Search results for: enterprise intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2113

Search results for: enterprise intelligence

553 An Introduction to Corporate Financial Reporting Practices in India

Authors: Pradip Kumar Das

Abstract:

India is a developing country and is also one of the most industrialized developing countries of the world. In post-independence period, industry has grown rapidly in India and with industrialization corporate sector in the country has been growing day after day. Nowadays, the investment is not limited to be shareholders alone, apart from the shareholders the common people of the society have also started investing in shares of the corporate sectors. Thus, the responsibilities of the corporate sectors have increased much. Corporate financial reporting refers to a system which provides valuable information to different types of users in the society for taking resourceful decisions with regards to investment policy, organization credit worthiness, profitability, liquidity, provision of taxation etc. The quality of information available to different users fosters the efficient allocation of resources which are very urgent for economic development of a country like India. It is the responsibility of the management of the corporate sector to convey reliable and authentic information with the help of generally accepted accounting principles. Corporate sectors which disclose information through annual reports should be sufficient enough for the purpose of bringing out the salient features relating to business performances and other activities. However, the disclosures practices of the corporate sectors though annual reports have undergone several major changes from time to time. Many a time, these vital changes are in the fashion of presenting information in the annual reports and addition of so many non-statutory disclosures of the company. Very often managements of the corporate sectors are blamed for concealing true picture which is not desirable at all. The corporate financial reporting practice which in the current period has gained a place of prime importance suffers from certain limitations and invites question from the public about its reliability. Thus, the wide gap created by management between the exhibited picture and the real picture sometimes attains to such extent that the purpose of the reporting practice loses its importance. The requirement of full and adequate disclosure of information including information relating to human resources in the annual report in free trade economy of India helps the prospective investors to select the best portfolio of their investments. This paper is a reflection of a modest attempt of the author to highlight the corporate reporting practices followed in India. A cursory glance of the conceptual study shows limitations along with reliability of the reporting practices and suggests measures to overcome the shortcomings of the financial reporting practices.

Keywords: corporate enterprise, cursory glance, portfolio, yawning gap

Procedia PDF Downloads 416
552 Advanced Driver Assistance System: Veibra

Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins

Abstract:

Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.

Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system

Procedia PDF Downloads 155
551 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma

Abstract:

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Keywords: multiclass classification, convolution neural network, OpenCV

Procedia PDF Downloads 176
550 Hydrothermal Energy Application Technology Using Dam Deep Water

Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong

Abstract:

Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.

Keywords: hydrothermal energy, HVAC, internet data center, free-cooling

Procedia PDF Downloads 81
549 The Impact of AI on Higher Education

Authors: Georges Bou Ghantous

Abstract:

This literature review examines the transformative impact of Artificial Intelligence (AI) on higher education, highlighting both the potential benefits and challenges associated with its adoption. The review reveals that AI significantly enhances personalized learning by tailoring educational experiences to individual student needs, thereby boosting engagement and learning outcomes. Automated grading systems streamline assessment processes, allowing educators to focus on improving instructional quality and student interaction. AI's data-driven insights provide valuable analytics, helping educators identify trends in at-risk students and refine teaching strategies. Moreover, AI promotes enhanced instructional innovation through the adoption of advanced teaching methods and technologies, enriching the educational environment. Administrative efficiency is also improved as AI automates routine tasks, freeing up time for educators to engage in research and curriculum development. However, the review also addresses the challenges that accompany AI integration, such as data privacy concerns, algorithmic bias, dependency on technology, reduced human interaction, and ethical dilemmas. This balanced exploration underscores the need for careful consideration of both the advantages and potential hurdles in the implementation of AI in higher education.

Keywords: administrative efficiency, data-driven insights, data privacy, ethical dilemmas, higher education, personalized learning

Procedia PDF Downloads 26
548 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse

Procedia PDF Downloads 409
547 Ranking Priorities for Digital Health in Portugal: Aligning Health Managers’ Perceptions with Official Policy Perspectives

Authors: Pedro G. Rodrigues, Maria J. Bárrios, Sara A. Ambrósio

Abstract:

The digitalisation of health is a profoundly transformative economic, political, and social process. As is often the case, such processes need to be carefully managed if misunderstandings, policy misalignments, or outright conflicts between the government and a wide gamut of stakeholders with competing interests are to be avoided. Thus, ensuring open lines of communication where all parties know what each other’s concerns are is key to good governance, as well as efficient and effective policymaking. This project aims to make a small but still significant contribution in this regard in that we seek to determine the extent to which health managers’ perceptions of what is a priority for digital health in Portugal are aligned with official policy perspectives. By applying state-of-the-art artificial intelligence technology first to the indexed literature on digital health and then to a set of official policy documents on the same topic, followed by a survey directed at health managers working in public and private hospitals in Portugal, we obtain two priority rankings that, when compared, will allow us to produce a synthesis and toolkit on digital health policy in Portugal, with a view to identifying areas of policy convergence and divergence. This project is also particularly peculiar in the sense that sophisticated digital methods related to text analytics are employed to study good governance aspects of digitalisation applied to health care.

Keywords: digital health, health informatics, text analytics, governance, natural language understanding

Procedia PDF Downloads 65
546 Teachers' Emphatic Concern for Their Learners

Authors: Prakash Singh

Abstract:

The focus of this exploratory study is on whether teachers demonstrate emphatic concern for their learners in planning, implementing and assessing learning outcomes in their regular classrooms. Empathy must be shown to all learners equally and not only for high-risk learners at the expense of other ability learners. Empathy demonstrated by teachers allows them to build a stronger bond with all their learners. This bond based on trust leads to positive outcomes for learners to be able to excel in their work. Empathic teachers must make every effort to simplify the subject matter for high risk learners so that these learners not only enjoy their learning activities but are also successful like their more able peers. A total of 87.5% of the participants agreed that empathy allows teachers to demonstrate humanistic values in their choice of learning materials for learners of different abilities. It is therefore important for teachers to select content and instructional materials that will contribute to the learners’ success in the mainstream of education. It is also imperative for teachers to demonstrate empathic skills and consequently, to be attuned to the emotions and emotional needs of their learners. Schools need to be reformed, not by simply lengthening the school day or by simply adding more content in the curriculum, but by making school more satisfying to learners. This must be consistent with their diverse learning needs and interests so that they gain a sense of power, fulfillment, and importance in their regular classrooms. Hence, teacher - pupil relationships based on empathic concern for the latter’s educational needs lays the foundation for quality education to be offered.

Keywords: emotional intelligence, empathy, learners’ emotional needs, teachers’ empathic skills

Procedia PDF Downloads 436
545 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers

Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin

Abstract:

The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.

Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference

Procedia PDF Downloads 72
544 Assessment of Impact of Urbanization in Drainage Urban Systems, Cali-Colombia

Authors: A. Caicedo Padilla, J. Zambrano Nájera

Abstract:

Cali, the capital of Valle del Cauca and the second city of Colombia, is located in the Cauca River Valley between the Western and Central Cordillera that is South West of the country. The topography of the city is mainly flat, but it is possibly to find mountains in the west. The city has increased urbanization during XX century, especially since 1958 when started a rapid growth due to migration of people from other parts of the region. Much of that population has settled in eastern of Cali, an area originally intended for cane cultivation and a zone of flood from Cauca River and its tributaries. Due to the unplanned migration, settling was inadequate and produced changes in natural dynamics of the basins, which has resulted in increases in runoff volumes, peak flows and flow velocities, that in turn increases flood risk. Sewerage networks capacity were not enough for this higher runoff volume, because in first term they were not adequately designed and built, causing its failure. This in turn generates increasingly recurrent floods generating considerable effects on the economy and development of normal activities in Cali. Thus, it becomes very important to know hydrological behavior of Urban Watersheds. This research aims to determine the impact of urbanization on hydrology of watersheds with very low slopes. The project aims to identify changes in natural drainage patterns caused by the changes made on landscape. From the identification of such modifications it will be defined the most critical areas due to recurring flood events in the city of Cali. Critical areas are defined as areas where the sewerage system does not work properly as surface runoff increases considerable with storm events, and floods are recurrent. The assessment will be done from the analysis of Geographic Information Systems (GIS) theme layers from CVC Environmental Institution of Regional Control in Valle del Cauca, hydrological data and disaster database developed by OSSO Corporation. Rainfall data from a network and historical stream flow data will be used for analysis of historical behavior and change of precipitation and hydrological response according to homogeneous zones characterized by EMCALI S.A. public utility enterprise of Cali in 1999.

Keywords: drainage systems, land cover changes, urban hydrology, urban planning

Procedia PDF Downloads 264
543 Role of Finance in Firm Innovation and Growth: Evidence from African Countries

Authors: Gebrehiwot H., Giorgis Bahita

Abstract:

Firms in Africa experience less financial market in comparison to other emerging and developed countries, thus lagging behind the rest of the world in terms of innovation and growth. Though there are different factors to be considered, underdeveloped financial systems take the lion's share in hindering firm innovation and growth in Africa. Insufficient capacity to innovate is one of the problems facing African businesses. Moreover, a critical challenge faced by firms in Africa is access to finance and the inability of financially constrained firms to grow. Only little is known about how different sources of finance affect firm innovation and growth in Africa, specifically the formal and informal finance effect on firm innovation and growth. This study's aim is to address this gap by using formal and informal finance for working capital and fixed capital and its role in firm innovation and firm growth using firm-level data from the World Bank enterprise survey 2006-2019 with a total of 5661 sample firms from 14 countries based on available data on the selected variables. Additionally, this study examines factors for accessing credit from a formal financial institution. The logit model is used to examine the effect of finance on a firm’s innovation and factors to access formal finance, while the Ordinary List Square (OLS) regression mode is used to investigate the effect of finance on firm growth. 2SLS instrumental variables are used to address the possible endogeneity problem in firm growth and finance-innovation relationships. A result from the logistic regression indicates that both formal and informal finance used for working capital and investment in fixed capital was found to have a significant positive association with product and process innovation. In the case of finance and growth, finding show that positive association of both formal and informal financing to working capital and new investment in fixed capital though the informal has positive relations to firm growth as measured by sale growth but no significant association as measured by employment growth. Formal finance shows more magnitude of effect on innovation and growth when firms use formal finance to finance investment in fixed capital, while informal finance show less compared to formal finance and this confirms previous studies as informal is mainly used for working capital in underdeveloped economies like Africa. The factors that determine credit access: Age, firm size, managerial experience, exporting, gender, and foreign ownership are found to have significant determinant factors in accessing credit from formal and informal sources among the selected sample countries.

Keywords: formal finance, informal finance, innovation, growth

Procedia PDF Downloads 76
542 Twitter Sentiment Analysis during the Lockdown on New-Zealand

Authors: Smah Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia PDF Downloads 190
541 Object Negotiation Mechanism for an Intelligent Environment Using Event Agents

Authors: Chiung-Hui Chen

Abstract:

With advancements in science and technology, the concept of the Internet of Things (IoT) has gradually developed. The development of the intelligent environment adds intelligence to objects in the living space by using the IoT. In the smart environment, when multiple users share the living space, if different service requirements from different users arise, then the context-aware system will have conflicting situations for making decisions about providing services. Therefore, the purpose of establishing a communication and negotiation mechanism among objects in the intelligent environment is to resolve those service conflicts among users. This study proposes developing a decision-making methodology that uses “Event Agents” as its core. When the sensor system receives information, it evaluates a user’s current events and conditions; analyses object, location, time, and environmental information; calculates the priority of the object; and provides the user services based on the event. Moreover, when the event is not single but overlaps with another, conflicts arise. This study adopts the “Multiple Events Correlation Matrix” in order to calculate the degree values of incidents and support values for each object. The matrix uses these values as the basis for making inferences for system service, and to further determine appropriate services when there is a conflict.

Keywords: internet of things, intelligent object, event agents, negotiation mechanism, degree of similarity

Procedia PDF Downloads 290
540 The Effect of Classroom Atmospherics on Second Language Learning

Authors: Sresha Yadav, Ishwar Kumar

Abstract:

Second language learning is an important area of research in the language and linguistic domains. Literature suggests that several factors impact second language learning, including age, motivation, objectives, teacher, instructional material, classroom interaction, intelligence and previous background, previous linguistic experience, other student characteristics. Previous researchers have also highlighted that classroom atmospherics has a significant impact on learning as well as on the performance of students. However, the impact of classroom atmospherics on second language learning is still not known in the existing literature. Therefore, the purpose of the present study is to explore whether classroom atmospherics has an impact on second language learning or not? And if it does, it would be worthwhile to explore the nature of such relationship. The present study aims to explore the impact of classroom atmospherics on second language learning by dwelling into the existing literature to explore factors which impact second language learning, classroom atmospherics which impact language learning and the metrics through which such learning impacts could be measured. Based on the findings of literature review, the researchers have adopted a clustering approach for categorization and positioning of various measures of second language learning. Based on the clustering approach, the researchers have approach for measuring the impact of classroom atmospherics on second language learning by drawing a student sample consisting of 80 respondents. The results of the study uncover various basic premises of second language learning, especially with regard to classroom atmospherics. The present study is important not only from the point of view of language learning but implications could be drawn with regard to the design of classroom atmospherics, environmental psychology, anthropometrics, etc as well.

Keywords: classroom atmospherics, cluster analysis, linguistics, second language learning

Procedia PDF Downloads 457
539 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners

Authors: Leila Najeh Bel'Kiry

Abstract:

Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.

Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners

Procedia PDF Downloads 64
538 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 148
537 Improving Perceptual Reasoning in School Children through Chess Training

Authors: Ebenezer Joseph, Veena Easvaradoss, S. Sundar Manoharan, David Chandran, Sumathi Chandrasekaran, T. R. Uma

Abstract:

Perceptual reasoning is the ability that incorporates fluid reasoning, spatial processing, and visual motor integration. Several theories of cognitive functioning emphasize the importance of fluid reasoning. The ability to manipulate abstractions and rules and to generalize is required for reasoning tasks. This study, funded by the Cognitive Science Research Initiative, Department of Science and Technology, Government of India, analyzed the effect of 1-year chess training on the perceptual reasoning of children. A pretest–posttest with control group design was used, with 43 (28 boys, 15 girls) children in the experimental group and 42 (26 boys, 16 girls) children in the control group. The sample was selected from children studying in two private schools from South India (grades 3 to 9), which included both the genders. The experimental group underwent weekly 1-hour chess training for 1 year. Perceptual reasoning was measured by three subtests of WISC-IV INDIA. Pre-equivalence of means was established. Further statistical analyses revealed that the experimental group had shown statistically significant improvement in perceptual reasoning compared to the control group. The present study clearly establishes a correlation between chess learning and perceptual reasoning. If perceptual reasoning can be enhanced in children, it could possibly result in the improvement of executive functions as well as the scholastic performance of the child.

Keywords: chess, cognition, intelligence, perceptual reasoning

Procedia PDF Downloads 356
536 Knowledge Management in the Interactive Portal for Decision Makers on InKOM Example

Authors: K. Marciniak, M. Owoc

Abstract:

Managers as decision-makers present in different sectors should be supported in efficient and more and more sophisticated way. There are huge number of software tools developed for such users starting from simple registering data from business area – typical for operational level of management – up to intelligent techniques with delivering knowledge - for tactical and strategic levels of management. There is a big challenge for software developers to create intelligent management dashboards allowing to support different decisions. In more advanced solutions there is even an option for selection of intelligent techniques useful for managers in particular decision-making phase in order to deliver valid knowledge-base. Such a tool (called Intelligent Dashboard for SME Managers–InKOM) is prepared in the Business Intelligent framework of Teta products. The aim of the paper is to present solutions assumed for InKOM concerning on management of stored knowledge bases offering for business managers. The paper is managed as follows. After short introduction concerning research context the discussed supporting managers via information systems the InKOM platform is presented. In the crucial part of paper a process of knowledge transformation and validation is demonstrated. We will focus on potential and real ways of knowledge-bases acquiring, storing and validation. It allows for formulation conclusions interesting from knowledge engineering point of view.

Keywords: business intelligence, decision support systems, knowledge management, knowledge transformation, knowledge validation, managerial systems

Procedia PDF Downloads 513
535 Machine Learning Algorithms for Rocket Propulsion

Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo

Abstract:

In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.

Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion

Procedia PDF Downloads 115
534 Effects of Poultry Manure Rates on Some Growth and Yield Attributes of Cucumber in Owerri, South Eastern Nigeria

Authors: Chinwe Pearl Poly-Mbah, Evelyn Obioma, Juliet Amajuoyi

Abstract:

The investigation here reported examined growth and yield responses of Cucumber to manure rates in Owerri, Southeastern Nigeria. Fruit vegetables are widely cultivated and produced in Northern Nigeria but greatly consumed in Southern Nigeria where cucumbers command high demand and price but are minimally cultivated. Unfortunately, farmers in northern Nigeria incur lots of losses because cucumber is a perishable vegetable and is transported all the way from the northern Nigeria where cucumbers are produced to Southern Nigeria where cucumbers are consumed, hence the high cost of cucumber fruits in Southern Nigeria. There is a need, therefore, to evolve packages that will enhance cucumber production in Southern Nigeria. The main objective of this study was to examine the effects of poultry manure rates on the growth and yield of cucumber in Owerri, South Eastern Nigeria. Specifically, this study was designed to assess the effect of poultry manure rates on number of days to 50% seedling emergence, vine length/plant, leaf area per plant and the number of leaves produced per plant. The design used for the experiment was Randomized Complete Block Design (RCBD) with three blocks (replications). Treatment consisted of four rates of well-decomposed poultry manure at the rate of 0 tons/ha, 2 tons/ha, 4 tons/ha and 6 tons/ha. Data were collected on number of days to 50% seedling emergence, vine length per plant at two weeks interval, leaf number per plant at two weeks interval, leaf area per plant at two weeks interval, number of fruits produced per plant, and fresh weight of fruits per plant at harvest. Results from the analysis of variance (ANOVA) showed that there were highly significant effects (P=0.05) of poultry manure on growth and yield parameters studied which include number of days to 50% seedling emergence, vine length per plant, leaf number per plant, leaf area per plant, fruit number and fruit weight per plant such that increase in poultry manure rates lead to increase in growth and yield parameters studied. Therefore, the null hypothesis (Ho) was rejected, while the alternative hypothesis was accepted. Farmers should be made to know that growing cucumber with poultry manure in southeastern Nigeria agro ecology is a successful enterprise

Keywords: cucumber, effects, growth and yield, manure

Procedia PDF Downloads 239
533 Start-Up: The Perception of Brazilian Entrepreneurs about the Start-Up Brasil Program

Authors: Fernando Nobre Cavalcante

Abstract:

In Brazil, and more recently in the city of Fortaleza, there is a new form of entrepreneurship that is focused on the information and communication technology service sector and that draws the attention of young people, investors, governments, authors and media companies: it is known as the start-up movement. Today, it is considered to be a driving force behind the creative economy. Rooted on progressive discourse, the words enterprise and innovation seduce new economic agents motivated by success stories from Silicon Valley in America along with increasing commercial activity for digital goods and services. This article assesses, from a sociological point of view, the new productive wave problematized by the light of Manuel Castells’ informational capitalism. Considering the skeptical as well as the optimistic opinions about the impact of this new entrepreneurial rearrangement, the following question is asked: How Brazilian entrepreneurs evaluate public policy incentives for startups Brazilian Federal Government? The raised hypotheses are based on employability factors as well as cultural, economical, and political matters related to innovation and technology. This study has produced a nationwide quantitative assessment with a special focus on the reality of these Ceará firms; as well as comparative qualitative interviews on Brazilian experiences lived by identified agents. This article outlines the public incentive policy of the federal government, the Start-up Brasil Program, from the perspective of these companies and provides details as to the discipline methods of the new enterprising way born in the United States. The startups are very young companies that are headed towards the economic sustainment of the productive sector services. These companies are dropping the seeds that will produce the re-enchantment of young people and bring them back to participation in political debate; they provide relief and reheats the job market; and they produce a democratization of the entrepreneurial ‘Do-It-Yourself’ culture. They capitalize the pivot of the wall street wolves and of agents being charged for new masks. There are developmental logic’s prophylaxis in the face of dreadful innovation stagnation. The lack of continuity in Brazilian governmental politics and cultural nuances related to entrepreneurship are barring the desired regional success of this ecosystem.

Keywords: creative economy, entrepreneurship, informationalism, innovation, startups, start-up brasil program

Procedia PDF Downloads 368
532 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition

Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar

Abstract:

In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.

Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers

Procedia PDF Downloads 45
531 Using Machine Learning as an Alternative for Predicting Exchange Rates

Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior

Abstract:

This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.

Keywords: exchage rate, prediction, machine learning, deep learning

Procedia PDF Downloads 31
530 Modelling Mode Choice Behaviour Using Cloud Theory

Authors: Leah Wright, Trevor Townsend

Abstract:

Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.

Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty

Procedia PDF Downloads 388
529 Federal Bureau of Investigation Opposition to German Nationalist Organizations in the United States (1941-45)

Authors: Yaroslav Alexandrovich Levin

Abstract:

In modern research on the history of the United States in World War II, it is quite popular to study the opposition of the American special services and, in particular, the Federal Bureau of Investigation (FBI) to various organizations of the German diasporas in new historical conditions. The appeal to traditional methods of historical research, comparative studies, and the principles of historicism will make it possible to more accurately trace the process of tightening the counterintelligence work of the Bureau and the close connection of concerns about the involvement of public organizations in the intelligence activities of the enemy. The broadcast of nationalist ideas by various communities of Germans under the auspices of their governments quickly attracted the attention of the FBI, which is in the process of consolidating its powers as the main US counterintelligence service. At the same time, the investigations and trials conducted by the John Edgar Hoover Department following these investigations often had an openly political color and increasingly consolidated the beginning of a political investigation in this service. This practice and its implementation ran into a tough contradiction between the legal norms of America, which proclaimed "democratic values," the right to freedom of speech, and the need to strengthen the internal security of the state and society in wartime. All these processes and the associated nuances and complexities are considered in specific examples of the work of federal agents against various pro-German organizations in the period 1941-45.

Keywords: World War II, internal security, countering extremism, counterintelligence, political investigation, FBI

Procedia PDF Downloads 86
528 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images

Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez

Abstract:

The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.

Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning

Procedia PDF Downloads 73
527 Intelligent Chatbot Generating Dynamic Responses Through Natural Language Processing

Authors: Aarnav Singh, Jatin Moolchandani

Abstract:

The proposed research work aims to build a query-based AI chatbot that can answer any question related to any topic. A chatbot is software that converses with users via text messages. In the proposed system, we aim to build a chatbot that generates a response based on the user’s query. For this, we use natural language processing to analyze the query and some set of texts to form a concise answer. The texts are obtained through web-scrapping and filtering all the credible sources from a web search. The objective of this project is to provide a chatbot that is able to provide simple and accurate answers without the user having to read through a large number of articles and websites. Creating an AI chatbot that can answer a variety of user questions on a variety of topics is the goal of the proposed research project. This chatbot uses natural language processing to comprehend user inquiries and provides succinct responses by examining a collection of writings that were scraped from the internet. The texts are carefully selected from reliable websites that are found via internet searches. This project aims to provide users with a chatbot that provides clear and precise responses, removing the need to go through several articles and web pages in great detail. In addition to exploring the reasons for their broad acceptance and their usefulness across many industries, this article offers an overview of the interest in chatbots throughout the world.

Keywords: Chatbot, Artificial Intelligence, natural language processing, web scrapping

Procedia PDF Downloads 66
526 Data-Driven Monitoring and Control of Water Sanitation and Hygiene for Improved Maternal Health in Rural Communities

Authors: Paul Barasa Wanyama, Tom Wanyama

Abstract:

Governments and development partners in low-income countries often prioritize building Water Sanitation and Hygiene (WaSH) infrastructure of healthcare facilities to improve maternal healthcare outcomes. However, the operation, maintenance, and utilization of this infrastructure are almost never considered. Many healthcare facilities in these countries use untreated water that is not monitored for quality or quantity. Consequently, it is common to run out of water while a patient is on their way to or in the operating theater. Further, the handwashing stations in healthcare facilities regularly run out of water or soap for months, and the latrines are typically not clean, in part due to the lack of water. In this paper, we present a system that uses Internet of Things (IoT), big data, cloud computing, and AI to initiate WaSH security in healthcare facilities, with a specific focus on maternal health. We have implemented smart sensors and actuators to monitor and control WaSH systems from afar to ensure their objectives are achieved. We have also developed a cloud-based system to analyze WaSH data in real time and communicate relevant information back to the healthcare facilities and their stakeholders (e.g., medical personnel, NGOs, ministry of health officials, facilities managers, community leaders, pregnant women, and new mothers and their families) to avert or mitigate problems before they occur.

Keywords: WaSH, internet of things, artificial intelligence, maternal health, rural communities, healthcare facilities

Procedia PDF Downloads 19
525 Relationship between Learning Methods and Learning Outcomes: Focusing on Discussions in Learning

Authors: Jaeseo Lim, Jooyong Park

Abstract:

Although there is ample evidence that student involvement enhances learning, college education is still mainly centered on lectures. However, in recent years, the effectiveness of discussions and the use of collective intelligence have attracted considerable attention. This study intends to examine the empirical effects of discussions on learning outcomes in various conditions. Eighty eight college students participated in the study and were randomly assigned to three groups. Group 1 was told to review material after a lecture, as in a traditional lecture-centered class. Students were given time to review the material for themselves after watching the lecture in a video clip. Group 2 participated in a discussion in groups of three or four after watching the lecture. Group 3 participated in a discussion after studying on their own. Unlike the previous two groups, students in Group 3 did not watch the lecture. The participants in the three groups were tested after studying. The test questions consisted of memorization problems, comprehension problems, and application problems. The results showed that the groups where students participated in discussions had significantly higher test scores. Moreover, the group where students studied on their own did better than that where students watched a lecture. Thus discussions are shown to be effective for enhancing learning. In particular, discussions seem to play a role in preparing students to solve application problems. This is a preliminary study and other age groups and various academic subjects need to be examined in order to generalize these findings. We also plan to investigate what kind of support is needed to facilitate discussions.

Keywords: discussions, education, learning, lecture, test

Procedia PDF Downloads 176
524 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 420