Search results for: Eulerian approach
12310 Trend Detection Using Community Rank and Hawkes Process
Authors: Shashank Bhatnagar, W. Wilfred Godfrey
Abstract:
We develop in this paper, an approach to find the trendy topic, which not only considers the user-topic interaction but also considers the community, in which user belongs. This method modifies the previous approach of user-topic interaction to user-community-topic interaction with better speed-up in the range of [1.1-3]. We assume that trend detection in a social network is dependent on two things. The one is, broadcast of messages in social network governed by self-exciting point process, namely called Hawkes process and the second is, Community Rank. The influencer node links to others in the community and decides the community rank based on its PageRank and the number of users links to that community. The community rank decides the influence of one community over the other. Hence, the Hawkes process with the kernel of user-community-topic decides the trendy topic disseminated into the social network.Keywords: community detection, community rank, Hawkes process, influencer node, pagerank, trend detection
Procedia PDF Downloads 38312309 A Comprehensive Approach to Sustainable Building Design: Bridging Design for Adaptability and Circular Economy with LCA
Authors: Saba Baienat, Ivanka Iordanova, Bechara Helal
Abstract:
Incorporating the principles of Design for Adaptability (DfAd) and Circular Economy (CE) into the service life planning of buildings and construction engineering projects can significantly enhance sustainable development. By employing DfAd, both the service life and design process can be optimized, gradually postponing the building’s End of Life (EoL) and extending the service life of buildings, thereby closing material cycles and making them more circular. This paper presents a comprehensive framework that addresses adaptability strategies and considerations to objectively assess the role of DfAd in circularity. The framework aims to provide a streamlined approach for accessing DfAd strategies and identifying the most effective ones for enhancing a project's adaptability. Key strategies include anticipating changes in requirements, enabling adaptations and transformations of the building for better use and reuse, preparing for future lives of the building and its components, and contributing to the circular material life cycle. Furthermore, the framework seeks to enhance the awareness of stakeholders about the subject of Design for Adaptability through the lens of the Circular Economy. Additionally, this paper integrates Life Cycle Assessment (LCA) methodologies to evaluate the environmental impacts of implementing DfAd strategies within the context of the Circular Economy. By utilizing LCA, the framework provides a quantitative basis for assessing the sustainability benefits of adaptable building designs, offering insights into how these strategies can minimize resource consumption, reduce emissions, and enhance overall environmental performance. This holistic approach underscores the critical role of LCA in bridging DfAd and CE, ultimately fostering more resilient and sustainable construction practices.Keywords: circular economy (CE), design for adaptability (DfAd), life cycle assessment (LCA), sustainable development
Procedia PDF Downloads 3312308 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: electrocardiogram, dictionary learning, sparse coding, classification
Procedia PDF Downloads 38612307 Relevance of Reliability Approaches to Predict Mould Growth in Biobased Building Materials
Authors: Lucile Soudani, Hervé Illy, Rémi Bouchié
Abstract:
Mould growth in living environments has been widely reported for decades all throughout the world. A higher level of moisture in housings can lead to building degradation, chemical component emissions from construction materials as well as enhancing mould growth within the envelope elements or on the internal surfaces. Moreover, a significant number of studies have highlighted the link between mould presence and the prevalence of respiratory diseases. In recent years, the proportion of biobased materials used in construction has been increasing, as seen as an effective lever to reduce the environmental impact of the building sector. Besides, bio-based materials are also hygroscopic materials: when in contact with the wet air of a surrounding environment, their porous structures enable a better capture of water molecules, thus providing a more suitable background for mould growth. Many studies have been conducted to develop reliable models to be able to predict mould appearance, growth, and decay over many building materials and external exposures. Some of them require information about temperature and/or relative humidity, exposure times, material sensitivities, etc. Nevertheless, several studies have highlighted a large disparity between predictions and actual mould growth in experimental settings as well as in occupied buildings. The difficulty of considering the influence of all parameters appears to be the most challenging issue. As many complex phenomena take place simultaneously, a preliminary study has been carried out to evaluate the feasibility to sadopt a reliability approach rather than a deterministic approach. Both epistemic and random uncertainties were identified specifically for the prediction of mould appearance and growth. Several studies published in the literature were selected and analysed, from the agri-food or automotive sectors, as the deployed methodology appeared promising.Keywords: bio-based materials, mould growth, numerical prediction, reliability approach
Procedia PDF Downloads 4612306 Kauffman Model on a Network of Containers
Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin
Abstract:
In the description of the origin of life, there are still some open gaps, e.g., the formation of macromolecules cannot be fully explained so far. The Kauffman model proposes the existence of autocatalytic sets of macromolecules which mutually catalyze reactions leading to each other’s formation. Usually, this model is simulated in one well-stirred pot only, with a continuous inflow of small building blocks, from which larger molecules are created by a set of catalyzed ligation and cleavage reactions. This approach represents the picture of the primordial soup. However, the conditions on the early Earth must have differed geographically, leading to spatially different outcomes whether a specific reaction could be performed or not. Guided by this picture, the Kauffman model is simulated in a large number of containers in parallel, with neighboring containers being connected by diffusion. In each container, only a subset of the overall reaction set can be performed. Under specific conditions, this approach leads to a larger probability for the existence of an autocatalytic metabolism than in the original Kauffman model.Keywords: agglomeration, autocatalytic set, differential equation, Kauffman model
Procedia PDF Downloads 5812305 Augmenting History: Case Study Measuring Motivation of Students Using Augmented Reality Apps in History Classes
Authors: Kevin. S. Badni
Abstract:
Due to the rapid advances in the use of information technology and students’ familiarity with technology, learning styles in higher education are being reshaped. One of the technology developments that has gained considerable attention in recent years is Augmented Reality (AR), where technology is used to combine overlays of digital data on physical real-world settings. While AR is being heavily promoted for entertainment by mobile phone manufacturers, it has had little adoption in higher education due to the required upfront investment that an instructor needs to undertake in creating relevant AR applications. This paper discusses a case study that uses a low upfront development approach and examines the impact on generation-Z students’ motivation whilst studying design history over a four-semester period. Even though the upfront investment in creating the AR support was minimal, the results showed a noticeable increase in student motivation. The approach used in this paper can be easily transferred to other disciplines and other areas of design education.Keywords: augmented reality, history, motivation, technology
Procedia PDF Downloads 16512304 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions
Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla
Abstract:
With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect
Procedia PDF Downloads 3712303 Customer Churn Analysis in Telecommunication Industry Using Data Mining Approach
Authors: Burcu Oralhan, Zeki Oralhan, Nilsun Sariyer, Kumru Uyar
Abstract:
Data mining has been becoming more and more important and a wide range of applications in recent years. Data mining is the process of find hidden and unknown patterns in big data. One of the applied fields of data mining is Customer Relationship Management. Understanding the relationships between products and customers is crucial for every business. Customer Relationship Management is an approach to focus on customer relationship development, retention and increase on customer satisfaction. In this study, we made an application of a data mining methods in telecommunication customer relationship management side. This study aims to determine the customers profile who likely to leave the system, develop marketing strategies, and customized campaigns for customers. Data are clustered by applying classification techniques for used to determine the churners. As a result of this study, we will obtain knowledge from international telecommunication industry. We will contribute to the understanding and development of this subject in Customer Relationship Management.Keywords: customer churn analysis, customer relationship management, data mining, telecommunication industry
Procedia PDF Downloads 31612302 Criteria Analysis of Residential Location Preferences: An Urban Dwellers’ Perspective
Authors: Arati Siddharth Petkar, Joel E. M. Macwan
Abstract:
Preferences for residential location are of a diverse nature. Primarily they are based on the socio-economic, socio-cultural, socio-demographic characteristics of the household. It also depends on character, and the growth potential of different areas in a city. In the present study, various criteria affecting residential location preferences from the Urban Dwellers’ perspective have been analyzed. The household survey has been conducted in two parts: Existing Buyers’ survey and Future Buyers’ survey. The analysis reveals that workplace location is the most governing criterion in deciding residential location from the majority of the urban dwellers perspective. For analyzing the importance of varied criteria, Analytical Hierarchy Process approach has been explored. The suggested approach will be helpful for urban planners, decision makers and developers, while designating a new residential area or redeveloping an existing one.Keywords: analytical hierarchy process (AHP), household, preferences, residential location preferences, residential land use, urban dwellers
Procedia PDF Downloads 20712301 Hermeneutical Attitudes to Islamic Art
Authors: Mohammad Hasan Kakizadeh
Abstract:
It is a matter of philosophical hermeneutics according to specifications, we can hand to his hermeneutic, hermeneutical approaches can be analyzed with Islamic art, Islamic art hermeneutical approaches can be of two types: one is to "Islamic Art" Art is considered the analogies and metaphors and mysteries using Nmvdgarha and tried to express spiritual or religious ideology that demonstrates the truth of Islam, and other efforts is that "art" is basically a way inconsistent with the interpretation that or "sharia," Islamic law, not be considered a way to recognize and praise God, his creation, and therefore, the "art" is a tool for reform or knowledge to Nfs.az these two efforts, the first modern effort to try and of course preceded by the second. However, the first attempt is sometimes forgotten that the early centuries AD, with respect to the nature of hermeneutic thinkers for the arts could not resist the assaults of "art" in general, or specifically some legitimacy to the "art" of business and Knnd.dyn art at the stage of its history, which distinguishes them from each other are united with each other so easily possible. However, with the rise of the monotheistic religions and leave the Pagan religions, religion, and art renewed bond becomes a difficult problem. Much of the efforts of Muslim scholars have focused on the legitimacy back to the art. These attempts without a hermeneutic approach to the "art" does not correlate with success. The findings and conclusion in this study is that the hermeneutic approach to Islamic art, whether or Mshrvsazanh Mnakavanh what Bazsazanh or deconstructive, can not ignore the fact that Islamic art has been shaped by Mabdaltbyhay.Keywords: art, Islamic art, hermeneutics, art, religion
Procedia PDF Downloads 36912300 Model Based Simulation Approach to a 14-Dof Car Model Using Matlab/Simulink
Authors: Ishit Sheth, Chandrasekhar Jinendran, Chinmaya Ranjan Sahu
Abstract:
A fourteen degree of freedom (DOF) ride and handling control mathematical model is developed for a car using generalized boltzmann hamel equation which will create a basis for design of ride and handling controller. Mathematical model developed yield equations of motion for non-holonomic constrained systems in quasi-coordinates. The governing differential equation developed integrates ride and handling control of car. Model-based systems engineering approach is implemented for simulation using matlab/simulink, vehicle’s response in different DOF is examined and later validated using commercial software (ADAMS). This manuscript involves detailed derivation of full car vehicle model which provides response in longitudinal, lateral and yaw motion to demonstrate the advantages of the developed model over the existing dynamic model. The dynamic behaviour of the developed ride and handling model is simulated for different road conditions.Keywords: Full Vehicle Model, MBSE, Non Holonomic Constraints, Boltzmann Hamel Equation
Procedia PDF Downloads 22812299 A NoSQL Based Approach for Real-Time Managing of Robotics's Data
Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir
Abstract:
This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.Keywords: NoSQL databases, database management systems, robotics, big data
Procedia PDF Downloads 35412298 Monitoring of Latent Tree Mortality after Forest Fires: A Biosensor Approach
Authors: Alessio Giovannelli, Claudia Cocozza, Enrico Marchi, Valerio Giorgio Muzzini, Eleftherios Touloupakis, Raffaella Margherita Zampieri
Abstract:
In Mediterranean countries, forest fires are recurrent events that need to be considered as a central component of regional and global forest management strategies and biodiversity restoration programmes. The response of tree function to fire damage can vary widely, also taking into account species, season, age of the tree, etc. Trees that survive fire may have different levels of physiological functionality, which may result in reduced growth or increased susceptibility to delayed mortality. An approach to assessing irreversible physiological injury in trees could help to inform management decisions at burned sites for biodiversity restoration, environmental safety and understanding of ecosystem functional adaptations. Physiological proxies for latent tree mortality, such as cambial cell death, reduced or absent starch and soluble sugar content in C sinks, and ethanol accumulation in the phloem, are considered proxies for cell death. However, their determination requires time-consuming laboratory protocols, making the approach unfeasible as a practical option in the field, but recent findings have shown that biosensors could be usefully applied to overcome these limitations. The study will focus on the development of amperometric biosensors capable of detecting a few target molecules in the phloem and xylem (such as ethanol and glucose) that have recently been identified as proxies for latent tree mortality. The results of a specific experiment on a stand of Pinus pinaster subjected to prescribed fire are reported.Keywords: enzymes, glucose, ethanol, prescribed fires
Procedia PDF Downloads 1712297 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach
Authors: M. Zamurad Shah, M. Kemal Ozgoren, Raza Samar
Abstract:
This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances.Keywords: unmanned aerial vehicles, sliding mode control, 3D guidance, nonlinear sliding manifolds
Procedia PDF Downloads 45112296 An Experimental Approach to the Influence of Tipping Points and Scientific Uncertainties in the Success of International Fisheries Management
Authors: Jules Selles
Abstract:
The Atlantic and Mediterranean bluefin tuna fishery have been considered as the archetype of an overfished and mismanaged fishery. This crisis has demonstrated the role of public awareness and the importance of the interactions between science and management about scientific uncertainties. This work aims at investigating the policy making process associated with a regional fisheries management organization. We propose a contextualized computer-based experimental approach, in order to explore the effects of key factors on the cooperation process in a complex straddling stock management setting. Namely, we analyze the effects of the introduction of a socio-economic tipping point and the uncertainty surrounding the estimation of the resource level. Our approach is based on a Gordon-Schaefer bio-economic model which explicitly represents the decision making process. Each participant plays the role of a stakeholder of ICCAT and represents a coalition of fishing nations involved in the fishery and decide unilaterally a harvest policy for the coming year. The context of the experiment induces the incentives for exploitation and collaboration to achieve common sustainable harvest plans at the Atlantic bluefin tuna stock scale. Our rigorous framework allows testing how stakeholders who plan the exploitation of a fish stock (a common pool resource) respond to two kinds of effects: i) the inclusion of a drastic shift in the management constraints (beyond a socio-economic tipping point) and ii) an increasing uncertainty in the scientific estimation of the resource level.Keywords: economic experiment, fisheries management, game theory, policy making, Atlantic Bluefin tuna
Procedia PDF Downloads 25312295 The Current Ways of Thinking Mild Traumatic Brain Injury and Clinical Practice in a Trauma Hospital: A Pilot Study
Authors: P. Donnelly, G. Mitchell
Abstract:
Traumatic Brain Injury (TBI) is a major contributor to the global burden of disease; despite its ubiquity, there is significant variation in diagnosis, prognosis, and treatment between clinicians. This study aims to examine the spectrum of approaches that currently exist at a Level 1 Trauma Centre in Australasia by surveying Emergency Physicians and Neurosurgeons on those aspects of mTBI. A pilot survey of 17 clinicians (Neurosurgeons, Emergency Physicians, and others who manage patients with mTBI) at a Level 1 Trauma Centre in Brisbane, Australia, was conducted. The objective of this study was to examine the importance these clinicians place on various elements in their approach to the diagnosis, prognostication, and treatment of mTBI. The data were summarised, and the descriptive statistics reported. Loss of consciousness and post-traumatic amnesia were rated as the most important signs or symptoms in diagnosing mTBI (median importance of 8). MRI was the most important imaging modality in diagnosing mTBI (median importance of 7). ‘Number of the Previous TBIs’ and Intracranial Injury on Imaging’ were rated as the most important elements for prognostication (median importance of 9). Education and reassurance were rated as the most important modality for treating mTBI (median importance of 7). There was a statistically insignificant variation between the specialties as to the importance they place on each of these components. In this Australian tertiary trauma center, there appears to be variation in how clinicians approach mTBI. This study is underpowered to state whether this is between clinicians within a specialty or a trend between specialties. This variation is worthwhile in investigating as a step toward a unified approach to diagnosing, prognosticating, and treating this common pathology.Keywords: mild traumatic brain injury, adult, clinician, survey
Procedia PDF Downloads 13012294 Recursive Doubly Complementary Filter Design Using Particle Swarm Optimization
Authors: Ju-Hong Lee, Ding-Chen Chung
Abstract:
This paper deals with the optimal design of recursive doubly complementary (DC) digital filter design using a metaheuristic based optimization technique. Based on the theory of DC digital filters using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the phase response errors of the designed DAFs. To deal with the stability of the recursive DC filters during the design process, we can either impose some necessary constraints on the phases of the recursive DAFs. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a population based stochastic optimization approach. The resulting DC digital filters can possess satisfactory frequency response. Simulation results are presented for illustration and comparison.Keywords: doubly complementary, digital all-pass filter, weighted least squares algorithm, particle swarm optimization
Procedia PDF Downloads 68812293 Numerical Solutions of an Option Pricing Rainfall Derivatives Model
Authors: Clarinda Vitorino Nhangumbe, Ercília Sousa
Abstract:
Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data.Keywords: finite differences method, ornstein-uhlenbeck process, partial differential equations approach, rainfall derivatives
Procedia PDF Downloads 10512292 A Framework for Successful TQM Implementation and Its Effect on the Organizational Sustainability Development
Authors: Redha Elhuni, M. Munir Ahmad
Abstract:
The main purpose of this research is to construct a generic model for successful implementation of Total Quality Management (TQM) in oil sector, and to find out the effects of this model on the organizational sustainability development (OSD) performance of Libyan oil and gas companies using the structured equation modeling (SEM) approach. The research approach covers both quantitative and qualitative methods. A questionnaire was developed in order to identify the quality factors that are seen by Libyan oil and gas companies to be critical to the success of TQM implementation. Hypotheses were developed to evaluate the impact of TQM implementation on O SD. Data analysis reveals that there is a significant positive effect of the TQM implementation on OSD. 24 quality factors are found to be critical and absolutely essential for successful TQM implementation. The results generated a structure of the TQMSD implementation framework based on the four major road map constructs (Top management commitment, employee involvement and participation, customer-driven processes, and continuous improvement culture).Keywords: total quality management, critical success factors, oil and gas, organizational sustainability development (SD), Libya
Procedia PDF Downloads 27312291 Immiscible Polymer Blends with Controlled Nanoparticle Location for Excellent Microwave Absorption: A Compartmentalized Approach
Authors: Sourav Biswas, Goutam Prasanna Kar, Suryasarathi Bose
Abstract:
In order to obtain better materials, control in the precise location of nanoparticles is indispensable. It was shown here that ordered arrangement of nanoparticles, possessing different characteristics (electrical/magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiations, the key parameters i.e. high electrical conductivity and large dielectric/magnetic loss are targeted here using a conducting inclusion [multiwall carbon nanotubes, MWNTs]; ferroelectric nanostructured material with associated relaxations in the GHz frequency [barium titanate, BT]; and a loss ferromagnetic nanoparticles [nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs was modified using an electron acceptor molecule; a derivative of perylenediimide, which facilitates π-π stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, ordered arrangement can be tailored. To accomplish this, both BT and NF was first hydroxylated followed by introducing amine-terminal groups on the surface. The latter facilitated in nucleophilic substitution reaction with PC and resulted in their precise location. In this study, we have shown for the first time that by compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection loss was ca. -18 dB (for MWNT/BT mixture) and -29 dB (for MWNT/NF mixture), and the shielding was primarily through reflection. Interestingly, by adopting the compartmentalized approach where in, the lossy materials were in the PC phase and the conducting inclusion (MWNT) in PVDF, an outstanding reflection loss of ca. -57 dB (for BT and MWNT combination) and -67 dB (for NF and MWNT combination) was noted and the shielding was primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.Keywords: barium titanate, EMI shielding, MWNTs, nickel ferrite
Procedia PDF Downloads 44712290 An Abductive Approach to Policy Analysis: Policy Analysis as Informed Guessing
Authors: Adrian W. Chew
Abstract:
This paper argues that education policy analysis tends to be steered towards empiricist oriented approaches, which place emphasis on objective and measurable data. However, this paper argues that empiricist oriented approaches are generally based on inductive and/or deductive reasoning, which are unable to generate new ideas/knowledge. This paper will outline the logical structure of induction, deduction, and abduction, and argues that only abduction provides possibilities for the creation of new ideas/knowledge. This paper proposes the neologism of ‘informed guessing’ as a reformulation of abduction, and also as an approach to education policy analysis. On one side, the signifier ‘informed’ encapsulates the idea that abductive policy analysis needs to be informed by descriptive conceptualization theory to be able to make relations and connections between, and within, observed phenomenon and unobservable general structures. On the other side, the signifier ‘guessing’ captures the cyclical and unsystematic process of abduction. This paper will end with a brief example of utilising ‘informed guessing’ for a policy analysis of school choice lotteries in the United States.Keywords: abductive reasoning, empiricism, informed guessing, policy analysis
Procedia PDF Downloads 35212289 Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach
Authors: Mohammed H. Rady, Mohd Sukri Mustapa, S Shamsudin, M. A. Lajis, A. Wagiman
Abstract:
The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses.Keywords: AA6061, density, DOE, hot extrusion, microhardness
Procedia PDF Downloads 34912288 Analysis of Fault Tolerance on Grid Computing in Real Time Approach
Authors: Parampal Kaur, Deepak Aggarwal
Abstract:
In the computational Grid, fault tolerance is an imperative issue to be considered during job scheduling. Due to the widespread use of resources, systems are highly prone to errors and failures. Hence, fault tolerance plays a key role in the grid to avoid the problem of unreliability. Scheduling the task to the appropriate resource is a vital requirement in computational Grid. The fittest resource scheduling algorithm searches for the appropriate resource based on the job requirements, in contrary to the general scheduling algorithms where jobs are scheduled to the resources with best performance factor. The proposed method is to improve the fault tolerance of the fittest resource scheduling algorithm by scheduling the job in coordination with job replication when the resource has low reliability. Based on the reliability index of the resource, the resource is identified as critical. The tasks are scheduled based on the criticality of the resources. Results show that the execution time of the tasks is comparatively reduced with the proposed algorithm using real-time approach rather than a simulator.Keywords: computational grid, fault tolerance, task replication, job scheduling
Procedia PDF Downloads 43612287 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach
Authors: D. Tedesco, G. Feletti, P. Trucco
Abstract:
The present study aims to develop a Decision Support System (DSS) to support the operational decision of the Emergency Medical Service (EMS) regarding the assignment of medical emergency requests to Emergency Departments (ED). In the literature, this problem is also known as “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies are mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a request. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the transport time and release the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs, considering information relating to the subsequent phases of the process, such as the case-mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to evaluate different hospital selection policies. Therefore, the next steps of the research consisted of the development of a general simulation architecture, its implementation in the AnyLogic software and its validation on a realistic dataset. The hospital selection policy that produced the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, which is based on a retrospective estimate of the TTP, and a dynamic approach, which is based on a predictive estimate of the TTP determined with a constantly updated Winters model. Findings reveal that considering the minimization of TTP as a hospital selection policy raises several benefits. It allows to significantly reduce service throughput times in the ED with a minimum increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case-mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms of TTP estimation than a retrospective approach but entails a more difficult application. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.Keywords: discrete event simulation, emergency medical services, forecast model, hospital selection
Procedia PDF Downloads 9012286 Software User Experience Enhancement through User-Centered Design and Co-design Approach
Authors: Shan Wang, Fahad Alhathal, Hari Subramanian
Abstract:
User-centered design skills play an important role in crafting a positive and intuitive user experience for software applications. Embracing a user-centric design approach involves understanding the needs, preferences, and behaviors of the end-users throughout the design process. This mindset not only enhances the usability of the software but also fosters a deeper connection between the digital product and its users. This paper encompasses a 6-month knowledge exchange collaboration project between an academic institution and an external industry in 2023 in the UK; it aims to improve the user experience of a digital platform utilized for a knowledge management tool, to understand users' preferences for features, identify sources of frustration, and pinpoint areas for enhancement. This research conducted one of the most effective methods to implement user-centered design through co-design workshops for testing user onboarding experiences that involve the active participation of users in the design process. More specifically, in January 2023, we organized eight co-design workshops with a diverse group of 11 individuals. Throughout these co-design workshops, we accumulated a total of 11 hours of qualitative data in both video and audio formats. Subsequently, we conducted an analysis of user journeys, identifying common issues and potential areas for improvement within three insights. This analysis was pivotal in guiding the knowledge management software in prioritizing feature enhancements and design improvements. Employing a user-centered design thinking process, we developed a series of graphic design solutions in collaboration with the software management tool company. These solutions were targeted at refining onboarding user experiences, workplace interfaces, and interactive design. Some of these design solutions were translated into tangible interfaces for the knowledge management tool. By actively involving users in the design process and valuing their input, developers can create products that are not only functional but also resonate with the end-users, ultimately leading to greater success in the competitive software landscape. In conclusion, this paper not only contributes insights into designing onboarding user experiences for software within a co-design approach but also presents key theories on leveraging the user-centered design process in software design to enhance overall user experiences.Keywords: user experiences design, user centered design, co-design approach, knowledge management tool
Procedia PDF Downloads 812285 Money Laundering Risk Assessment in the Banking Institutions: An Experimental Approach
Authors: Yusarina Mat-Isa, Zuraidah Mohd-Sanusi, Mohd-Nizal Haniff, Paul A. Barnes
Abstract:
In view that money laundering has become eminent for banking institutions, it is an obligation for the banking institutions to adopt a risk-based approach as the integral component of the accepted policies on anti-money laundering. In doing so, those involved with the banking operations are the most critical group of personnel as these are the people who deal with the day-to-day operations of the banking institutions and are obligated to form a judgement on the level of impending risk. This requirement is extended to all relevant banking institutions staff, such as tellers and customer account representatives for them to identify suspicious customers and escalate it to the relevant authorities. Banking institutions staffs, however, face enormous challenges in identifying and distinguishing money launderers from other legitimate customers seeking genuine banking transactions. Banking institutions staffs are mostly educated and trained with the business objective in mind to serve the customers and are not trained to be “detectives with a detective’s power of observation”. Despite increasing awareness as well as trainings conducted for the banking institutions staff, their competency in assessing money laundering risk is still insufficient. Several gaps have prompted this study including the lack of behavioural perspectives in the assessment of money laundering risk in the banking institutions. Utilizing experimental approach, respondents are randomly assigned within a controlled setting with manipulated situations upon which judgement of the respondents is solicited based on various observations related to the situations. The study suggests that it is imperative that informed judgement is exercised in arriving at the decision to proceed with the banking services required by the customers. Judgement forms a basis of opinion for the banking institution staff to decide if the customers posed money laundering risk. Failure to exercise good judgement could results in losses and absorption of unnecessary risk into the banking institutions. Although the banking institutions are exposed with choices of automated solutions in assessing money laundering risk, the human factor in assessing the risk is indispensable. Individual staff in the banking institutions is the first line of defence who are responsible for screening the impending risk of any customer soliciting for banking services. At the end of the spectrum, the individual role involvement on the subject of money laundering risk assessment is not a substitute for automated solutions as human judgement is inimitable.Keywords: banking institutions, experimental approach, money laundering, risk assessment
Procedia PDF Downloads 26712284 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model
Authors: Didier Auroux, Vladimir Groza
Abstract:
This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization
Procedia PDF Downloads 31612283 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility
Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari
Abstract:
Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.Keywords: energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach
Procedia PDF Downloads 27712282 Using Heat-Mask in the Thermoforming Machine for Component Positioning in Thermoformed Electronics
Authors: Behnam Madadnia
Abstract:
For several years, 3D-shaped electronics have been rising, with many uses in home appliances, automotive, and manufacturing. One of the biggest challenges in the fabrication of 3D shape electronics, which are made by thermoforming, is repeatable and accurate component positioning, and typically there is no control over the final position of the component. This paper aims to address this issue and present a reliable approach for guiding the electronic components in the desired place during thermoforming. We have proposed a heat-control mask in the thermoforming machine to control the heating of the polymer, not allowing specific parts to be formable, which can assure the conductive traces' mechanical stability during thermoforming of the substrate. We have verified our approach's accuracy by applying our method on a real industrial semi-sphere mold for positioning 7 LEDs and one touch sensor. We measured the LEDs' position after thermoforming to prove the process's repeatability. The experiment results demonstrate that the proposed method is capable of positioning electronic components in thermoformed 3D electronics with high precision.Keywords: 3D-shaped electronics, electronic components, thermoforming, component positioning
Procedia PDF Downloads 9712281 A Hybrid Pareto-Based Swarm Optimization Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid particle swarm optimization algorithm is proposed for the multi-objective flexible job shop scheduling problem that is very important and hard combinatorial problem. The Pareto approach is used for solving the multi-objective problem. Several new local search heuristics are integrated into an algorithm based on the critical block concept to enhance the performance of the algorithm. The algorithm is compared with the recently published multi-objective algorithms based on benchmarks selected from the literature. Several metrics are used for quantifying performance and comparison of the achieved solutions. The algorithms are also compared based on the Weighting summation of objectives approach. The proposed algorithm can find the Pareto solutions more efficiently than the compared algorithms in less computational time.Keywords: swarm-based optimization, local search, Pareto optimality, flexible job shop scheduling, multi-objective optimization
Procedia PDF Downloads 368