Search results for: inverse problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7516

Search results for: inverse problem

5956 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.

Keywords: agglomerate, blast furnace, permeability, softening-melting

Procedia PDF Downloads 248
5955 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akin, Ibrahim Aydogdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teaching-learning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame

Procedia PDF Downloads 539
5954 Two-stage Robust Optimization for Collaborative Distribution Network Design Under Uncertainty

Authors: Reza Alikhani

Abstract:

This research focuses on the establishment of horizontal cooperation among companies to enhance their operational efficiency and competitiveness. The study proposes an approach to horizontal collaboration, called coalition configuration, which involves partnering companies sharing distribution centers in a network design problem. The paper investigates which coalition should be formed in each distribution center to minimize the total cost of the network. Moreover, potential uncertainties, such as operational and disruption risks, are considered during the collaborative design phase. To address this problem, a two-stage robust optimization model for collaborative distribution network design under surging demand and facility disruptions is presented, along with a column-and-constraint generation algorithm to obtain exact solutions tailored to the proposed formulation. Extensive numerical experiments are conducted to analyze solutions obtained by the model in various scenarios, including decisions ranging from fully centralized to fully decentralized settings, collaborative versus non-collaborative approaches, and different amounts of uncertainty budgets. The results show that the coalition formation mechanism proposes some solutions that are competitive with the savings of the grand coalition. The research also highlights that collaboration increases network flexibility and resilience while reducing costs associated with demand and capacity uncertainties.

Keywords: logistics, warehouse sharing, robust facility location, collaboration for resilience

Procedia PDF Downloads 66
5953 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance

Authors: Loai AbdAllah, Mahmoud Kaiyal

Abstract:

Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.

Keywords: missing values, incomplete data, distance, incomplete diabetes data

Procedia PDF Downloads 222
5952 Robust Numerical Method for Singularly Perturbed Semilinear Boundary Value Problem with Nonlocal Boundary Condition

Authors: Habtamu Garoma Debela, Gemechis File Duressa

Abstract:

In this work, our primary interest is to provide ε-uniformly convergent numerical techniques for solving singularly perturbed semilinear boundary value problems with non-local boundary condition. These singular perturbation problems are described by differential equations in which the highest-order derivative is multiplied by an arbitrarily small parameter ε (say) known as singular perturbation parameter. This leads to the existence of boundary layers, which are basically narrow regions in the neighborhood of the boundary of the domain, where the gradient of the solution becomes steep as the perturbation parameter tends to zero. Due to the appearance of the layer phenomena, it is a challenging task to provide ε-uniform numerical methods. The term 'ε-uniform' refers to identify those numerical methods in which the approximate solution converges to the corresponding exact solution (measured to the supremum norm) independently with respect to the perturbation parameter ε. Thus, the purpose of this work is to develop, analyze, and improve the ε-uniform numerical methods for solving singularly perturbed problems. These methods are based on nonstandard fitted finite difference method. The basic idea behind the fitted operator, finite difference method, is to replace the denominator functions of the classical derivatives with positive functions derived in such a way that they capture some notable properties of the governing differential equation. A uniformly convergent numerical method is constructed via nonstandard fitted operator numerical method and numerical integration methods to solve the problem. The non-local boundary condition is treated using numerical integration techniques. Additionally, Richardson extrapolation technique, which improves the first-order accuracy of the standard scheme to second-order convergence, is applied for singularly perturbed convection-diffusion problems using the proposed numerical method. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be ε-uniformly convergent. Finally, extensive numerical experiments are conducted which support all of our theoretical findings. A concise conclusion is provided at the end of this work.

Keywords: nonlocal boundary condition, nonstandard fitted operator, semilinear problem, singular perturbation, uniformly convergent

Procedia PDF Downloads 141
5951 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator

Authors: Di Yao, Gunther Prokop, Kay Buttner

Abstract:

Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.

Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory

Procedia PDF Downloads 263
5950 Circular Labour Migration and Its Consequences in Georgia

Authors: Manana Lobzhanidze

Abstract:

Introduction: The paper will argue that labor migration is the most important problem Georgia faces today. The structure of labor migration by age and gender of Georgia is analyzed. The main driving factors of circular labor migration during the last ten years are identified. While studying migration, it is necessary to discuss the interconnection of economic, social, and demographic features, also taking into consideration the policy of state regulations in terms of education and professional training. Methodology: Different research methods are applied in the presented paper: statistical, such as selection, grouping, observation, trend, and qualitative research methods, namely; analysis, synthesis, induction, deduction, comparison ones. Main Findings: Labour migrants are filling the labor market as a low salary worker. The main positive feedback of migration from developing countries is poverty eradication, but this process is accompanied by problems, such as 'Brain Drain'. The country loses an important part of its intellectual potential, and it is invested by households or state itself. Conclusions: Labor migration is characterized to be temporary, but socio-economic problems of the country often push the labor migration in the direction of longterm and illegal migration. Countries with developed economies try to stricter migration policy and fight illegal migration with different methods; circular migration helps solve this problem. Conclusions and recommendations are included about circular labor migration consequences in Georgia and its influence on the reduction of unemployment level.

Keywords: migration, circular labor migration, labor migration employment, unemployment

Procedia PDF Downloads 174
5949 Socioeconomic Status and Mortality in Older People with Angina: A Population-Based Cohort Study in China

Authors: Weiju Zhou, Alex Hopkins, Ruoling Chen

Abstract:

Background: China has increased the gap in income between richer and poorer over the past 40 years, and the number of deaths from people with angina has been rising. It is unclear whether socioeconomic status (SES) is associated with increased mortality in older people with angina. Methods: Data from a cohort study of 2,380 participants aged ≥ 65 years, who were randomly recruited from 5-province urban communities were examined in China. The cohort members were interviewed to record socio-demographic and risk factors and document doctor-diagnosed angina at baseline and were followed them up in 3-10 years, including monitoring vital status. Multivariate Cox regression models were employed to examine all-cause mortality in relation to low SES. Results: The cohort follow-up identified 373 deaths occurred; 41 deaths in 208 angina patients. Compared to participants without angina (n=2,172), patients with angina had increased mortality (multivariate adjusted hazard ratio (HR) was 1.41, 95% CI 1.01-1.97). Within angina patients, the risk of mortality increased with low satisfactory income (2.51, 1.08-5.85) and having financial problem (4.00, 1.07-15.00), but significantly with levels of education and occupation. In non-angina participants, none of these four SES indicators were associated with mortality. There was a significant interaction effect between angina and low satisfactory income on mortality. Conclusions: In China, having low income and financial problem increase mortality in older people with angina. Strategies to improve economic circumstances in older people could help reduce inequality in angina survival.

Keywords: angina, mortality, older people, socio-economic status

Procedia PDF Downloads 117
5948 Workforce Optimization: Fair Workload Balance and Near-Optimal Task Execution Order

Authors: Alvaro Javier Ortega

Abstract:

A large number of companies face the challenge of matching highly-skilled professionals to high-end positions by human resource deployment professionals. However, when the professional list and tasks to be matched are larger than a few dozens, this process result is far from optimal and takes a long time to be made. Therefore, an automated assignment algorithm for this workforce management problem is needed. The majority of companies are divided into several sectors or departments, where trained employees with different experience levels deal with a large number of tasks daily. Also, the execution order of all tasks is of mater consequence, due to some of these tasks just can be run it if the result of another task is provided. Thus, a wrong execution order leads to large waiting times between consecutive tasks. The desired goal is, therefore, creating accurate matches and a near-optimal execution order that maximizes the number of tasks performed and minimizes the idle time of the expensive skilled employees. The problem described before can be model as a mixed-integer non-linear programming (MINLP) as it will be shown in detail through this paper. A large number of MINLP algorithms have been proposed in the literature. Here, genetic algorithm solutions are considered and a comparison between two different mutation approaches is presented. The simulated results considering different complexity levels of assignment decisions show the appropriateness of the proposed model.

Keywords: employees, genetic algorithm, industry management, workforce

Procedia PDF Downloads 165
5947 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce

Authors: Jiao Sun, Li Pan, Shijun Liu

Abstract:

Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.

Keywords: collaborative filtering, recommendation, data normalization, mapreduce

Procedia PDF Downloads 215
5946 Going beyond Elementary Algebraic Identities: The Expectation of a Gifted Child, an Indian Scenario

Authors: S. R. Santhanam

Abstract:

A gifted child is one who gives evidence of creativity, good memory, rapid learning. In mathematics, a teacher often comes across some gifted children and they exhibit the following characteristics: unusual alertness, enjoying solving problems, getting bored on repetitions, self-taught, going beyond what teacher taught, ask probing questions, connecting unconnected concepts, vivid imagination, readiness for research work, perseverance of a topic. There are two main areas of research carried out on them: 1)identifying gifted children, 2) interacting and channelizing them. A lack of appropriate recognition will lead the gifted child demotivated. One of the main findings is if proper attention and nourishment are not given then it leads a gifted child to become depressed, underachieving, fail to reach their full potential and sometimes develop negative attitude towards school and study. After identifying them, a mathematics teacher has to develop them into a fall fledged achiever. The responsibility of the teacher is enormous. The teacher has to be resourceful and patient. But interacting with them one finds a lot of surprises and awesomeness. The elementary algebraic identities like (a+b)(a-b)=a²-b², expansion of like (a+b)²(a-b)² and others are taught to students, of age group 13-15 in India. An average child will be satisfied with a single proof and immediate application of these identities. But a gifted child expects more from the teacher and at one stage after a little training will surpass the teacher also. In this short paper, the author shares his experience regarding teaching algebraic identities to gifted children. The following problem was given to a set of 10 gifted children of the specified age group: If a natural number ‘n’ to expressed as the sum of the two squares, will 2n also be expressed as the sum of two squares? An investigation has been done on what multiples of n satisfying the criterion. The attempts of the gifted children were consolidated and conclusion was drawn. A second problem was given to them as: can two natural numbers be found such that the difference of their square is 3? After a successful solution, more situations were analysed. As a third question, the finding of the sign of an algebraic expression in three variables was analysed. As an example: if a,b,c are real and unequal what will be sign of a²+4b²+9c²-4ab-12bc-6ca? Apart from an expression as a perfect square what other methods can be employed to prove an algebraic expression as positive negative or non negative has been analysed. Expressions like 4x²+2y²+13y²-2xy-4yz-6zx were given, and the children were asked to find the sign of the expression for all real values of x,y and z. In all investigations, only basic algebraic identities were used. As a next probe, a divisibility problem was initiated. When a,b,c are natural numbers such that a+b+c is at least 6, and if a+b+c is divisible by 6 then will 6 divide a³+b³+c³. The gifted children solved it in two different ways.

Keywords: algebraic identities, gifted children, Indian scenario, research

Procedia PDF Downloads 177
5945 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text

Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni

Abstract:

The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.

Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance

Procedia PDF Downloads 147
5944 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 427
5943 Computationally Efficient Stacking Sequence Blending for Composite Structures with a Large Number of Design Regions Using Cellular Automata

Authors: Ellen Van Den Oord, Julien Marie Jan Ferdinand Van Campen

Abstract:

This article introduces a computationally efficient method for stacking sequence blending of composite structures. The computational efficiency makes the presented method especially interesting for composite structures with a large number of design regions. Optimization of composite structures with an unequal load distribution may lead to locally optimized thicknesses and ply orientations that are incompatible with one another. Blending constraints can be enforced to achieve structural continuity. In literature, many methods can be found to implement structural continuity by means of stacking sequence blending in one way or another. The complexity of the problem makes the blending of a structure with a large number of adjacent design regions, and thus stacking sequences, prohibitive. In this work the local stacking sequence optimization is preconditioned using a method found in the literature that couples the mechanical behavior of the laminate, in the form of lamination parameters, to blending constraints, yielding near-optimal easy-to-blend designs. The preconditioned design is then fed to the scheme using cellular automata that have been developed by the authors. The method is applied to the benchmark 18-panel horseshoe blending problem to demonstrate its performance. The computational efficiency of the proposed method makes it especially suited for composite structures with a large number of design regions.

Keywords: composite, blending, optimization, lamination parameters

Procedia PDF Downloads 224
5942 Obesity-Associated Vitamin D Insufficiency Among Women

Authors: Archana Surendran, Kalpana C. A.

Abstract:

Vitamin D insufficiency is highly prevalent in women. Vitamin D bioavailability could be reduced in obesity due to increased sequestration by white adipose tissue. Increased sun exposure due to more frequent outdoor physical activity as well as a diet rich in vitamin D could be the common cause of both higher levels of 25(OH)D and a more favorable lipid profile. The study was conducted with the aim to assess the obesity status among selected working women in Coimbatore, determine their lifestyle and physical activity pattern, study their dietary intake, estimate the vitamin D and lipid profile of selected women and associate the relationship between Vitamin D and obesity among the selected women. A total of 100 working women (non pregnant, non lactating) working in IT sector, hotels and teaching staff were selected for the study. Anthropometric measurements and dietary recall were conducted for all. The women were further categorized as obese and non-obese based on their BMI. Fifteen obese and 15 non-obese women were selected and their fasting blood glucose level, serum Vitamin D and lipid profile were measured. Association between serum vitamin D, lipid profile, anthropometric measurements, food intake and sun exposure was correlated. Fifty six percent of women in the age group between 25-39 years and 44 percent of women in the age group between 40-45 years were obese. Waist and hip circumference of women in the age group between 40-45 years (89.7 and 107.4 cm) were higher than that of obese women in the age group between 25-39 years (88.6 and 102.8 cm). There were no women with sufficient vitamin D levels. In the age group between 40-45 years (obese women), serum Vitamin D was inversely proportional to waist-hip ratio and LDL cholesterol. There was an inverse relationship between body fat percentage and Total cholesterol with serum vitamin D among the women of the age group between 25-39 years. Consumption of milk and milk products were low among women. Intake of calcium was deficit among the women in both the age groups and showed a negative correlation. Sun exposure was less for all the women. Findings from the study revealed that obese women with a higher consumption of fat and less intake of calcium-rich foods have low serum Vitamin D levels than the non-obese women. Thus, it can be concluded that there is an association between Vitamin D status and obesity among adult women.

Keywords: obesity, sun exposure, vitamin D, women

Procedia PDF Downloads 132
5941 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model

Authors: Sidrah Ahmed

Abstract:

The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.

Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients

Procedia PDF Downloads 200
5940 User Experience Evaluation on the Usage of Commuter Line Train Ticket Vending Machine

Authors: Faishal Muhammad, Erlinda Muslim, Nadia Faradilla, Sayidul Fikri

Abstract:

To deal with the increase of mass transportation needs problem, PT. Kereta Commuter Jabodetabek (KCJ) implements Commuter Vending Machine (C-VIM) as the solution. For that background, C-VIM is implemented as a substitute to the conventional ticket windows with the purposes to make transaction process more efficient and to introduce self-service technology to the commuter line user. However, this implementation causing problems and long queues when the user is not accustomed to using the machine. The objective of this research is to evaluate user experience after using the commuter vending machine. The goal is to analyze the existing user experience problem and to achieve a better user experience design. The evaluation method is done by giving task scenario according to the features offered by the machine. The features are daily insured ticket sales, ticket refund, and multi-trip card top up. There 20 peoples that separated into two groups of respondents involved in this research, which consist of 5 males and 5 females each group. The experienced and inexperienced user to prove that there is a significant difference between both groups in the measurement. The user experience is measured by both quantitative and qualitative measurement. The quantitative measurement includes the user performance metrics such as task success, time on task, error, efficiency, and learnability. The qualitative measurement includes system usability scale questionnaire (SUS), questionnaire for user interface satisfaction (QUIS), and retrospective think aloud (RTA). Usability performance metrics shows that 4 out of 5 indicators are significantly different in both group. This shows that the inexperienced group is having a problem when using the C-VIM. Conventional ticket windows also show a better usability performance metrics compared to the C-VIM. From the data processing, the experienced group give the SUS score of 62 with the acceptability scale of 'marginal low', grade scale of “D”, and the adjective ratings of 'good' while the inexperienced group gives the SUS score of 51 with the acceptability scale of 'marginal low', grade scale of 'F', and the adjective ratings of 'ok'. This shows that both groups give a low score on the system usability scale. The QUIS score of the experienced group is 69,18 and the inexperienced group is 64,20. This shows the average QUIS score below 70 which indicate a problem with the user interface. RTA was done to obtain user experience issue when using C-VIM through interview protocols. The issue obtained then sorted using pareto concept and diagram. The solution of this research is interface redesign using activity relationship chart. This method resulted in a better interface with an average SUS score of 72,25, with the acceptable scale of 'acceptable', grade scale of 'B', and the adjective ratings of 'excellent'. From the time on task indicator of performance metrics also shows a significant better time by using the new interface design. Result in this study shows that C-VIM not yet have a good performance and user experience.

Keywords: activity relationship chart, commuter line vending machine, system usability scale, usability performance metrics, user experience evaluation

Procedia PDF Downloads 258
5939 Return to Work after a Mental Health Problem: Analysis of Two Different Management Models

Authors: Lucie Cote, Sonia McFadden

Abstract:

Mental health problems in the workplace are currently one of the main causes of absences. Research work has highlighted the importance of a collaborative process involving the stakeholders in the return-to-work process and has established the best management practices to ensure a successful return-to-work. However, very few studies have specifically explored the combination of various management models and determined whether they could satisfy the needs of the stakeholders. The objective of this study is to analyze two models for managing the return to work: the ‘medical-administrative’ and the ‘support of the worker’ in order to understand the actions and actors involved in these models. The study also aims to explore whether these models meet the needs of the actors involved in the management of the return to work. A qualitative case study was conducted in a Canadian federal organization. An abundant internal documentation and semi-directed interviews with six managers, six workers and four human resources professionals involved in the management of records of employees returning to work after a mental health problem resulted in a complete picture of the return to work management practices used in this organization. The triangulation of this data facilitated the examination of the benefits and limitations of each approach. The results suggest that the actions of management for employee return to work from both models of management ‘support of the worker’ and ‘medical-administrative’ are compatible and can meet the needs of the actors involved in the return to work. More research is needed to develop a structured model integrating best practices of the two approaches to ensure the success of the return to work.

Keywords: return to work, mental health, management models, organizations

Procedia PDF Downloads 210
5938 Research on the Optimization of the Facility Layout of Efficient Cafeterias for Troops

Authors: Qing Zhang, Jiachen Nie, Yujia Wen, Guanyuan Kou, Peng Yu, Kun Xia, Qin Yang, Li Ding

Abstract:

BACKGROUND: A facility layout problem (FLP) is an NP-complete (non-deterministic polynomial) problem, which is hard to obtain an exact optimal solution. FLP has been widely studied in various limited spaces and workflows. For example, cafeterias with many types of equipment for troops cause chaotic processes when dining. OBJECTIVE: This article tried to optimize the layout of troops’ cafeteria and to improve the overall efficiency of the dining process. METHODS: First, the original cafeteria layout design scheme was analyzed from an ergonomic perspective and two new design schemes were generated. Next, three facility layout models were designed, and further simulation was applied to compare the total time and density of troops between each scheme. Last, an experiment of the dining process with video observation and analysis verified the simulation results. RESULTS: In a simulation, the dining time under the second new layout is shortened by 2.25% and 1.89% (p<0.0001, p=0.0001) compared with the other two layouts, while troops-flow density and interference both greatly reduced in the two new layouts. In the experiment, process completing time and the number of interference reduced as well, which verified corresponding simulation results. CONCLUSIONS: Our two new layout schemes are tested to be optimal by a series of simulation and space experiments. In future research, similar approaches could be applied when taking layout-design algorithm calculation into consideration.

Keywords: layout optimization, dining efficiency, troops’ cafeteria, anylogic simulation, field experiment

Procedia PDF Downloads 140
5937 Tsunami Wave Height and Flow Velocity Calculations Based on Density Measurements of Boulders: Case Studies from Anegada and Pakarang Cape

Authors: Zakiul Fuady, Michaela Spiske

Abstract:

Inundation events, such as storms and tsunamis can leave onshore sedimentary evidence like sand deposits or large boulders. These deposits store indirect information on the related inundation parameters (e.g., flow velocity, flow depth, wave height). One tool to reveal these parameters are inverse models that use the physical characteristics of the deposits to refer to the magnitude of inundation. This study used boulders of the 2004 Indian Ocean Tsunami from Thailand (Pakarang Cape) and form a historical tsunami event that inundated the outer British Virgin Islands (Anegada). For the largest boulder found in Pakarang Cape with a volume of 26.48 m³ the required tsunami wave height is 0.44 m and storm wave height are 1.75 m (for a bulk density of 1.74 g/cm³. In Pakarang Cape the highest tsunami wave height is 0.45 m and storm wave height are 1.8 m for transporting a 20.07 m³ boulder. On Anegada, the largest boulder with a diameter of 2.7 m is the asingle coral head (species Diploria sp.) with a bulk density of 1.61 g/cm³, and requires a minimum tsunami wave height of 0.31 m and storm wave height of 1.25 m. The highest required tsunami wave height on Anegada is 2.12 m for a boulder with a bulk density of 2.46 g/cm³ (volume 0.0819 m³) and the highest storm wave height is 5.48 m (volume 0.216 m³) from the same bulk density and the coral type is limestone. Generally, the higher the bulk density, volume, and weight of the boulders, the higher the minimum tsunami and storm wave heights required to initiate transport. It requires 4.05 m/s flow velocity by Nott’s equation (2003) and 3.57 m/s by Nandasena et al. (2011) to transport the largest boulder in Pakarang Cape, whereas on Anegada, it requires 3.41 m/s to transport a boulder with diameter 2.7 m for both equations. Thus, boulder equations need to be handled with caution because they make many assumptions and simplifications. Second, the physical boulder parameters, such as density and volume need to be determined carefully to minimize any errors.

Keywords: tsunami wave height, storm wave height, flow velocity, boulders, Anegada, Pakarang Cape

Procedia PDF Downloads 230
5936 Rainfall Estimation over Northern Tunisia by Combining Meteosat Second Generation Cloud Top Temperature and Tropical Rainfall Measuring Mission Microwave Imager Rain Rates

Authors: Saoussen Dhib, Chris M. Mannaerts, Zoubeida Bargaoui, Ben H. P. Maathuis, Petra Budde

Abstract:

In this study, a new method to delineate rain areas in northern Tunisia is presented. The proposed approach is based on the blending of the geostationary Meteosat Second Generation (MSG) infrared channel (IR) with the low-earth orbiting passive Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). To blend this two products, we need to apply two main steps. Firstly, we have to identify the rainy pixels. This step is achieved based on a classification using MSG channel IR 10.8 and the water vapor WV 0.62, applying a threshold on the temperature difference of less than 11 Kelvin which is an approximation of the clouds that have a high likelihood of precipitation. The second step consists on fitting the relation between IR cloud top temperature with the TMI rain rates. The correlation coefficient of these two variables has a negative tendency, meaning that with decreasing temperature there is an increase in rainfall intensity. The fitting equation will be applied for the whole day of MSG 15 minutes interval images which will be summed. To validate this combined product, daily extreme rainfall events occurred during the period 2007-2009 were selected, using a threshold criterion for large rainfall depth (> 50 mm/day) occurring at least at one rainfall station. Inverse distance interpolation method was applied to generate rainfall maps for the drier summer season (from May to October) and the wet winter season (from November to April). The evaluation results of the estimated rainfall combining MSG and TMI was very encouraging where all the events were detected rainy and the correlation coefficients were much better than previous evaluated products over the study area such as MSGMPE and PERSIANN products. The combined product showed a better performance during wet season. We notice also an overestimation of the maximal estimated rain for many events.

Keywords: combination, extreme, rainfall, TMI-MSG, Tunisia

Procedia PDF Downloads 171
5935 Enhancing the Performance of Automatic Logistic Centers by Optimizing the Assignment of Material Flows to Workstations and Flow Racks

Authors: Sharon Hovav, Ilya Levner, Oren Nahum, Istvan Szabo

Abstract:

In modern large-scale logistic centers (e.g., big automated warehouses), complex logistic operations performed by human staff (pickers) need to be coordinated with the operations of automated facilities (robots, conveyors, cranes, lifts, flow racks, etc.). The efficiency of advanced logistic centers strongly depends on optimizing picking technologies in synch with the facility/product layout, as well as on optimal distribution of material flows (products) in the system. The challenge is to develop a mathematical operations research (OR) tool that will optimize system cost-effectiveness. In this work, we propose a model that describes an automatic logistic center consisting of a set of workstations located at several galleries (floors), with each station containing a known number of flow racks. The requirements of each product and the working capacity of stations served by a given set of workers (pickers) are assumed as predetermined. The goal of the model is to maximize system efficiency. The proposed model includes two echelons. The first is the setting of the (optimal) number of workstations needed to create the total processing/logistic system, subject to picker capacities. The second echelon deals with the assignment of the products to the workstations and flow racks, aimed to achieve maximal throughputs of picked products over the entire system given picker capacities and budget constraints. The solutions to the problems at the two echelons interact to balance the overall load in the flow racks and maximize overall efficiency. We have developed an operations research model within each echelon. In the first echelon, the problem of calculating the optimal number of workstations is formulated as a non-standard bin-packing problem with capacity constraints for each bin. The problem arising in the second echelon is presented as a constrained product-workstation-flow rack assignment problem with non-standard mini-max criteria in which the workload maximum is calculated across all workstations in the center and the exterior minimum is calculated across all possible product-workstation-flow rack assignments. The OR problems arising in each echelon are proved to be NP-hard. Consequently, we find and develop heuristic and approximation solution algorithms based on exploiting and improving local optimums. The LC model considered in this work is highly dynamic and is recalculated periodically based on updated demand forecasts that reflect market trends, technological changes, seasonality, and the introduction of new items. The suggested two-echelon approach and the min-max balancing scheme are shown to work effectively on illustrative examples and real-life logistic data.

Keywords: logistics center, product-workstation, assignment, maximum performance, load balancing, fast algorithm

Procedia PDF Downloads 225
5934 Pineapple Waste Valorization through Biogas Production: Effect of Substrate Concentration and Microwave Pretreatment

Authors: Khamdan Cahyari, Pratikno Hidayat

Abstract:

Indonesia has produced more than 1.8 million ton pineapple fruit in 2013 of which turned into waste due to industrial processing, deterioration and low qualities. It was estimated that this waste accounted for more than 40 percent of harvested fruits. In addition, pineapple leaves were one of biomass waste from pineapple farming land, which contributed even higher percentages. Most of the waste was only dumped into landfill area without proper pretreatment causing severe environmental problem. This research was meant to valorize the pineapple waste for producing renewable energy source of biogas through mesophilic (30℃) anaerobic digestion process. Especially, it was aimed to investigate effect of substrate concentration of pineapple fruit waste i.e. peel, core as well as effect of microwave pretreatment of pineapple leaves waste. The concentration of substrate was set at value 12, 24 and 36 g VS/liter culture whereas 800-Watt microwave pretreatment conducted at 2 and 5 minutes. It was noticed that optimum biogas production obtained at concentration 24 g VS/l with biogas yield 0.649 liter/g VS (45%v CH4) whereas microwave pretreatment at 2 minutes duration performed better compare to 5 minutes due to shorter exposure of microwave heat. This results suggested that valorization of pineapple waste could be carried out through biogas production at the aforementioned process condition. Application of this method is able to both reduce the environmental problem of the waste and produce renewable energy source of biogas to fulfill local energy demand of pineapple farming areas.

Keywords: pineapple waste, substrate concentration, microwave pretreatment, biogas, anaerobic digestion

Procedia PDF Downloads 574
5933 An Integrated Architecture of E-Learning System to Digitize the Learning Method

Authors: M. Touhidul Islam Sarker, Mohammod Abul Kashem

Abstract:

The purpose of this paper is to improve the e-learning system and digitize the learning method in the educational sector. The learner will login into e-learning platform and easily access the digital content, the content can be downloaded and take an assessment for evaluation. Learner can get access to these digital resources by using tablet, computer, and smart phone also. E-learning system can be defined as teaching and learning with the help of multimedia technologies and the internet by access to digital content. E-learning replacing the traditional education system through information and communication technology-based learning. This paper has designed and implemented integrated e-learning system architecture with University Management System. Moodle (Modular Object-Oriented Dynamic Learning Environment) is the best e-learning system, but the problem of Moodle has no school or university management system. In this research, we have not considered the school’s student because they are out of internet facilities. That’s why we considered the university students because they have the internet access and used technologies. The University Management System has different types of activities such as student registration, account management, teacher information, semester registration, staff information, etc. If we integrated these types of activity or module with Moodle, then we can overcome the problem of Moodle, and it will enhance the e-learning system architecture which makes effective use of technology. This architecture will give the learner to easily access the resources of e-learning platform anytime or anywhere which digitizes the learning method.

Keywords: database, e-learning, LMS, Moodle

Procedia PDF Downloads 185
5932 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem

Authors: Feng Yang

Abstract:

Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.

Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics

Procedia PDF Downloads 146
5931 System Identification of Building Structures with Continuous Modeling

Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab

Abstract:

This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.

Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction

Procedia PDF Downloads 230
5930 Climate Change Law and Transnational Corporations

Authors: Manuel Jose Oyson

Abstract:

The Intergovernmental Panel on Climate Change (IPCC) warned in its most recent report for the entire world “to both mitigate and adapt to climate change if it is to effectively avoid harmful climate impacts.” The IPCC observed “with high confidence” a more rapid rise in total anthropogenic greenhouse gas emissions (GHG) emissions from 2000 to 2010 than in the past three decades that “were the highest in human history”, which if left unchecked will entail a continuing process of global warming and can alter the climate system. Current efforts, however, to respond to the threat of global warming, such as the United Nations Framework Convention on Climate Change and the Kyoto Protocol, have focused on states, and fail to involve Transnational Corporations (TNCs) which are responsible for a vast amount of GHG emissions. Involving TNCs in the search for solutions to climate change is consistent with an acknowledgment by contemporary international law that there is an international role for other international persons, including TNCs, and departs from the traditional “state-centric” response to climate change. Putting the focus of GHG emissions away from states recognises that the activities of TNCs “are not bound by national borders” and that the international movement of goods meets the needs of consumers worldwide. Although there is no legally-binding instrument that covers TNC activities or legal responsibilities generally, TNCs have increasingly been made legally responsible under international law for violations of human rights, exploitation of workers and environmental damage, but not for climate change damage. Imposing on TNCs a legally-binding obligation to reduce their GHG emissions or a legal liability for climate change damage is arguably formidable and unlikely in the absence a recognisable source of obligation in international law or municipal law. Instead a recourse to “soft law” and non-legally binding instruments may be a way forward for TNCs to reduce their GHG emissions and help in addressing climate change. Positive effects have been noted by various studies to voluntary approaches. TNCs have also in recent decades voluntarily committed to “soft law” international agreements. This development reflects a growing recognition among corporations in general and TNCs in particular of their corporate social responsibility (CSR). While CSR used to be the domain of “small, offbeat companies”, it has now become part of mainstream organization. The paper argues that TNCs must voluntarily commit to reducing their GHG emissions and helping address climate change as part of their CSR. One, as a serious “global commons problem”, climate change requires international cooperation from multiple actors, including TNCs. Two, TNCs are not innocent bystanders but are responsible for a large part of GHG emissions across their vast global operations. Three, TNCs have the capability to help solve the problem of climate change. Assuming arguendo that TNCs did not strongly contribute to the problem of climate change, society would have valid expectations for them to use their capabilities, knowledge-base and advanced technologies to help address the problem. It would seem unthinkable for TNCs to do nothing while the global environment fractures.

Keywords: climate change law, corporate social responsibility, greenhouse gas emissions, transnational corporations

Procedia PDF Downloads 348
5929 Variable Mapping: From Bibliometrics to Implications

Authors: Przemysław Tomczyk, Dagmara Plata-Alf, Piotr Kwiatek

Abstract:

Literature review is indispensable in research. One of the key techniques used in it is bibliometric analysis, where one of the methods is science mapping. The classic approach that dominates today in this area consists of mapping areas, keywords, terms, authors, or citations. This approach is also used in relation to the review of literature in the field of marketing. The development of technology has resulted in the fact that researchers and practitioners use the capabilities of software available on the market for this purpose. The use of science mapping software tools (e.g., VOSviewer, SciMAT, Pajek) in recent publications involves the implementation of a literature review, and it is useful in areas with a relatively high number of publications. Despite this well-grounded science mapping approach having been applied in the literature reviews, performing them is a painstaking task, especially if authors would like to draw precise conclusions about the studied literature and uncover potential research gaps. The aim of this article is to identify to what extent a new approach to science mapping, variable mapping, takes advantage of the classic science mapping approach in terms of research problem formulation and content/thematic analysis for literature reviews. To perform the analysis, a set of 5 articles on customer ideation was chosen. Next, the analysis of key words mapping results in VOSviewer science mapping software was performed and compared with the variable map prepared manually on the same articles. Seven independent expert judges (management scientists on different levels of expertise) assessed the usability of both the stage of formulating, the research problem, and content/thematic analysis. The results show the advantage of variable mapping in the formulation of the research problem and thematic/content analysis. First, the ability to identify a research gap is clearly visible due to the transparent and comprehensive analysis of the relationships between the variables, not only keywords. Second, the analysis of relationships between variables enables the creation of a story with an indication of the directions of relationships between variables. Demonstrating the advantage of the new approach over the classic one may be a significant step towards developing a new approach to the synthesis of literature and its reviews. Variable mapping seems to allow scientists to build clear and effective models presenting the scientific achievements of a chosen research area in one simple map. Additionally, the development of the software enabling the automation of the variable mapping process on large data sets may be a breakthrough change in the field of conducting literature research.

Keywords: bibliometrics, literature review, science mapping, variable mapping

Procedia PDF Downloads 118
5928 In situ Ortho-Quinone Methide Reactions for Construction of Flavonoids with Fused Ring Systems

Authors: Vidia A. Nuraini, Eugene M. H. Yee, Mohan Bhadbhade, David StC. Black, Naresh Kumar

Abstract:

Flavonoids are naturally occurring compounds that have been shown to exhibit a wide range of biological properties including anticancer and anti-inflammatory activities. However, flavonoids suffer from low bioavailability, which limits their overall utility for therapeutic applications. One of the methods to overcome this limitation is through structural modification of natural flavonoids. In this study, flavanone, isoflavanone, and isoflavene, were structurally modified through the introduction of additional fused-ring systems via ortho-quinone methide intermediates (o-QMs). These intermediates can readily undergo a [4+2] cycloaddition through an inverse-electron-demand Diels–Alder reaction with electron-rich dienophiles. A regioselective Mannich reaction using bis-(N,N-dimethylamino)methane was employed to generate the o-QM precursors of flavanone, isoflavanone, and isoflavene. The o-QM intermediates were subsequently generated in situ through thermal elimination of the dimethylamine functionality and reacted with a variety of dienophiles to produce novel flavonoids with fused-ring systems. A total of 21 novel flavonoid analogs were successfully synthesized. The X-ray crystal structure of cycloaddition adducts, particularly those derived from 3,4-dihydro-2H-pyran and p-methoxystyrene revealed a special case of enantiomeric disorder, where two enantiomers in equal amounts superpose with one another, with the exception for atoms that have opposite configuration. The anticancer properties of fused-ring systems derived from isoflavene were evaluated against the neuroblastoma SKN-BE(2)C, the triple negative breast cancer MDA-MB-231, and the glioblastoma U87 cancer cell lines. One of these cycloaddition adducts had displayed improved anti-proliferative activity against MDA-MB-231 and U87 cancer cell lines as compared to the parent compound. Further anticancer and anti-inflammatory activities of the flavanone and isoflavanone analogs are currently being investigated.

Keywords: Diels-Alder reaction, flavonoids, Mannich reaction, ortho-quinone methide.

Procedia PDF Downloads 247
5927 Cooperation of Unmanned Vehicles for Accomplishing Missions

Authors: Ahmet Ozcan, Onder Alparslan, Anil Sezgin, Omer Cetin

Abstract:

The use of unmanned systems for different purposes has become very popular over the past decade. Expectations from these systems have also shown an incredible increase in this parallel. But meeting the demands of the tasks are often not possible with the usage of a single unmanned vehicle in a mission, so it is necessary to use multiple autonomous vehicles with different abilities together in coordination. Therefore the usage of the same type of vehicles together as a swarm is helped especially to satisfy the time constraints of the missions effectively. In other words, it allows sharing the workload by the various numbers of homogenous platforms together. Besides, it is possible to say there are many kinds of problems that require the usage of the different capabilities of the heterogeneous platforms together cooperatively to achieve successful results. In this case, cooperative working brings additional problems beyond the homogeneous clusters. In the scenario presented as an example problem, it is expected that an autonomous ground vehicle, which is lack of its position information, manage to perform point-to-point navigation without losing its way in a previously unknown labyrinth. Furthermore, the ground vehicle is equipped with very limited sensors such as ultrasonic sensors that can detect obstacles. It is very hard to plan or complete the mission for the ground vehicle by self without lost its way in the unknown labyrinth. Thus, in order to assist the ground vehicle, the autonomous air drone is also used to solve the problem cooperatively. The autonomous drone also has limited sensors like downward looking camera and IMU, and it also lacks computing its global position. In this context, it is aimed to solve the problem effectively without taking additional support or input from the outside, just benefiting capabilities of two autonomous vehicles. To manage the point-to-point navigation in a previously unknown labyrinth, the platforms have to work together coordinated. In this paper, cooperative work of heterogeneous unmanned systems is handled in an applied sample scenario, and it is mentioned that how to work together with an autonomous ground vehicle and the autonomous flying platform together in a harmony to take advantage of different platform-specific capabilities. The difficulties of using heterogeneous multiple autonomous platforms in a mission are put forward, and the successful solutions are defined and implemented against the problems like spatially distributed tasks planning, simultaneous coordinated motion, effective communication, and sensor fusion.

Keywords: unmanned systems, heterogeneous autonomous vehicles, coordination, task planning

Procedia PDF Downloads 126