Search results for: logistics network optimization
6334 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor
Procedia PDF Downloads 1396333 Proxisch: An Optimization Approach of Large-Scale Unstable Proxy Servers Scheduling
Authors: Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen
Abstract:
Nowadays, big companies such as Google, Microsoft, which have adequate proxy servers, have perfectly implemented their web crawlers for a certain website in parallel. But due to lack of expensive proxy servers, it is still a puzzle for researchers to crawl large amounts of information from a single website in parallel. In this case, it is a good choice for researchers to use free public proxy servers which are crawled from the Internet. In order to improve efficiency of web crawler, the following two issues should be considered primarily: (1) Tasks may fail owing to the instability of free proxy servers; (2) A proxy server will be blocked if it visits a single website frequently. In this paper, we propose Proxisch, an optimization approach of large-scale unstable proxy servers scheduling, which allow anyone with extremely low cost to run a web crawler efficiently. Proxisch is designed to work efficiently by making maximum use of reliable proxy servers. To solve second problem, it establishes a frequency control mechanism which can ensure the visiting frequency of any chosen proxy server below the website’s limit. The results show that our approach performs better than the other scheduling algorithms.Keywords: proxy server, priority queue, optimization algorithm, distributed web crawling
Procedia PDF Downloads 2116332 Community Crèche Is a Measure to Prevent Child Injuries: Its Challenges and Measures for Improvement
Authors: Rabbya Ashrafi, Mohammad Tarikul Islam , Al-Amin Bhuiyan, Aminur Rahman
Abstract:
Injury is the leading killer of children in Bangladesh. Anchal (community crèche) is an effective intervention to prevent injuries among children under 5. Through the SoLiD project, 1,600 Anchals are in place in three sub-districts in Bangladesh. The objectives of the Anchal are to provide supervision and early childhood development stimulations (ECD) to the children. A locally trained caregiver supervises 20-25 children, 9 to 59 months old, from 9 a.m. to 1 p.m., six days a week. Although it was found effective, during its implementation phase several challenges were noticed. To identify challenges and means to overcome those to improve the Anchal activities. In-depth interviews were conducted with Anchal caregivers, their supervisors, and trainers. Focus group discussions were conducted with the mothers of the Anchal children. The study was conducted in the Manohardi sub-district in November 2015. Decay of knowledge and skills after 2-3 months of training, lack of formal certification and inappropriate selection of women as Anchal caregivers, and enrollment of small children (less than 12 months) were the important challenges. The reluctance of parents to send children to the Anchal at the proper time, failure to engage children in various ECD activities, ineffective conduction of parents and community leaders meeting by the Anchal caregivers, insufficient accommodation, and poor supply of logistics for children were also the important challenges. The suggestion for improvement was to recruit caregivers as per standard criteria, provide them refreshers training at three months intervals, train them on effective conduction of parents and community leaders meetings, provide a formal certificate, and ensure regular supply of logistics. The identified challenges are needed to be addressed by utilizing the suggestions obtained from the IDIs and FGDs to make the Anchal intervention more effective in preventing childhood injuries.Keywords: comunity crech, earlychildhood development, measures for improvement, childhood injury
Procedia PDF Downloads 896331 Uncertainty and Optimization Analysis Using PETREL RE
Authors: Ankur Sachan
Abstract:
The ability to make quick yet intelligent and value-added decisions to develop new fields has always been of great significance. In situations where the capital expenses and subsurface risk are high, carefully analyzing the inherent uncertainties in the reservoir and how they impact the predicted hydrocarbon accumulation and production becomes a daunting task. The problem is compounded in offshore environments, especially in the presence of heavy oils and disconnected sands where the margin for error is small. Uncertainty refers to the degree to which the data set may be in error or stray from the predicted values. To understand and quantify the uncertainties in reservoir model is important when estimating the reserves. Uncertainty parameters can be geophysical, geological, petrophysical etc. Identification of these parameters is necessary to carry out the uncertainty analysis. With so many uncertainties working at different scales, it becomes essential to have a consistent and efficient way of incorporating them into our analysis. Ranking the uncertainties based on their impact on reserves helps to prioritize/ guide future data gathering and uncertainty reduction efforts. Assigning probabilistic ranges to key uncertainties also enables the computation of probabilistic reserves. With this in mind, this paper, with the help the uncertainty and optimization process in petrel RE shows how the most influential uncertainties can be determined efficiently and how much impact so they have on the reservoir model thus helping in determining a cost effective and accurate model of the reservoir.Keywords: uncertainty, reservoir model, parameters, optimization analysis
Procedia PDF Downloads 6536330 Optimization of Wear during Dry Sliding Wear of AISI 1042 Steel Using Response Surface Methodology
Authors: Sukant Mehra, Parth Gupta, Varun Arora, Sarvoday Singh, Amit Kohli
Abstract:
The study was emphasised on dry sliding wear behavior of AISI 1042 steel. Dry sliding wear tests were performed using pin-on-disk apparatus under normal loads of 5, 7.5 and 10 kgf and at speeds 600, 750 and 900 rpm. Response surface methodology (RSM) was utilized for finding optimal values of process parameter and experiment was based on rotatable, central composite design (CCD). It was found that the wear followed linear pattern with the load and rpm. The obtained optimal process parameters have been predicted and verified by confirmation experiments.Keywords: central composite design (CCD), optimization, response surface methodology (RSM), wear
Procedia PDF Downloads 5776329 Multi Objective Optimization for Two-Sided Assembly Line Balancing
Authors: Srushti Bhatt, M. B. Kiran
Abstract:
Two-sided assembly line balancing problem is yet to be addressed simply to compete for the global market for manufacturers. The task assigned in an ordered sequence to get optimum performance of the system is known as assembly line balancing problem mainly classified as single and two sided. It is very challenging in manufacturing industries to balance two-sided assembly line, wherein the set of sequential workstations the task operations are performed in two sides of the line. The conflicting major objective in two-sided assembly line balancing problem is either to maximize /minimize the performance parameters. The present study emphases on combining different evolutionary algorithm; ant colony, Tabu search and petri net method; and compares their results of an algorithm for solving two-sided assembly line balancing problem. The concept of multi objective optimization of performance parameters is now a day adopted to make a decision involving more than one objective function to be simultaneously optimized. The optimum result can be expected among the selected methods using multi-objective optimization. The performance parameters considered in the present study are a number of workstation, slickness and smoothness index. The simulation of the assembly line balancing problem provides optimal results of classical and practical problems.Keywords: Ant colony, petri net, tabu search, two sided ALBP
Procedia PDF Downloads 2786328 Performance Estimation of Two Port Multiple-Input and Multiple-Output Antenna for Wireless Local Area Network Applications
Authors: Radha Tomar, Satish K. Jain, Manish Panchal, P. S. Rathore
Abstract:
In the presented work, inset fed microstrip patch antenna (IFMPA) based two port MIMO Antenna system has been proposed, which is suitable for wireless local area network (WLAN) applications. IFMPA has been designed, optimized for 2.4 GHz and applied for MIMO formation. The optimized parameters of the proposed IFMPA have been used for fabrication of antenna and two port MIMO in a laboratory. Fabrication of the designed MIMO antenna has been done and tested experimentally for performance parameters like Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), Directive Gain (DG), Channel Capacity Loss (CCL), Multiplexing Efficiency (ME) etc and results are compared with simulated parameters extracted with simulated S parameters to validate the results. The simulated and experimentally measured plots and numerical values of these MIMO performance parameters resembles very much with each other. This shows the success of MIMO antenna design methodology.Keywords: multiple-input and multiple-output, wireless local area network, vector network analyzer, envelope correlation coefficient
Procedia PDF Downloads 566327 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm
Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali
Abstract:
Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir
Procedia PDF Downloads 2656326 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 1996325 Plate-Laminated Slotted-Waveguide Fed 2×3 Planar Inverted F Antenna Array
Authors: Badar Muneer, Waseem Shabir, Faisal Karim Shaikh
Abstract:
Substrate Integrated waveguide based 6-element array of Planar Inverted F antenna (PIFA) has been presented and analyzed parametrically in this paper. The antenna is fed with coupled transverse slots on a plate laminated waveguide cavity to ensure wide bandwidth and simplicity of feeding network. The two-layer structure has one layer dedicated for feeding network and the top layer dedicated for radiating elements. It has been demonstrated that the presented feeding technique for feeding such class of array antennas can be far simple in structure and miniaturized in size when it comes to designing large phased array antenna systems. A good return loss and standing wave ratio of 2:1 has been achieved while maintaining properties of typical PIFA.Keywords: feeding network, laminated waveguide, PIFA, transverse slots
Procedia PDF Downloads 3116324 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 666323 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique
Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak
Abstract:
The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method
Procedia PDF Downloads 1796322 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural
Authors: Baeza S. Roberto
Abstract:
The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.Keywords: neural network, dry relaxation, knitting, linear regression
Procedia PDF Downloads 5856321 IoT: State-of-the-Art and Future Directions
Authors: Bashir Abdu Muzakkari, Aisha Umar Sulaiman, Mohamed Afendee Muhamad, Sanah Abdullahi Muaz
Abstract:
The field of the Internet of Things (IoT) is rapidly expanding and has the potential to completely change how we work, live, and interact with the world. The Internet of Things (IoT) is the term used to describe a network of networked physical objects, including machinery, vehicles, and buildings, which are equipped with electronics, software, sensors, and network connectivity. This review paper aims to provide a comprehensive overview of the current state of IoT, including its definition, key components, development history, and current applications. The paper will also discuss the challenges and opportunities presented by IoT, as well as its potential impact on various industries, such as healthcare, agriculture, and transportation. In addition, this paper will highlight the ethical and security concerns associated with IoT and the need for effective solutions to address these challenges. The paper concludes by highlighting the prospects of IoT and the directions for future research in this field.Keywords: internet of things, IoT, sensors, network
Procedia PDF Downloads 1746320 Parallel 2-Opt Local Search on GPU
Authors: Wen-Bao Qiao, Jean-Charles Créput
Abstract:
To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.Keywords: parallel 2-opt, double links, large scale TSP, GPU
Procedia PDF Downloads 6256319 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718
Authors: Pushpendra S. Bharti, S. Maheshwari
Abstract:
Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.Keywords: electric discharge machining, material removal rate, surface roughness, too wear rate, multi-response signal-to-noise ratio, multi response signal-to-noise ratio, optimization
Procedia PDF Downloads 3546318 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction
Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack
Abstract:
We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization
Procedia PDF Downloads 1066317 Mixed Integer Programing for Multi-Tier Rebate with Discontinuous Cost Function
Authors: Y. Long, L. Liu, K. V. Branin
Abstract:
One challenge faced by procurement decision-maker during the acquisition process is how to compare similar products from different suppliers and allocate orders among different products or services. This work focuses on allocating orders among multiple suppliers considering rebate. The objective function is to minimize the total acquisition cost including purchasing cost and rebate benefit. Rebate benefit is complex and difficult to estimate at the ordering step. Rebate rules vary for different suppliers and usually change over time. In this work, we developed a system to collect the rebate policies, standardized the rebate policies and developed two-stage optimization models for ordering allocation. Rebate policy with multi-tiers is considered in modeling. The discontinuous cost function of rebate benefit is formulated for different scenarios. A piecewise linear function is used to approximate the discontinuous cost function of rebate benefit. And a Mixed Integer Programing (MIP) model is built for order allocation problem with multi-tier rebate. A case study is presented and it shows that our optimization model can reduce the total acquisition cost by considering rebate rules.Keywords: discontinuous cost function, mixed integer programming, optimization, procurement, rebate
Procedia PDF Downloads 2606316 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.Keywords: animals, tools, network, semantics, small-world, resilience to damage
Procedia PDF Downloads 5476315 Nonlinear Modeling of the PEMFC Based on NNARX Approach
Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo
Abstract:
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.Keywords: PEMFC, neural network, nonlinear modeling, NNARX
Procedia PDF Downloads 3816314 Software-Defined Networking: A New Approach to Fifth Generation Networks: Security Issues and Challenges Ahead
Authors: Behrooz Daneshmand
Abstract:
Software Defined Networking (SDN) is designed to meet the future needs of 5G mobile networks. The SDN architecture offers a new solution that involves separating the control plane from the data plane, which is usually paired together. Network functions traditionally performed on specific hardware can now be abstracted and virtualized on any device, and a centralized software-based administration approach is based on a central controller, facilitating the development of modern applications and services. These plan standards clear the way for a more adaptable, speedier, and more energetic network beneath computer program control compared with a conventional network. We accept SDN gives modern inquire about openings to security, and it can significantly affect network security research in numerous diverse ways. Subsequently, the SDN architecture engages systems to effectively screen activity and analyze threats to facilitate security approach modification and security benefit insertion. The segregation of the data planes and control and, be that as it may, opens security challenges, such as man-in-the-middle attacks (MIMA), denial of service (DoS) attacks, and immersion attacks. In this paper, we analyze security threats to each layer of SDN - application layer - southbound interfaces/northbound interfaces - controller layer and data layer. From a security point of see, the components that make up the SDN architecture have a few vulnerabilities, which may be abused by aggressors to perform noxious activities and hence influence the network and its administrations. Software-defined network assaults are shockingly a reality these days. In a nutshell, this paper highlights architectural weaknesses and develops attack vectors at each layer, which leads to conclusions about further progress in identifying the consequences of attacks and proposing mitigation strategies.Keywords: software-defined networking, security, SDN, 5G/IMT-2020
Procedia PDF Downloads 1006313 Simulation and Optimization of Hybrid Energy System Autonomous PV-Diesel-Wind Power with Battery Storage for Relay Antenna Telecommunication
Authors: Tahri Toufik, Bouchachia Mohamed, Braikia Oussama
Abstract:
The objective of this work is the design and optimization of a hybrid PV-Diesel-Wind power system with storage in order to power a relay antenna telecommunication isolated in Chlef region. The aim of the simulation of this hybrid system by the HOMER software is to determine the size and the number of each element of the system and to determine the optimal technical and economic configuration using monthly average values per year for a fixed charge antenna relay telecommunication of 22kWh/d.Keywords: HOMER, hybrid, PV-diesel-wind system, relay antenna telecommunication
Procedia PDF Downloads 5176312 Multi-Criteria Optimal Management Strategy for in-situ Bioremediation of LNAPL Contaminated Aquifer Using Particle Swarm Optimization
Authors: Deepak Kumar, Jahangeer, Brijesh Kumar Yadav, Shashi Mathur
Abstract:
In-situ remediation is a technique which can remediate either surface or groundwater at the site of contamination. In the present study, simulation optimization approach has been used to develop management strategy for remediating LNAPL (Light Non-Aqueous Phase Liquid) contaminated aquifers. Benzene, toluene, ethyl benzene and xylene are the main component of LNAPL contaminant. Collectively, these contaminants are known as BTEX. In in-situ bioremediation process, a set of injection and extraction wells are installed. Injection wells supply oxygen and other nutrient which convert BTEX into carbon dioxide and water with the help of indigenous soil bacteria. On the other hand, extraction wells check the movement of plume along downstream. In this study, optimal design of the system has been done using PSO (Particle Swarm Optimization) algorithm. A comprehensive management strategy for pumping of injection and extraction wells has been done to attain a maximum allowable concentration of 5 ppm and 4.5 ppm. The management strategy comprises determination of pumping rates, the total pumping volume and the total running cost incurred for each potential injection and extraction well. The results indicate a high pumping rate for injection wells during the initial management period since it facilitates the availability of oxygen and other nutrients necessary for biodegradation, however it is low during the third year on account of sufficient oxygen availability. This is because the contaminant is assumed to have biodegraded by the end of the third year when the concentration drops to a permissible level.Keywords: groundwater, in-situ bioremediation, light non-aqueous phase liquid, BTEX, particle swarm optimization
Procedia PDF Downloads 4456311 BlueVision: A Visual Tool for Exploring a Blockchain Network
Authors: Jett Black, Jordyn Godsey, Gaby G. Dagher, Steve Cutchin
Abstract:
Despite the growing interest in distributed ledger technology, many data visualizations of blockchain are limited to monotonous tabular displays or overly abstract graphical representations that fail to adequately educate individuals on blockchain components and their functionalities. To address these limitations, it is imperative to develop data visualizations that offer not only comprehensive insights into these domains but education as well. This research focuses on providing a conceptual understanding of the consensus process that underlies blockchain technology. This is accomplished through the implementation of a dynamic network visualization and an interactive educational tool called BlueVision. Further, a controlled user study is conducted to measure the effectiveness and usability of BlueVision. The findings demonstrate that the tool represents significant advancements in the field of blockchain visualization, effectively catering to the educational needs of both novice and proficient users.Keywords: blockchain, visualization, consensus, distributed network
Procedia PDF Downloads 626310 Gariep Dam Basin Management for Satisfying Ecological Flow Requirements
Authors: Dimeji Abe, Nonso Okoye, Gideon Ikpimi, Prince Idemudia
Abstract:
Multi-reservoir optimization operation has been a critical issue for river basin management. Water, as a scarce resource, is in high demand and the problems associated with the reservoir as its storage facility are enormous. The complexity in balancing the supply and demand of this prime resource has created the need to examine the best way to solve the problem using optimization techniques. The objective of this study is to evaluate the performance of the multi-objective meta-heuristic algorithm for the operation of Gariep Dam for satisfying ecological flow requirements. This study uses an evolutionary algorithm called backtrack search algorithm (BSA) to determine the best way to optimise the dam operations of hydropower production, flood control, and water supply without affecting the environmental flow requirement for the survival of aquatic bodies and sustain life downstream of the dam. To achieve this objective, the operations of the dam that corresponds to different tradeoffs between the objectives are optimized. The results indicate the best model from the algorithm that satisfies all the objectives without any constraint violation. It is expected that hydropower generation will be improved and more water will be available for ecological flow requirements with the use of the algorithm. This algorithm also provides farmers with more irrigation water as well to improve their business.Keywords: BSA evolutionary algorithm, metaheuristics, optimization, river basin management
Procedia PDF Downloads 2456309 Understanding and Improving Neural Network Weight Initialization
Authors: Diego Aguirre, Olac Fuentes
Abstract:
In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.Keywords: deep learning, image classification, supervised learning, weight initialization
Procedia PDF Downloads 1356308 Critical Evaluation and Analysis of Effects of Different Queuing Disciplines on Packets Delivery and Delay for Different Applications
Authors: Omojokun Gabriel Aju
Abstract:
Communication network is a process of exchanging data between two or more devices via some forms of transmission medium using communication protocols. The data could be in form of text, images, audio, video or numbers which can be grouped into FTP, Email, HTTP, VOIP or Video applications. The effectiveness of such data exchange will be proved if they are accurately delivered within specified time. While some senders will not really mind when the data is actually received by the receiving device, inasmuch as it is acknowledged to have been received by the receiver. The time a data takes to get to a receiver could be very important to another sender, as any delay could cause serious problem or even in some cases rendered the data useless. The validity or invalidity of a data after delay will therefore definitely depend on the type of data (information). It is therefore imperative for the network device (such as router) to be able to differentiate among the packets which are time sensitive and those that are not, when they are passing through the same network. So, here is where the queuing disciplines comes to play, to handle network resources when such network is designed to service widely varying types of traffics and manage the available resources according to the configured policies. Therefore, as part of the resources allocation mechanisms, a router within the network must implement some queuing discipline that governs how packets (data) are buffered while waiting to be transmitted. The implementation of the queuing discipline will regulate how the packets are buffered while waiting to be transmitted. In achieving this, various queuing disciplines are being used to control the transmission of these packets, by determining which of the packets get the highest priority, less priority and which packets are dropped. The queuing discipline will therefore control the packets latency by determining how long a packet can wait to be transmitted or dropped. The common queuing disciplines are first-in-first-out queuing, Priority queuing and Weighted-fair queuing (FIFO, PQ and WFQ). This paper critically evaluates and analyse through the use of Optimized Network Evaluation Tool (OPNET) Modeller, Version 14.5 the effects of three queuing disciplines (FIFO, PQ and WFQ) on the performance of 5 different applications (FTP, HTTP, E-Mail, Voice and Video) within specified parameters using packets sent, packets received and transmission delay as performance metrics. The paper finally suggests some ways in which networks can be designed to provide better transmission performance while using these queuing disciplines.Keywords: applications, first-in-first-out queuing (FIFO), optimised network evaluation tool (OPNET), packets, priority queuing (PQ), queuing discipline, weighted-fair queuing (WFQ)
Procedia PDF Downloads 3586307 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass
Authors: Goodness Onwuka, Khaled Abou-El-Hossein
Abstract:
Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding
Procedia PDF Downloads 3056306 A New Graph Theoretic Problem with Ample Practical Applications
Authors: Mehmet Hakan Karaata
Abstract:
In this paper, we first coin a new graph theocratic problem with numerous applications. Second, we provide two algorithms for the problem. The first solution is using a brute-force techniques, whereas the second solution is based on an initial identification of the cycles in the given graph. We then provide a correctness proof of the algorithm. The applications of the problem include graph analysis, graph drawing and network structuring.Keywords: algorithm, cycle, graph algorithm, graph theory, network structuring
Procedia PDF Downloads 3866305 Proposed Fault Detection Scheme on Low Voltage Distribution Feeders
Authors: Adewusi Adeoluwawale, Oronti Iyabosola Busola, Akinola Iretiayo, Komolafe Olusola Aderibigbe
Abstract:
The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults.Keywords: fault detection, low voltage distribution feeders, outage times, sustained faults
Procedia PDF Downloads 543