve patient health outcomes. Methods: Ten participants (mean age 55 years) were assessed for the presence of donor-site morbidity after VL harvest. Musculoskeletal (pain, muscle strength, muscle length, tactile sensation), quality of life (SF-12), and lower limb function (lower extremity function, gait (function and speed), sit to stand were assessed using validated and standardized procedures. Outcomes were compared to age-matched healthy reference values or the non-operative side. Analyses were conducted using descriptive statistics and non-parametric tests. Results: There was no difference in muscle strength (knee extension), muscle length, ability to sit-to-stand, or gait function (all P > 0.05). Knee flexor muscle strength was significantly less on the operated leg compared to the non-operated leg (P=0.02) and walking speed was slower than age-matched healthy values (P<0.001). Thigh tactile sensation was impaired in 89% of participants. Quality of life was significantly less for the physical health component of the SF-12 (P<0.001). The mental health component of the SF-12 was similar to healthy controls (P=0.26). Conclusion: There was no effect on donor site morbidity with regards to knee extensor strength, pain, walking function, ability to sit-to-stand, and muscle length. VL harvest affected donor-site knee flexion strength, walking speed, tactile sensation, and physical health-related quality of life.

Keywords: vastus lateralis, morbidity, head and neck, surgery, donor-site morbidity

Procedia PDF Downloads 242
4398 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma

Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren

Abstract:

We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.

Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values

Procedia PDF Downloads 154
4397 The Impact of Motor Predispositions of Pilot-Cadets on Results in Aviation Synthetic Efficiency Test

Authors: Zbigniew Wochynski, Justyna Skrzynska, Robert Jedrys, Zdzislaw Kobos

Abstract:

The aim of the study is to determine the types of motor skills and their impact on achieving results while undergoing Aviation Synthetic Efficiency Test (ASET). The study involved 59 cadets, 21 years-old on average, who are studying on first year for a pilot. The average weight of the respondents is 73.8 kg. The subjects were divided into two groups by weight: up to 73.8 kg -group A (n-30) and above 73,8kg -group B (n-29). All subjects underwent the following tests: running at 40m, 100m, 1000m, 2000m, pull-ups, ASET. In both groups, the cadets were divided into two motor skills types taking into advance 40 m running, pull-ups, 2000 meters running and then subjected to do ASET. There has been shown statistically significant increase in group B in body height, weight and BMI with p <0.0003, p <0.0001, p <0.0001 compared to group A. The results indicate that the dominant motor type in all subjects is the endurance-strength model, which reached the speed V = 1,42m/s in overcoming ASET. This is confirmed by the correlation between 2000m and pull-ups r = 0.37 (p <0.05). In group A, the results indicate that the dominant type of motor is a high-speed-endurance model (26.6%), which reached speed V = 1,42m/s in overcoming ASET. In Group B, there was type of motor speed-strength (20.6%), which reached speed of V = 1.45m/s in overcoming ASET. This confirms the correlation between ASET and pull-ups r = 0.56 (p <0.005). Examined cadets who were having one dominant characteristic achieved worse results is ASET. The best results from all examined cadets in overcoming ASET had the type of motor endurance-strength, in group A endurance-speed model and in group B type of speed-strength

Keywords: ASET, Aviation Synthetic Efficiency Test, motor skills, physical tests, pilot-cadets

Procedia PDF Downloads 288
4396 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness

Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers

Abstract:

The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).

Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning

Procedia PDF Downloads 286
4395 Importance of Positive Education: A Focus on the Importance of Character Strength Building

Authors: Hajra Hussain

Abstract:

Positive education, the inclusion of social, emotional and intellectual skills across a curriculum, is fundamental to the optimal functioning of young people in any society because it combines the best teaching practices with the principles of positive psychology. While learning institutions foster academic skills, little attention is being paid to the identification and development of character strengths and their integration into teaching. There is an increasing recognition of the important role education plays in equipping today’s youth with 21st century social skills. For youth to succeed in this highly competitive environment, there is a need for positive education that is focused on character strengths such as the growth of social, emotional and intellectual skills that promote the flourishing of well-rounded individuals. Character strength programs and awareness are a necessity if the human capital within a region is to be competitive, productive and happy. The Counselling & Wellbeing Centre at Amity University Dubai has consistently implemented Character Strength awareness workshops and has found that such workshops have increased student life satisfaction due to individual awareness of signature strengths. A positive education/positive psychology framework with its key focus on the development of character strengths can be fundamental to individual's confidence and self-awareness; thus allowing both optimum flourishing and functioning.

Keywords: positive psychology, positive education, strengths, youth, happiness

Procedia PDF Downloads 273
4394 Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle.

Keywords: additive manufacturing, fused deposition modeling, unidirectional, bidirectional, raster angle, tensile strength

Procedia PDF Downloads 185
4393 Model Averaging in a Multiplicative Heteroscedastic Model

Authors: Alan Wan

Abstract:

In recent years, the body of literature on frequentist model averaging in statistics has grown significantly. Most of this work focuses on models with different mean structures but leaves out the variance consideration. In this paper, we consider a regression model with multiplicative heteroscedasticity and develop a model averaging method that combines maximum likelihood estimators of unknown parameters in both the mean and variance functions of the model. Our weight choice criterion is based on a minimisation of a plug-in estimator of the model average estimator's squared prediction risk. We prove that the new estimator possesses an asymptotic optimality property. Our investigation of finite-sample performance by simulations demonstrates that the new estimator frequently exhibits very favourable properties compared to some existing heteroscedasticity-robust model average estimators. The model averaging method hedges against the selection of very bad models and serves as a remedy to variance function misspecification, which often discourages practitioners from modeling heteroscedasticity altogether. The proposed model average estimator is applied to the analysis of two real data sets.

Keywords: heteroscedasticity-robust, model averaging, multiplicative heteroscedasticity, plug-in, squared prediction risk

Procedia PDF Downloads 385
4392 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 122
4391 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis

Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu

Abstract:

In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.

Keywords: supervised, functional principal component analysis, functional response, functional linear regression

Procedia PDF Downloads 76
4390 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer

Authors: Yilei Song, Linlin Tian, Ning Zhao

Abstract:

Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.

Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake

Procedia PDF Downloads 174
4389 Acute Effects of Active Dynamic, Static Stretching and Passive Static Stretching Exercise on Hamstrings Flexibility and Muscle Strength

Authors: Yi Tse Wang, Che Hsiu Chen, Zih Jian Huang, Hon Wen Cheng

Abstract:

Stretching treatments enhanced flexibility. On the other hand, decreases in hamstrings strength have been reported after stretching, especially with static stretching or passive stretching. Stretching has been shown to be more effective than static stretching to improve muscle performance, but a clear consensus for the effect of dynamic stretching on muscle performance has not been achieved. The purpose of this study was to compare the acute effect of a dynamic stretching, static stretching and eccentric exercise protocol on hamstrings stiffness, flexibility and muscle strength. Forty-five healthy active men (height 179.9 cm; weight 71.5 kg; age 22.5 years) were participated in 3 randomly ordered testing sessions: dynamic stretching (DS), active static stretching (ASS), and passive static stretching (PSS). All the stretch were performed 30 seconds and repeated 6 times. There was a 30-second interval between repetitions. The outcome measures were isokinetic concentric contraction (60°/s), eccentric contraction (30°/s) peak torque, muscle flexibility after stretching. The results showed that the muscle flexibility (3.6%, 3.9% and 1.59%, respectively) increased significantly after DS, PSS and ASS. Hamstring isokinetic concentric peak torque (-6.4%, -8.0% and -5.8%, respectively) and eccentric peak torque (-5.8%, -4.5% and -5.4%, respectively) decreased significantly after DS, PSS and ASS. Hence, although the stretching protocols improve hamstrings flexibility immediately, reduced hamstring muscle eccentric and concentric peak torque.

Keywords: hamstrings injury, warm-up, muscle performance, muscle stretching

Procedia PDF Downloads 383
4388 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method

Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya

Abstract:

Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.

Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms

Procedia PDF Downloads 94
4387 Effects of Electric Field on Diffusion Coefficients and Share Viscosity in Dusty Plasmas

Authors: Muhammad Asif ShakoorI, Maogang He, Aamir Shahzad

Abstract:

Dusty (complex) plasmas contained micro-sized charged dust particles in addition to ions, electrons, and neutrals. It is typically low-temperature plasma and exists in a wide variety of physical systems. In this work, the effects of an external electric field on the diffusion coefficient and share viscosity are investigated through equilibrium molecular dynamics (EMD) simulations in three-dimensional (3D) strongly coupled (SC) dusty plasmas (DPs). The effects of constant and varying normalized electric field strength (E*) have been computed along with different combinations of plasma states on the diffusion of dust particles using EMD simulations. Diffusion coefficient (D) and share viscosity (η) along with varied system sizes, in the limit of varying E* values, is accounted for an appropriate range of plasma coupling (Γ) and screening strength (κ) parameters. At varying E* values, it is revealed that the 3D diffusion coefficient increases with increasing E* and κ; however, it decreases with an increase of Γ but within statistical limits. The share viscosity increases with increasing E*and Γ and decreases with increasing κ. New simulation results are outstanding that the combined effects of electric field and screening strengths give well-matched values of Dandη at low-intermediate to large Γ with varying small-intermediate to large N. The current EMD simulation outcomes under varying electric field strengths are in satisfactory well-matched with previous known simulation data of EMD simulations of the SC-DPs. It has been shown that the present EMD simulation data enlarged the range of E* strength up to 0.1 ≤ E*≤ 1.0 in order to find the linear range of the DPs system and to demonstrate the fundamental nature of electric field linearity of 3D SC-DPs.

Keywords: strongly coupled dusty plasma, diffusion coefficient, share viscosity, molecular dynamics simulation, electric field strength

Procedia PDF Downloads 190
4386 Forecasting Cancers Cases in Algeria Using Double Exponential Smoothing Method

Authors: Messis A., Adjebli A., Ayeche R., Talbi M., Tighilet K., Louardiane M.

Abstract:

Cancers are the second cause of death worldwide. Prevalence and incidence of cancers is getting increased by aging and population growth. This study aims to predict and modeling the evolution of breast, Colorectal, Lung, Bladder and Prostate cancers over the period of 2014-2019. In this study, data were analyzed using time series analysis with double exponential smoothing method to forecast the future pattern. To describe and fit the appropriate models, Minitab statistical software version 17 was used. Between 2014 and 2019, the overall trend in the raw number of new cancer cases registered has been increasing over time; the change in observations over time has been increasing. Our forecast model is validated since we have good prediction for the period 2020 and data not available for 2021 and 2022. Time series analysis showed that the double exponential smoothing is an efficient tool to model the future data on the raw number of new cancer cases.

Keywords: cancer, time series, prediction, double exponential smoothing

Procedia PDF Downloads 89
4385 Symmetry of Performance across Lower Limb Tests between the Dominant and Non-Dominant Legs

Authors: Ghulam Hussain, Herrington Lee, Comfort Paul, Jones Richard

Abstract:

Background: To determine the functional limitations of the lower limbs or readiness to return to sport, most rehabilitation programs use some form of testing; however, it is still unknown what the pass criteria is. This study aims to investigate the differences between the dominant and non-dominant leg performances across several lower limb tasks, which are hop tests, two-dimensional (2D) frontal plane projection angle (FPPA) tests, and isokinetic muscle tests. This study also provides the reference values for the limb symmetry index (LSI) for the hop and isokinetic muscle strength tests. Twenty recreationally active participants were recruited, 11 males and 9 females (age 23.65±2.79 years; height 169.9±3.74 cm; and body mass 74.72±5.81 kg. All tests were undertaken on the dominant and non-dominant legs. These tests are (1) Hop tests, which include horizontal hop for distance and crossover hop tests, (2) Frontal plane projection angle (FPPA): 2D capturing from two different tasks, which are forward hop landing and squatting, and (3) Isokinetic muscle strength tests: four different muscles were tested: quadriceps, hamstring, ankle plantar flexor, and hip extensor muscles. The main outcome measurements were, for the (1) hop tests: maximum distance was taken when undertaking single/crossover hop for distance using a standard tape measure, (2) for the FPPA: the knee valgus angle was measured from the maximum knee flexion position using a single 2D camera, and (3) for the isokinetic muscle strength tests: three different variables were measured: peak torque, peak torque to body weight, and the total work to body weight. All the muscle strength tests have been applied in both concentric and eccentric muscle actions at a speed of 60°/sec. This study revealed no differences between the dominant and non-dominant leg performance, and 85% of LSI was achieved by the majority of the subjects in both hop and isokinetic muscle tests, and; therefore, one leg’s hop performance can define the other.

Keywords: 2D FPPA, hop tests, isokinetic testing, LSI

Procedia PDF Downloads 66
4384 Review on the Role of Sustainability Techniques in Development of Green Building

Authors: Ubaid Ur Rahman, Waqar Younas, Sooraj Kumar Chhabira

Abstract:

Environmentally sustainable building construction has experienced significant growth during the past 10 years at international level. This paper shows that the conceptual framework adopts sustainability techniques in construction to develop environment friendly building called green building. Waste occurs during the different construction phases which causes the environmental problems like, deposition of waste on ground surface creates major problems such as bad smell. It also gives birth to different health diseases and produces toxic waste agent which is specifically responsible for making soil infertile. Old recycled building material is used in the construction of new building. Sustainable construction is economical and saves energy sources. Sustainable construction is the major responsibility of designer and project manager. The designer has to fulfil the client demands while keeping the design environment friendly. Project manager has to deliver and execute sustainable construction according to sustainable design. Steel is the most appropriate sustainable construction material. It is more durable and easily recyclable. Steel occupies less area and has more tensile and compressive strength than concrete, making it a better option for sustainable construction as compared to other building materials. New technology like green roof has made the environment pleasant, and has reduced the construction cost. It minimizes economic, social and environmental issues. This paper presents an overview of research related to the material use of green building and by using this research recommendation are made which can be followed in the construction industry. In this paper, we go through detailed analysis on construction material. By making suitable adjustments to project management practices it is shown that a green building improves the cost efficiency of the project, makes it environmental friendly and also meets future generation demands.

Keywords: sustainable construction, green building, recycled waste material, environment

Procedia PDF Downloads 245
4383 Microstructure and Hot Deformation Behavior of Fe-20Cr-5Al Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Abstract—High temperature deformation behavior of cast Fe-20Cr-5Al alloy has been investigated in this study by performing tensile and compression tests at temperatures from 1100 to 1200oC. Rectangular ingots of which the dimensions were 300×300×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Tensile strength of cast Fe-20Cr-5Al alloy was 4 MPa at 1200oC. With temperature decreased, tensile strength increased rapidly and reached up to 13 MPa at 1100oC. Elongation also increased from 18 to 80% with temperature decreased from 1200oC to 1100oC. Microstructure observation revealed that M23C6 carbide was precipitated along the grain boundary and within the matrix.

Keywords: 20 Cr-5Al ferritic stainless, high temperature deformation, aging treatment, microstructure, mechanical properties

Procedia PDF Downloads 449