Search results for: real estate prediction
5709 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport
Authors: Dominic Wentworth-Linton, Shian Gao
Abstract:
This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.Keywords: CFD simulation, Internal combustion engine, Intake system, Dynamometer test
Procedia PDF Downloads 2835708 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review
Authors: D. Vidhyaprakash, A. Elango
Abstract:
In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.Keywords: wheeled mobile robot, terrain, wheel slippage, odometryerror, trajectory
Procedia PDF Downloads 2845707 Training for Safe Tree Felling in the Forest with Symmetrical Collaborative Virtual Reality
Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti
Abstract:
One of the most common pieces of equipment still used today for pruning, felling, and processing trees is the chainsaw in forestry. However, chainsaw use highlights dangers and one of the highest rates of accidents in both professional and non-professional work. Felling is proportionally the most dangerous phase, both in severity and frequency, because of the risk of being hit by the plant the operator wants to cut down. To avoid this, a correct sequence of chainsaw cuts must be taught concerning the different conditions of the tree. Virtual reality (VR) makes it possible to virtually simulate chainsaw use without danger of injury. The limitations of the existing applications are as follow. The existing platforms are not symmetrical collaborative because the trainee is only in virtual reality, and the trainer can only see the virtual environment on a laptop or PC, and this results in an inefficient teacher-learner relationship. Therefore, most applications only involve the use of a virtual chainsaw, and the trainee thus cannot feel the real weight and inertia of a real chainsaw. Finally, existing applications simulate only a few cases of tree felling. The objectives of this research were to implement and test a symmetrical collaborative training application based on VR and mixed reality (MR) with the overlap between real and virtual chainsaws in MR. The research and training platform was developed for the Meta quest 2 head-mounted display. The research and training platform application is based on the Unity 3D engine, and Present Platform Interaction SDK (PPI-SDK) developed by Meta. PPI-SDK avoids the use of controllers and enables hand tracking and MR. With the combination of these two technologies, it was possible to overlay a virtual chainsaw with a real chainsaw in MR and synchronize their movements in VR. This ensures that the user feels the weight of the actual chainsaw, tightens the muscles, and performs the appropriate movements during the test allowing the user to learn the correct body posture. The chainsaw works only if the right sequence of cuts is made to felling the tree. Contact detection is done by Unity's physics system, which allows the interaction of objects that simulate real-world behavior. Each cut of the chainsaw is defined by a so-called collider, and the felling of the tree can only occur if the colliders are activated in the right order simulating a safe technique felling. In this way, the user can learn how to use the chainsaw safely. The system is also multiplayer, so the student and the instructor can experience VR together in a symmetrical and collaborative way. The platform simulates the following tree-felling situations with safe techniques: cutting the tree tilted forward, cutting the medium-sized tree tilted backward, cutting the large tree tilted backward, sectioning the trunk on the ground, and cutting branches. The application is being evaluated on a sample of university students through a special questionnaire. The results are expected to test both the increase in learning compared to a theoretical lecture and the immersive and telepresence of the platform.Keywords: chainsaw, collaborative symmetric virtual reality, mixed reality, operator training
Procedia PDF Downloads 1075706 Solving of Types Mathematical Routine and Non-Routine Problems in Algebra
Authors: Verónica Díaz Quezada
Abstract:
The importance given to the development of the problem solving skill and the requirement to solve problems framed in mathematical or real life contexts, in practice, they are not evidence in relation to the teaching of proportional variations. This qualitative and descriptive study aims to (1) to improve problem solving ability of high school students in Chile, (ii) to elaborate and describe a didactic intervention strategy based on learning situations in proportional variations, focused on solving types of routine problems of various contexts and non-routine problems. For this purpose, participant observation was conducted, test of mathematics problems and an opinion questionnaire to thirty-six high school students. Through the results, the highest academic performance is evidenced in the routine problems of purely mathematical context, realistic, fantasy context, and non-routine problems, except in the routine problems of real context and compound proportionality problems. The results highlight the need to consider in the curriculum different types of problems in the teaching of mathematics that relate the discipline to everyday life situationsKeywords: algebra, high school, proportion variations, nonroutine problem solving, routine problem solving
Procedia PDF Downloads 1405705 Clinical Training Simulation Experience of Medical Sector Students
Authors: Tahsien Mohamed Okasha
Abstract:
Simulation is one of the emerging educational strategies that depend on the creation of scenarios to imitate what could happen in real life. At the time of COVID, we faced big obstacles in medical education, specially the clinical part and how we could apply it, the simulation was the golden key. Simulation is a very important tool of education for medical sector students, through creating a safe, changeable, quiet environment with less anxiety level for students to practice and to have repeated trials on their competencies. That impacts the level of practice, achievement, and the way of acting in real situations and experiences. A blind Random sample of students from different specialties and colleges who came and finished their training in an integrated environment was collected and tested, and the responses were graded from (1-5). The results revealed that 77% of the studied subjects agreed that dealing and interacting with different medical sector candidates in the same place was beneficial. 77% of the studied subjects agreed that simulations were challenging in thinking and decision-making skills .75% agreed that using high-fidelity manikins was helpful. 75% agree .76% agreed that working in a safe, prepared environment is helpful for realistic situations.Keywords: simulation, clinical training, education, medical sector students
Procedia PDF Downloads 295704 Mentoring in Translation: A Tool for Future Translators
Authors: Ana Sofia Saldanha
Abstract:
The globalization is changing the translation world day after day, year after year. The need to know more about new technologies, clients, companies and social networks is becoming more and more demanding and competitive. The recently graduated translators usually do not know where to go, what to do or even who to contact to start their careers in translation. It is well known that there are innumerous webinars, books, blogs, webpages and even Facebook pages indicating what to do, what not to do, rates, how your CV should look like, etc. but are these pieces of advice of real translators? Translators, who work daily with clients, who understand their demands, requests, questions? As far as today`s trends, the answer is NO. Most of these pieces of advice are just theoretical and far away from the real translation world. Therefore, mentoring is becoming a very important tool to help and guide new translators starting their career. An effective and well-oriented mentoring is a powerful way to orient these translators on how to create their CVs, where to send CVs, how to approach clients, how to answer emails and how to negotiate rates in an efficient way. Mentoring is crucial when properly delivered by professional and experienced translators, to help developing careers. The advice and orientation sessions are almost a 'weapon' to destroy the barriers created by opinions, by influences or even by universities. This new trend is the future path of new translators and is the future of the translation industry and professionals, however minds and spirits need to be opened and engaged in this new way of developing skills.Keywords: mentoring, translation, translators, orientation, professional path
Procedia PDF Downloads 1795703 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 555702 The Prediction of Evolutionary Process of Coloured Vision in Mammals: A System Biology Approach
Authors: Shivani Sharma, Prashant Saxena, Inamul Hasan Madar
Abstract:
Since the time of Darwin, it has been considered that genetic change is the direct indicator of variation in phenotype. But a few studies in system biology in the past years have proposed that epigenetic developmental processes also affect the phenotype thus shifting the focus from a linear genotype-phenotype map to a non-linear G-P map. In this paper, we attempt at explaining the evolution of colour vision in mammals by taking LWS/ Long-wave sensitive gene under consideration.Keywords: evolution, phenotypes, epigenetics, LWS gene, G-P map
Procedia PDF Downloads 5215701 Intuitive Decision Making When Facing Risks
Authors: Katharina Fellnhofer
Abstract:
The more information and knowledge that technology provides, the more important are profoundly human skills like intuition, the skill of using nonconscious information. As our world becomes more complex, shaken by crises, and characterized by uncertainty, time pressure, ambiguity, and rapidly changing conditions, intuition is increasingly recognized as a key human asset. However, due to methodological limitations of sample size or time frame or a lack of real-world or cross-cultural scope, precisely how to measure intuition when facing risks on a nonconscious level remains unclear. In light of the measurement challenge related to intuition’s nonconscious nature, a technique is introduced to measure intuition via hidden images as nonconscious additional information to trigger intuition. This technique has been tested in a within-subject fully online design with 62,721 real-world investment decisions made by 657 subjects in Europe and the United States. Bayesian models highlight the technique’s potential to measure skill at using nonconscious information for conscious decision making. Over the long term, solving the mysteries of intuition and mastering its use could be of immense value in personal and organizational decision-making contexts.Keywords: cognition, intuition, investment decisions, methodology
Procedia PDF Downloads 865700 Challenges in the Management of Her2 Neu Positive Breast Cancer Patients: Real World Data from India
Authors: Praveen Adusumilli, Meher Lakshmi Konatam, Sadashivudu Gundeti, Stalin Bala
Abstract:
The invention of trastuzumab has changed the treatment of breast cancer and lives of many patients all over the world. Despite many patients getting benefitted from the drug, it is out of reach for most of the patients. There is very limited real world data regarding the epidemiology and clinical outcome of Her2neu positive breast cancer patients. Materials and Methods: This is a retrospective analysis of breast cancer patients presenting to a tertiary care cancer centre in Southern India from 2007 to2013. All early and locally advanced breast cancer patients, who were Her2neu 3+ on IHC are included in the study and evaluated in terms of epidemiology, 3-year disease free survival (DFS)and 5-year overall survival(OS). Chemotherapy regimens used were-FAC 6 cycles or AC 4 cycles followed by 12 cycles of weekly paclitaxel . Trastuzumab was given after 6 cycles of FAC or weekly with paclitaxel followed by 3weekly maintenance until 1 year. Results: Over the period of this study there were 885 newly diagnosed cases of carcinoma breast, of which 242 (27%) were Her2neu positive, 360(40%) were hormone receptor positive, and 212(24%) were triple negative. A total of 71(8%) were Her2neu equivocal of which only 10 patients got FISH test done. Of the 212 newly diagnosed patients, only 74 (29%) opted to have standard of care therapy with trastuzumab at our centre, out of which 52(24%), 8(3%), received under insurance, paying basis respectively. 14(9%) patients received the care as part of clinical trial program (ALTTO trial). 7 (9.72%) patients developed decrease of ejection fraction by greater than 10%, requiring stoppage of trastuzumab out of which 5 were restarted in 2 months. Patients receiving trastuzumab along with chemotherapy had longer 3year DFS 92% vs. 60% (p value<0.0001) when compared to chemotherapy alone. 5 year OS was 87% vs 44% (p-value <0.0001) compared to chemotherapy alone. Conclusion: Trastuzumab with chemotherapy improves the DFS and OS in Her2neu positive patients. The biggest constraint is the cost of the treatment and absence of universal health security net to treat all patients with this diagnosis.Keywords: breast cancer, Her 2 neu positive, real world data, Trastuzumab
Procedia PDF Downloads 1695699 Real-World Prevalence of Musculoskeletal Disorders in Nigeria
Authors: F. Fatoye, C. E. Mbada, T. Gebrye, A. O. Ogunsola, C. Fatoye, O. Oyewole
Abstract:
Musculoskeletal disorders (MSDs) are a major cause of pain and disability. It is likely to become a greater economic and public health burden that is unnecessary. Thus, reliable prevalence figures are important for both clinicians and policy-makers to plan health care needs for those affected with the disease. This study estimated hospital based real-world prevalence of MSDs in Nigeria. A review of medical charts for adult patients attending Physiotherapy Outpatient Clinic at the Obafemi Awolowo University Teaching Hospitals Complex, Osun State, Nigeria between 2009 and 2018 was carried out to identify common MSDs including low back pain (LBP), cervical spondylosis (CSD), post immobilization stiffness (PIS), sprain, osteoarthritis (OA), and other conditions. Occupational class of the patients was determined using the International Labour Classification (ILO). Data were analysed using descriptive statistics of frequency and percentages. Overall, medical charts of 3,340 patients were reviewed within the span of ten years (2009 to 2018). Majority of the patients (62.8%) were in the middle class, and the remaining were in low class (25.1%) and high class (10.5%) category. An overall prevalence of 47.35% of MSD was found within the span of ten years. Of this, the prevalence of LBP, CSD, PIS, sprain, OA, and other conditions was 21.6%, 10%, 18.9%, 2%, 6.3%, and 41.3%, respectively. The highest (14.2%) and lowest (10.5%) prevalence of MSDs was recorded in the year of 2012 and 2018, respectively. The prevalence of MSDs is considerably high among Nigerian patients attending outpatient a physiotherapy clinic. The high prevalence of MSDs underscores the need for clinicians and decision makers to put in place appropriate strategies to reduce the prevalence of these conditions. In addition, they should plan and evaluate healthcare services to improve the health outcomes of patients with MSDs. Further studies are required to determine the economic burden of the condition and examine the clinical and cost-effectiveness of physiotherapy interventions for patients with MSDs.Keywords: musculoskeletal disorders, Nigeria, prevalence, real world
Procedia PDF Downloads 1725698 Novel Recommender Systems Using Hybrid CF and Social Network Information
Authors: Kyoung-Jae Kim
Abstract:
Collaborative Filtering (CF) is a popular technique for the personalization in the E-commerce domain to reduce information overload. In general, CF provides recommending items list based on other similar users’ preferences from the user-item matrix and predicts the focal user’s preference for particular items by using them. Many recommender systems in real-world use CF techniques because it’s excellent accuracy and robustness. However, it has some limitations including sparsity problems and complex dimensionality in a user-item matrix. In addition, traditional CF does not consider the emotional interaction between users. In this study, we propose recommender systems using social network and singular value decomposition (SVD) to alleviate some limitations. The purpose of this study is to reduce the dimensionality of data set using SVD and to improve the performance of CF by using emotional information from social network data of the focal user. In this study, we test the usability of hybrid CF, SVD and social network information model using the real-world data. The experimental results show that the proposed model outperforms conventional CF models.Keywords: recommender systems, collaborative filtering, social network information, singular value decomposition
Procedia PDF Downloads 2895697 Band Gap Tuning Based on Adjustable Stiffness of Local Resonators
Authors: Hossein Alimohammadi, Kristina Vassiljeva, Hassan HosseinNia, Eduard Petlenkov
Abstract:
This research article discusses the mechanisms for bandgap tuning of beam-type resonators to achieve broadband vibration suppression through adjustable stiffness. The method involves changing the center of mass of the cantilever-type resonator to achieve piezo-free tuning of stiffness. The study investigates the effect of the center of masses variation (δ) of attached masses on the bandgap and vibration suppression performance of a non-uniform beam-type resonator within a phononic structure. The results suggest that the cantilever-type resonator beam can be used to achieve tunability and real-time control and indicate that varying δ significantly impacts the bandgap and transmittance response. Additionally, the research explores the use of the first and second modes of resonators for tunability and real-time control. These findings examine the feasibility of this approach, demonstrate the potential for improving resonator performance, and provide insights into the design and optimization of metamaterial beams for vibration suppression applications.Keywords: bandgap, adjustable stiffness, spatial variation, tunability
Procedia PDF Downloads 855696 Reducing the Computational Overhead of Metaheuristics Parameterization with Exploratory Landscape Analysis
Authors: Iannick Gagnon, Alain April
Abstract:
The performance of a metaheuristic on a given problem class depends on the class itself and the choice of parameters. Parameter tuning is the most time-consuming phase of the optimization process after the main calculations and it often nullifies the speed advantage of metaheuristics over traditional optimization algorithms. Several off-the-shelf parameter tuning algorithms are available, but when the objective function is expensive to evaluate, these can be prohibitively expensive to use. This paper presents a surrogate-like method for finding adequate parameters using fitness landscape analysis on simple benchmark functions and real-world objective functions. The result is a simple compound similarity metric based on the empirical correlation coefficient and a measure of convexity. It is then used to find the best benchmark functions to serve as surrogates. The near-optimal parameter set is then found using fractional factorial design. The real-world problem of NACA airfoil lift coefficient maximization is used as a preliminary proof of concept. The overall aim of this research is to reduce the computational overhead of metaheuristics parameterization.Keywords: metaheuristics, stochastic optimization, particle swarm optimization, exploratory landscape analysis
Procedia PDF Downloads 1535695 Digimesh Wireless Sensor Network-Based Real-Time Monitoring of ECG Signal
Authors: Sahraoui Halima, Dahani Ameur, Tigrine Abedelkader
Abstract:
DigiMesh technology represents a pioneering advancement in wireless networking, offering cost-effective and energy-efficient capabilities. Its inherent simplicity and adaptability facilitate the seamless transfer of data between network nodes, extending the range and ensuring robust connectivity through autonomous self-healing mechanisms. In light of these advantages, this study introduces a medical platform harnessed with DigiMesh wireless network technology characterized by low power consumption, immunity to interference, and user-friendly operation. The primary application of this platform is the real-time, long-distance monitoring of Electrocardiogram (ECG) signals, with the added capacity for simultaneous monitoring of ECG signals from multiple patients. The experimental setup comprises key components such as Raspberry Pi, E-Health Sensor Shield, and Xbee DigiMesh modules. The platform is composed of multiple ECG acquisition devices labeled as Sensor Node 1 and Sensor Node 2, with a Raspberry Pi serving as the central hub (Sink Node). Two communication approaches are proposed: Single-hop and multi-hop. In the Single-hop approach, ECG signals are directly transmitted from a sensor node to the sink node through the XBee3 DigiMesh RF Module, establishing peer-to-peer connections. This approach was tested in the first experiment to assess the feasibility of deploying wireless sensor networks (WSN). In the multi-hop approach, two sensor nodes communicate with the server (Sink Node) in a star configuration. This setup was tested in the second experiment. The primary objective of this research is to evaluate the performance of both Single-hop and multi-hop approaches in diverse scenarios, including open areas and obstructed environments. Experimental results indicate the DigiMesh network's effectiveness in Single-hop mode, with reliable communication over distances of approximately 300 meters in open areas. In the multi-hop configuration, the network demonstrated robust performance across approximately three floors, even in the presence of obstacles, without the need for additional router devices. This study offers valuable insights into the capabilities of DigiMesh wireless technology for real-time ECG monitoring in healthcare applications, demonstrating its potential for use in diverse medical scenarios.Keywords: DigiMesh protocol, ECG signal, real-time monitoring, medical platform
Procedia PDF Downloads 795694 Profile of Internet and Smartphone Overuse Based on Internet Usage Needs
Authors: Yeoju Chung
Abstract:
Adolescents internet and smartphone addiction are increasing in Korea. But differences between internet addiction and smartphone addiction have been researched in these days. The main objective of this article is to explore the presence of clusters within a sample of adolescents based on dimensions associated with addiction and internet usage needs. The sample consists of 617 adolescents in the 14-19 year age group who were recruited in Korea A cluster analysis identified four groups of participants: internet overuse(IO), smartphone overuse(SO), both overuse(B) and normal(N) use group. MANOVA analysis based on internet usage showed that there are differences among four groups in internet usage needs. IO has higher cyber self-seeking needs and emotion and thought expression needs than SO. SO has higher real relationship and life needs with cyberworld than IO, B, and N. B has the highest cyber self-seeking needs and emotion and thought expression needs, however, game fun seeking needs is the highest in IO. These results support that IO seeks game fun needs, SO seeks real relationship and life needs, and B seeks cyber self and expression in cyberworld.Keywords: addiction, internet, needs, smartphone
Procedia PDF Downloads 2735693 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites
Authors: Yung-Chung Chuang
Abstract:
The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics
Procedia PDF Downloads 1415692 On the System of Split Equilibrium and Fixed Point Problems in Real Hilbert Spaces
Authors: Francis O. Nwawuru, Jeremiah N. Ezeora
Abstract:
In this paper, a new algorithm for solving the system of split equilibrium and fixed point problems in real Hilbert spaces is considered. The equilibrium bifunction involves a nite family of pseudo-monotone mappings, which is an improvement over monotone operators. More so, it turns out that the solution of the finite family of nonexpansive mappings. The regularized parameters do not depend on Lipschitz constants. Also, the computations of the stepsize, which plays a crucial role in the convergence analysis of the proposed method, do require prior knowledge of the norm of the involved bounded linear map. Furthermore, to speed up the rate of convergence, an inertial term technique is introduced in the proposed method. Under standard assumptions on the operators and the control sequences, using a modified Halpern iteration method, we establish strong convergence, a desired result in applications. Finally, the proposed scheme is applied to solve some optimization problems. The result obtained improves numerous results announced earlier in this direction.Keywords: equilibrium, Hilbert spaces, fixed point, nonexpansive mapping, extragradient method, regularized equilibrium
Procedia PDF Downloads 485691 Chemical Hazards Impact on Efficiency of Energy Storage Battery and its Possible Mitigation's
Authors: Abirham Simeneh Ayalew, Seada Hussen Adem, Frie Ayalew Yimam
Abstract:
Battery energy storage has a great role on storing energy harnessed from different alternative resources and greatly benefit the power sector by supply energy back to the system during outage and regular operation in power sectors. Most of the study shows that there is an exponential increase in the quantity of lithium - ion battery energy storage system due to their power density, economical aspects and its performance. But this lithium ion battery failures resulted in fire and explosion due to its having flammable electrolytes (chemicals) which can create those hazards. Hazards happen in these energy storage system lead to minimize battery life spans or efficiency. Identifying the real cause of these hazards and its mitigation techniques can be the solution to improve the efficiency of battery technologies and the electrode materials should have high electrical conductivity, large surface area, stable structure and low resistance. This paper asses the real causes of chemical hazards, its impact on efficiency, proposed solution for mitigating those hazards associated with efficiency improvement and summery of researchers new finding related to the field.Keywords: battery energy storage, battery energy storage efficiency, chemical hazards, lithium ion battery
Procedia PDF Downloads 785690 Virtual Reality and Other Real-Time Visualization Technologies for Architecture Energy Certifications
Authors: Román Rodríguez Echegoyen, Fernando Carlos López Hernández, José Manuel López Ujaque
Abstract:
Interactive management of energy certification ratings has remained on the sidelines of the evolution of virtual reality (VR) despite related advances in architecture in other areas such as BIM and real-time working programs. This research studies to what extent VR software can help the stakeholders to better understand energy efficiency parameters in order to obtain reliable ratings assigned to the parts of the building. To evaluate this hypothesis, the methodology has included the construction of a software prototype. Current energy certification systems do not follow an intuitive data entry system; neither do they provide a simple or visual verification of the technical values included in the certification by manufacturers or other users. This software, by means of real-time visualization and a graphical user interface, proposes different improvements to the current energy certification systems that ease the understanding of how the certification parameters work in a building. Furthermore, the difficulty of using current interfaces, which are not friendly or intuitive for the user, means that untrained users usually get a poor idea of the grounds for certification and how the program works. In addition, the proposed software allows users to add further information, such as financial and CO₂ savings, energy efficiency, and an explanatory analysis of results for the least efficient areas of the building through a new visual mode. The software also helps the user to evaluate whether or not an investment to improve the materials of an installation is worth the cost of the different energy certification parameters. The evaluated prototype (named VEE-IS) shows promising results when it comes to representing in a more intuitive and simple manner the energy rating of the different elements of the building. Users can also personalize all the inputs necessary to create a correct certification, such as floor materials, walls, installations, or other important parameters. Working in real-time through VR allows for efficiently comparing, analyzing, and improving the rated elements, as well as the parameters that we must enter to calculate the final certification. The prototype also allows for visualizing the building in efficiency mode, which lets us move over the building to analyze thermal bridges or other energy efficiency data. This research also finds that the visual representation of energy efficiency certifications makes it easy for the stakeholders to examine improvements progressively, which adds value to the different phases of design and sale.Keywords: energetic certification, virtual reality, augmented reality, sustainability
Procedia PDF Downloads 1865689 Investigating the Vehicle-Bicyclists Conflicts using LIDAR Sensor Technology at Signalized Intersections
Authors: Alireza Ansariyar, Mansoureh Jeihani
Abstract:
Light Detection and Ranging (LiDAR) sensors are capable of recording traffic data including the number of passing vehicles and bicyclists, the speed of vehicles and bicyclists, and the number of conflicts among both road users. In order to collect real-time traffic data and investigate the safety of different road users, a LiDAR sensor was installed at Cold Spring Ln – Hillen Rd intersection in Baltimore City. The frequency and severity of collected real-time conflicts were analyzed and the results highlighted that 122 conflicts were recorded over a 10-month time interval from May 2022 to February 2023. By using an innovative image-processing algorithm, a new safety Measure of Effectiveness (MOE) was proposed to recognize the critical zones for bicyclists entering each zone. Considering the trajectory of conflicts, the results of the analysis demonstrated that conflicts in the northern approach (zone N) are more frequent and severe. Additionally, sunny weather is more likely to cause severe vehicle-bike conflicts.Keywords: LiDAR sensor, post encroachment time threshold (PET), vehicle-bike conflicts, a measure of effectiveness (MOE), weather condition
Procedia PDF Downloads 2365688 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning
Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü
Abstract:
This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.Keywords: automotive, chassis level control, control systems, pneumatic system control
Procedia PDF Downloads 815687 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron
Authors: Filippo Portera
Abstract:
Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.Keywords: loss, binary-classification, MLP, weights, regression
Procedia PDF Downloads 955686 Adjustable Aperture with Liquid Crystal for Real-Time Range Sensor
Authors: Yumee Kim, Seung-Guk Hyeon, Kukjin Chun
Abstract:
An adjustable aperture using a liquid crystal is proposed for real-time range detection and obtaining images simultaneously. The adjustable aperture operates as two types of aperture stops which can create two different Depth of Field images. By analyzing these two images, the distance can be extracted from camera to object. Initially, the aperture stop has large size with zero voltage. When the input voltage is applied, the aperture stop transfer to smaller size by orientational transition of liquid crystal molecules in the device. The diameter of aperture stop is 1.94mm and 1.06mm. The proposed device has low driving voltage of 7.0V and fast response time of 6.22m. Compact size aperture of 6×6×1.1 mm3 is assembled in conventional camera which contain 1/3” HD image sensor and focal length of 3.3mm that can be used in autonomous. The measured range was up to 5m. The adjustable aperture has high stability due to no mechanically moving parts. This range sensor can be applied to the various field of 3D depth map application which is the Advanced Driving Assistance System (ADAS), drones and manufacturing machine.Keywords: adjustable aperture, dual aperture, liquid crystal, ranging and imaging, ADAS, range sensor
Procedia PDF Downloads 3815685 Bayesian Estimation under Different Loss Functions Using Gamma Prior for the Case of Exponential Distribution
Authors: Md. Rashidul Hasan, Atikur Rahman Baizid
Abstract:
The Bayesian estimation approach is a non-classical estimation technique in statistical inference and is very useful in real world situation. The aim of this paper is to study the Bayes estimators of the parameter of exponential distribution under different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator (MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the problem to solve it accurately. Here the gamma prior is used as the prior distribution of exponential distribution for finding the Bayes estimator. In our study, we also used different symmetric and asymmetric loss functions such as squared error loss function, quadratic loss function, modified linear exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss function. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically.Keywords: Bayes estimator, maximum likelihood estimator (MLE), modified linear exponential (MLINEX) loss function, Squared Error (SE) loss function, non-linear exponential (NLINEX) loss function
Procedia PDF Downloads 3845684 Bringing Design Science Research Methodology into Real World Applications
Authors: Maya Jaber
Abstract:
In today's ever-changing world, organizational leaders will need to transform their organizations to meet the demands they face from employees, consumers, local and federal governments, and the global market. Change agents and leaders will need a new paradigm of thinking for creative problem solving and innovation in a time of uncertainty. A new framework that is developed from Design Science Research foundations with holistic design thinking methodologies (HTDM) and action research approaches has been developed through Dr. Jaber’s research. It combines these philosophies into a three-step process that can be utilized in practice for any sustainability, change, or project management applications. This framework was developed to assist in the pedagogy for the implementation of her holistic strategy formalized framework Integral Design Thinking (IDT). Her work focuses on real world application for the streamlining and adoption of initiatives into organizational culture transformation. This paper will discuss the foundations of this philosophy and the methods for utilization in practice developed in Dr. Jaber's research.Keywords: design science research, action research, critical thinking, design thinking, organizational transformation, sustainability management, organizational culture change
Procedia PDF Downloads 1805683 Evaluation of the Role of Circulating Long Non-Coding RNA H19 as a Promising Biomarker in Plasma of Patients with Gastric Cancer
Authors: Doaa Hashad, Amany Elbanna, Abeer Ibrahim, Gihan Khedr
Abstract:
Background: H19 is one of the long non coding RNAs (LncRNA) that is related to the progression of many diseases including cancers. This work was carried out to study the level of the long non-coding RNA; H119, in plasma of patients with gastric cancer (GC) and to assess its significance in their clinical management. Methods: A total of sixty-two participants were enrolled in the present study. The first group included thirty-two GC patients, while the second group was formed of thirty age and sex matched healthy volunteers serving as a control group. Plasma samples were used to assess H19 gene expression using real time quantitative PCR technique. Results: H19 expression was up-regulated in GC patients with positive correlation to TNM cancer stages. Conclusions: Up-regulation of H19 is closely associated with gastric cancer and correlates well with tumor staging. Convenient, efficient quantification of H19 in plasma using real time PCR technique implements its role as a potential noninvasive prognostic biomarker in gastric cancer, that predicts patient’s outcome and most importantly as a novel target in gastric cancer treatment with better performance achieved on using both CEA and H19 simultaneously.Keywords: biomarker, gastric, cancer, LncRNA
Procedia PDF Downloads 3185682 Optimizing The Residential Design Process Using Automated Technologies
Authors: Martin Georgiev, Milena Nanova, Damyan Damov
Abstract:
Architects, engineers, and developers need to analyse and implement a wide spectrum of data in different formats, if they want to produce viable residential developments. Usually, this data comes from a number of different sources and is not well structured. The main objective of this research project is to provide parametric tools working with real geodesic data that can generate residential solutions. Various codes, regulations and design constraints are described by variables and prioritized. In this way, we establish a common workflow for architects, geodesists, and other professionals involved in the building and investment process. This collaborative medium ensures that the generated design variants conform to various requirements, contributing to a more streamlined and informed decision-making process. The quantification of distinctive characteristics inherent to typical residential structures allows a systematic evaluation of the generated variants, focusing on factors crucial to designers, such as daylight simulation, circulation analysis, space utilization, view orientation, etc. Integrating real geodesic data offers a holistic view of the built environment, enhancing the accuracy and relevance of the design solutions. The use of generative algorithms and parametric models offers high productivity and flexibility of the design variants. It can be implemented in more conventional CAD and BIM workflow. Experts from different specialties can join their efforts, sharing a common digital workspace. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the building investment during its entire lifecycle.Keywords: architectural design, residential buildings, urban development, geodesic data, generative design, parametric models, workflow optimization
Procedia PDF Downloads 525681 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 845680 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik
Abstract:
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping
Procedia PDF Downloads 408