Search results for: automatic classification of tremor types
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8064

Search results for: automatic classification of tremor types

6504 Automatic Segmentation of Lung Pleura Based On Curvature Analysis

Authors: Sasidhar B., Bhaskar Rao N., Ramesh Babu D. R., Ravi Shankar M.

Abstract:

Segmentation of lung pleura is a preprocessing step in Computer-Aided Diagnosis (CAD) which helps in reducing false positives in detection of lung cancer. The existing methods fail in extraction of lung regions with the nodules at the pleura of the lungs. In this paper, a new method is proposed which segments lung regions with nodules at the pleura of the lungs based on curvature analysis and morphological operators. The proposed algorithm is tested on 06 patient’s dataset which consists of 60 images of Lung Image Database Consortium (LIDC) and the results are found to be satisfactory with 98.3% average overlap measure (AΩ).

Keywords: curvature analysis, image segmentation, morphological operators, thresholding

Procedia PDF Downloads 596
6503 Semantic Data Schema Recognition

Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia

Abstract:

The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.

Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns

Procedia PDF Downloads 418
6502 Providing a Secure Hybrid Method for Graphical Password Authentication to Prevent Shoulder Surfing, Smudge and Brute Force Attack

Authors: Faraji Sepideh

Abstract:

Nowadays, purchase rate of the smart device is increasing and user authentication is one of the important issues in information security. Alphanumeric strong passwords are difficult to memorize and also owners write them down on papers or save them in a computer file. In addition, text password has its own flaws and is vulnerable to attacks. Graphical password can be used as an alternative to alphanumeric password that users choose images as a password. This type of password is easier to use and memorize and also more secure from pervious password types. In this paper we have designed a more secure graphical password system to prevent shoulder surfing, smudge and brute force attack. This scheme is a combination of two types of graphical passwords recognition based and Cued recall based. Evaluation the usability and security of our proposed scheme have been explained in conclusion part.

Keywords: brute force attack, graphical password, shoulder surfing attack, smudge attack

Procedia PDF Downloads 161
6501 The Adoption of State Feminism by the Dominant Party: A Case Study in Japan

Authors: Mengmeng Xiao

Abstract:

The study examines the proactive promotion of feminist agendas by states experiencing prolonged one-party dominance, with a specific focus on Japan. Through a case study approach, it explores why leaders of the dominant party, the Liberal Democratic Party (LDP), actively endorse women-friendly initiatives. The findings reveal three primary motivations: 1) the adoption of women-friendly policies for legitimation, 2) the establishment or funding of women’s organizations for co-optation, and 3) the enhancement of women’s economic and employment rights for state-building purposes. These findings bridge theories across the democracy/autocracy spectrum, emphasizing the need to restructure the research framework on state feminism beyond the binary categorization of regime types. Additionally, they underscore the significance of acknowledging the discretion exercised by state officials, providing insights into instances where state feminism may fail in certain democratic contexts.

Keywords: state feminism, feminist policies, national machinery, regime types, political parties, Japan

Procedia PDF Downloads 51
6500 Loss Allocation in Radial Distribution Networks for Loads of Composite Types

Authors: Sumit Banerjee, Chandan Kumar Chanda

Abstract:

The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example.

Keywords: composite type, deregulation, loss allocation, radial distribution networks

Procedia PDF Downloads 286
6499 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 26
6498 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 267
6497 Design of a Drift Assist Control System Applied to Remote Control Car

Authors: Sheng-Tse Wu, Wu-Sung Yao

Abstract:

In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.

Keywords: drift assist control system, remote control cars, gyroscope, vehicle dynamics

Procedia PDF Downloads 397
6496 Review of Numerical Models for Granular Beds in Solar Rotary Kilns for Thermal Applications

Authors: Edgar Willy Rimarachin Valderrama, Eduardo Rojas Parra

Abstract:

Thermal energy from solar radiation is widely present in power plants, food drying, chemical reactors, heating and cooling systems, water treatment processes, hydrogen production, and others. In the case of power plants, one of the technologies available to transform solar energy into thermal energy is by solar rotary kilns where a bed of granular matter is heated through concentrated radiation obtained from an arrangement of heliostats. Numerical modeling is a useful approach to study the behavior of granular beds in solar rotary kilns. This technique, once validated with small-scale experiments, can be used to simulate large-scale processes for industrial applications. This study gives a comprehensive classification of numerical models used to simulate the movement and heat transfer for beds of granular media within solar rotary furnaces. In general, there exist three categories of models: 1) continuum, 2) discrete, and 3) multiphysics modeling. The continuum modeling considers zero-dimensional, one-dimensional and fluid-like models. On the other hand, the discrete element models compute the movement of each particle of the bed individually. In this kind of modeling, the heat transfer acts during contacts, which can occur by solid-solid and solid-gas-solid conduction. Finally, the multiphysics approach considers discrete elements to simulate grains and a continuous modeling to simulate the fluid around particles. This classification allows to compare the advantages and disadvantages for each kind of model in terms of accuracy, computational cost and implementation.

Keywords: granular beds, numerical models, rotary kilns, solar thermal applications

Procedia PDF Downloads 34
6495 Bridge Construction and Type of Bridges and Their Construction Methods

Authors: Mokhtar Nikgoo

Abstract:

Definition of bridge: A bridge is a structure that allows people to pass through the communication road with two points. There are many different types of bridges, each of which is designed to perform a specific function. This article introduces the concept, history, components, uses, types, construction methods, selected factors, damage factors and principles of bridge maintenance. A bridge is a structure to cross a passage such as a water, valley or road without blocking another path underneath. This structure makes it possible to pass obstacles that are difficult or impossible to pass. There are different designs for bridge construction, each of which is used for a particular function and condition. In the old definition, a bridge is an arch over a river, valley, or any type of passage that makes traffic possible. But today, in the topic of urban management, the bridge is considered as a structure to cross physical barriers, so that while using space (not just the surface of the earth), it can facilitate the passage and access to places. The useful life of bridges may be between 30 and 80 years depending on the location and the materials used. But with proper maintenance and improvement, their life may last for hundreds of years.

Keywords: bridge, road construction, surveying, transportation

Procedia PDF Downloads 512
6494 Comparative Study on Different Type of Shear Connectors in Composite Slabs

Authors: S. Subrmanian, A. Siva, R. Raghul

Abstract:

In modern construction industry, usage of cold form composite slab has its scope widely due to its light weight, high structural properties and economic factor. To enhance the structural integrity, mechanical interlocking or frictional interlocking was introduced. The role of mechanical interlocking or frictional interlocking is to increase the longitudinal shear between the profiled sheet and concrete. This paper deals with the experimental evaluation of three types of mechanical interlocking devices namely normal stud shear connector, J-Type shear connector, U-Type shear connector. An attempt was made to evolve the shear connector which can be suitable for the composite slab as an interlocking device. Totally six number of composite slabs have been experimented with three types of shear connectors and comparison study is made. The outcome was compared with numerical model was created by ABAQUS software and analyzed for comparative purpose. The result was U-Type shear connector provided better performance and resistance.

Keywords: composite slabs, shear connector, end slip, longitudinal shear

Procedia PDF Downloads 326
6493 Stabilization of Lateritic Soil Sample from Ijoko with Cement Kiln Dust and Lime

Authors: Akinbuluma Ayodeji Theophilus, Adewale Olutaiwo

Abstract:

When building roads and paved surfaces, a strong foundation is always essential. A durable material that can withstand years of traffic while staying trustworthy must be used to build the foundation. A frequent problem in the construction of roads and pavements is the lack of high-quality, long-lasting materials for the pavement structure (base, subbase, and subgrade). Hence, this study examined the stabilization of lateritic soil samples from Ijoko with cement kiln dust and lime. The study adopted the experimental design. Laboratory tests were conducted on classification, swelling potential, compaction, California bearing ratio (CBR), and unconfined compressive tests, among others, were conducted on the laterite sample treated with cement kiln dust (CKD) and lime in incremental order of 2% up to 10% of dry weight soft soil sample. The results of the test showed that the studied soil could be classified as an A-7-6 and CL soil using the American Association of State Highway and transport officials (AASHTO) and the unified soil classification system (USCS), respectively. The plasticity (PI) of the studied soil reduced from 30.5% to 29.9% at the application of CKD. The maximum dry density on the application of CKD reduced from 1.9.7 mg/m3 to 1.86mg/m3, and lime application yielded a reduction from 1.97mg/m3 to 1.88.mg/m3. The swell potential on CKD application was reduced from 0.05 to 0.039%. The study concluded that soil stabilizations are effective and economic way of improving road pavement for engineering benefit. The degree of effectiveness of stabilization in pavement construction was found to depend on the type of soil to be stabilized. The study therefore recommended that stabilized soil mixtures should be used to subbase material for flexible pavement since is a suitable.

Keywords: lateritic soils, sand, cement, stabilization, road pavement

Procedia PDF Downloads 90
6492 The Development of Liquid Chromatography Tandem Mass Spectrometry Method for Citrinin Determination in Dry-Fermented Meat Products

Authors: Ana Vulic, Tina Lesic, Nina Kudumija, Maja Kis, Manuela Zadravec, Nada Vahcic, Tomaz Polak, Jelka Pleadin

Abstract:

Mycotoxins are toxic secondary metabolites produced by numerous types of molds. They can contaminate both food and feed so that they represent a serious public health concern. Production of dry-fermented meat products involves ripening, during which molds can overgrow the product surface, produce mycotoxins, and consequently contaminate the final product. Citrinin is a mycotoxin produced mainly by the Penicillium citrinum. Data on citrinin occurrence in both food and feed are limited. Therefore, there is a need for research on citrinin occurrence in these types of meat products. The LC-MS/MS method for citrinin determination was developed and validated. Sample preparation was performed using immunoaffinity columns, which resulted in clean sample extracts. Method validation included the determination of the limit of detection (LOD), the limit of quantification (LOQ), recovery, linearity, and matrix effect in accordance to the latest validation guidance. The determined LOD and LOQ were 0.60 µg/kg and 1.98 µg/kg, respectively, showing a good method sensitivity. The method was tested for its linearity in the calibration range of 1 µg/L to 10 µg/L. The recovery was 100.9 %, while the matrix effect was 0.7 %. This method was employed in the analysis of 47 samples of dry-fermented sausages collected from local households. Citrinin wasn’t detected in any of these samples, probably because of the short ripening period of the tested sausages that takes three months tops. The developed method shall be used to test other types of traditional dry-cured products, such as prosciuttos, whose surface is usually more heavily overgrown by surface molds due to the longer ripening period.

Keywords: citrinin, dry-fermented meat products, LC-MS/MS, mycotoxins

Procedia PDF Downloads 122
6491 Characterizing the Geometry of Envy Human Behaviour Using Game Theory Model with Two Types of Homogeneous Players

Authors: A. S. Mousa, R. I. Rajab, A. A. Pinto

Abstract:

An envy behavioral game theoretical model with two types of homogeneous players is considered in this paper. The strategy space of each type of players is a discrete set with only two alternatives. The preferences of each type of players is given by a discrete utility function. All envy strategies that form Nash equilibria and the corresponding envy Nash domains for each type of players have been characterized. We use geometry to construct two dimensional envy tilings where the horizontal axis reflects the preference for players of type one, while the vertical axis reflects the preference for the players of type two. The influence of the envy behavior parameters on the Cartesian position of the equilibria has been studied, and in each envy tiling we determine the envy Nash equilibria. We observe that there are 1024 combinatorial classes of envy tilings generated from envy chromosomes: 256 of them are being structurally stable while 768 are with bifurcation. Finally, some conditions for the disparate envy Nash equilibria are stated.

Keywords: game theory, Nash equilibrium, envy Nash behavior, geometric tilings, bifurcation thresholds

Procedia PDF Downloads 229
6490 JREM: An Approach for Formalising Models in the Requirements Phase with JSON and NoSQL Databases

Authors: Aitana Alonso-Nogueira, Helia Estévez-Fernández, Isaías García

Abstract:

This paper presents an approach to reduce some of its current flaws in the requirements phase inside the software development process. It takes the software requirements of an application, makes a conceptual modeling about it and formalizes it within JSON documents. This formal model is lodged in a NoSQL database which is document-oriented, that is, MongoDB, because of its advantages in flexibility and efficiency. In addition, this paper underlines the contributions of the detailed approach and shows some applications and benefits for the future work in the field of automatic code generation using model-driven engineering tools.

Keywords: conceptual modelling, JSON, NoSQL databases, requirements engineering, software development

Procedia PDF Downloads 378
6489 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 105
6488 Antimicrobial Activity of Igusa and the Application to Foam Materials for Food Industry

Authors: I. Nanako, Mariko Era, Hiroshi Morita

Abstract:

Objectives: Japanese uses TATAMI rather than flooring at home. Igusa ( Juncus effuses var. decipiens ), which is commonly known in the forms of TATAMI. Juncus spp. grow at a relatively high humidity area (Japan, China and Southeast Asia ). Yatsushiro region in the southern part of Kumamoto prefecture is major produing area of Igusa. Igusa found to have honeycomb structure and was also shown to have the ability to control humidity. And Igusa has been used as a medicinal herb for diuretic and antiphlogistic agent. In previous study, we investigated antimicrobial effects of Igusa, and showed high antimicrobial activity against food poisoning bacteria. Therefore, the food trays blended Igusa can be kept clean by antimicrobial activity of Igusa. We focus on ‘Igusa foam materials’. In this study, we investigated the antibacterial and antifungal activity of Igusa, and new application to foam materials for food industry. Materials and method: We used Igusa foam materials (3 × 3 × 3 cm) as a sample. We set about fifteen types of samples combined with a commercial antibacterial agent A, a commercial antibacterial agent B, potassium laurate (C12K) and a commercial antifungal agent C, a commercial antifungal agent D and a commercial antifungal agent E. We selected four bacteria strains (Escherichia coli NBRC 3972, Staphylococus aureus NBRC 12732, Salmonella typhimurium NBRC 13245, Bacillus subtilis NBRC 3335 ) and three fungus strains (Penicillium pinophilum NBRC 6345, Cladosporium cladosporioides NBRC 30314, Aspergillus oryzae NBRC 5238 ). The fungus was cultured at 30 °C on Igusa foam materials after inoculation of the fungus for fourteen days. The bacteria was cultured at 30 °C on Igusa foam materials after inoculation of the bacteria for three days. And the Igusa foam materials were washed with 10 mL normal saline after three days. The normal saline washed Igusa foam materials plated the NA medium. After, It was cultured at 30 °C and used colony counting method. Result and Conclusion: The fifteen types of sample of Igusa foam materials had antifungal activity against C. cladosporioides, A. oryzae and P. pinophilum for fourteen days. The four types of sample contained potassium laurate and antibacterial agent A, sample contained antibacterial agent B and antifungal agent D, sample contained A and antifungal agent E, sample contained B and E had antibacterial activity against B. subtilis. The three types of sample contained potassium laurate and A, sample contained B and D, sample contained A and E had antibacterial activity against S. typhimurium. The five types of sample contained potassium laurate and A, sample contained B and D, sample contained A and E, sample contained B and E, sample contained B and antifungal agent C had antibacterial activity against E. coli and S. aureus. These results indicate that Igusa of Igusa foam materials had high antifungal activity. In addition, Igusa foam materials combined with a commercial antibacterial agent had antibacterial activity. In the future, we consider that use of Igusa foam materials may be spread from food industry.

Keywords: antibacterial, antifungal, foam materials, Igusa

Procedia PDF Downloads 245
6487 Prevalence of Elder Abuse and Effects of Social Factors on It

Authors: Ezat Vahidian, Babak Eshrati

Abstract:

Introduction: Elder abuse, a very complex issue with diverse definitions and names, has been very slow to capture the public eye and public policy since it is manifested at many levels. It requires the involvement of different types of professionals. While elder abuse is not a new phenomenon, the speed of population ageing world-wide is likely to lead to an increase in its incidence and prevalence. Elder abuse has devastating consequences for older persons such as poor quality of life, psychological distress, and loss of property and security. It is also associated with increased mortality and morbidity. Elder abuse is a problem that manifests itself in both rich and poor countries and at all levels of society. Purpose: The purpose of this study is to determine the prevalence of elder abuse and effects of social factor on it in Markazi Province. Materials and methods: The society of the study was all of the elders in Markazi Province that were available by geographical address in the table of rural and urban household societies. The study was cross sectional and multi phases in sampling the first one was classification according rural and urban area and the second one was cluster sampling with equal cluster. Estimation of samples were 472 persons and increased by design effect to 1110 persons. Collection data was done by questionnaire and analyzed by SPSS and chi 2 exam. Results: This study showed 70 persons were abused (42/8% male and 57/2% female) mean of ages was 74/7 years. 64% were marred and 31% were widows. There were not any significant meaningful association between elder abuse and area of living (pv=0.299),occupation (p.v=0.104), education (pv=0.358) and age (P.value=0.104) there were significant meaningful association between physical impairment (pv=0.08), and movement impairment (P.value=0.008). Conclusion: Results verify that maltreatment occurred in the aged persons. Analysis of data indicated that elder abuse exist in every socioeconomic group with any context of education in urban area and rural area and in men and women. Prevalence of elder abuse was 6.3% (70 persons) that verify the data of developed countries with limited sample.

Keywords: elder abuse, education, occupation, area of living

Procedia PDF Downloads 403
6486 Effect of Different Types of Nano/Micro Fillers on the Interfacial Shear Properties of Polyamide 6 with De-Sized Carbon Fiber

Authors: Mohamed H. Gabr, Kiyoshi Uzawa

Abstract:

The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS.

Keywords: sub-micro particles, nano-composites, interfacial shear strength, polyamide 6

Procedia PDF Downloads 241
6485 The Antecedents That Effect on Organizational Commitment of the Public Enterprises in Thailand

Authors: Mananya Meenakorn

Abstract:

The purpose of this study is to examine the impact of public enterprise reform policy on the attributes of organizational commitments in the public energy enterprises in Thailand. It compares three structural types of public energy enterprises: totally state-owned public enterprises, partially transformed public enterprises and totally transformed public enterprises, based on the degree of state ownership and the level of management control that exist in the public reformed organizations, by analyzing the presence of the desirable attributes of organizational commitment as perceived by employees. Findings indicate that there are statistically significant differences in the level of some dimensions of organizational commitment between the three types of public energy enterprises. The results also indicate empirical evidence concerning the causal relationship between the antecedents and organizational commitment. Whereas change-related behaviors show a direct negative influence on organizational commitment, both HRM practices and work-related values indicate direct positive influences on them also.

Keywords: affective commitment, organizational commitment, public enterprise reform organizations, public energy enterprises in Thailand

Procedia PDF Downloads 294
6484 Security in Cyberspace: A Comprehensive Review of COVID-19 Continued Effects on Security Threats and Solutions in 2021 and the Trajectory of Cybersecurity Going into 2022

Authors: Mojtaba Fayaz, Richard Hallal

Abstract:

This study examines the various types of dangers that our virtual environment is vulnerable to, including how it can be attacked and how to avoid/secure our data. The terrain of cyberspace is never completely safe, and Covid- 19 has added to the confusion, necessitating daily periodic checks and evaluations. Cybercriminals have been able to enact with greater skill and undertake more conspicuous and sophisticated attacks while keeping a higher level of finesse by operating from home. Different types of cyberattacks, such as operation-based attacks, authentication-based attacks, and software-based attacks, are constantly evolving, but research suggests that software-based threats, such as Ransomware, are becoming more popular, with attacks expected to increase by 93 percent by 2020. The effectiveness of cyber frameworks has shifted dramatically as the pandemic has forced work and private life to become intertwined, destabilising security overall and creating a new front of cyber protection for security analysis and personal. The high-rise formats in which cybercrimes are carried out, as well as the types of cybercrimes that exist, such as phishing, identity theft, malware, and DDoS attacks, have created a new front of cyber protection for security analysis and personal safety. The overall strategy for 2022 will be the introduction of frameworks that address many of the issues associated with offsite working, as well as education that provides better information about commercialised software that does not provide the highest level of security for home users, allowing businesses to plan better security around their systems.

Keywords: cyber security, authentication, software, hardware, malware, COVID-19, threat actors, awareness, home users, confidentiality, integrity, availability, attacks

Procedia PDF Downloads 116
6483 Classification on Statistical Distributions of a Complex N-Body System

Authors: David C. Ni

Abstract:

Contemporary models for N-body systems are based on temporal, two-body, and mass point representation of Newtonian mechanics. Other mainstream models include 2D and 3D Ising models based on local neighborhood the lattice structures. In Quantum mechanics, the theories of collective modes are for superconductivity and for the long-range quantum entanglement. However, these models are still mainly for the specific phenomena with a set of designated parameters. We are therefore motivated to develop a new construction directly from the complex-variable N-body systems based on the extended Blaschke functions (EBF), which represent a non-temporal and nonlinear extension of Lorentz transformation on the complex plane – the normalized momentum spaces. A point on the complex plane represents a normalized state of particle momentums observed from a reference frame in the theory of special relativity. There are only two key parameters, normalized momentum and nonlinearity for modelling. An algorithm similar to Jenkins-Traub method is adopted for solving EBF iteratively. Through iteration, the solution sets show a form of σ + i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various distributions, such as 1-peak, 2-peak, and 3-peak etc. distributions and some of them are analog to the canonical distributions. The results of the numerical analysis demonstrate continuum-to-discreteness transitions, evolutional invariance of distributions, phase transitions with conjugate symmetry, etc., which manifest the construction as a potential candidate for the unification of statistics. We hereby classify the observed distributions on the finite convergent domains. Continuous and discrete distributions both exist and are predictable for given partitions in different regions of parameter-pair. We further compare these distributions with canonical distributions and address the impacts on the existing applications.

Keywords: blaschke, lorentz transformation, complex variables, continuous, discrete, canonical, classification

Procedia PDF Downloads 309
6482 Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation

Authors: Mario Kubek, Herwig Unger

Abstract:

Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution.

Keywords: search algorithm, centroid, query, keyword, co-occurrence, categorisation

Procedia PDF Downloads 282
6481 On the Comprehension of English Compound Nouns by Arabic-Speaking EFL Learners

Authors: Abdel Rahman Altakhaineh, Mohamma Alaghawat, Hiba Alhendi

Abstract:

This paper reports an investigation of the comprehension of English compound nouns by sixty Arabic-speaking English Foreign Language (EFL) learners majoring in English at the University of Jordan, Amman. The investigation focused on the problems that these learners may encounter in understanding certain types of compounds and their ability to use their L1 compound noun knowledge to produce the meaning of L2 compound nouns. Participants whose English proficiency level was advanced underwent a test to identify the meaning ofan underlined compound without using a dictionary. Theresponses to the three different types of compounds were analyzed usingTwo-Way repeated measures ANOVA, and the results showed that there were different endocentric and exocentric compound responses within subordinative compounds, with a statistically significant difference between the two in favor of endocentric compounds. We argue that the endocentric, especially subordinative endocentric compounds,weremore easily understood due to its representative nature, i.e., because the head represents the meaning of the whole compound. The study concludes with pedagogical implications for teaching compound nouns.

Keywords: morphology, compounding, SLA, arabic-speaking EFL learners

Procedia PDF Downloads 106
6480 Grain Boundary Detection Based on Superpixel Merges

Authors: Gaokai Liu

Abstract:

The distribution of material grain sizes reflects the strength, fracture, corrosion and other properties, and the grain size can be acquired via the grain boundary. In recent years, the automatic grain boundary detection is widely required instead of complex experimental operations. In this paper, an effective solution is applied to acquire the grain boundary of material images. First, the initial superpixel segmentation result is obtained via a superpixel approach. Then, a region merging method is employed to merge adjacent regions based on certain similarity criterions, the experimental results show that the merging strategy improves the superpixel segmentation result on material datasets.

Keywords: grain boundary detection, image segmentation, material images, region merging

Procedia PDF Downloads 170
6479 Numerical Study of Natural Convection Heat Transfer Performance in an Inclined Cavity: Nanofluid and Random Temperature

Authors: Hicham Salhi, Mohamed Si-Ameur, Nadjib Chafai

Abstract:

Natural convection of a nanofluid consisting of water and nanoparticles (Ag or TiO2) in an inclined enclosure cavity, has been studied numerically, heated by a (random temperature, based on the random function). The governing equations are solved numerically using the finite-volume. Results are presented in the form of streamlines, isotherms, and average Nusselt number. In addition, a parametric study is carried out to examine explicitly the volume fraction effects of nanoparticles (Ψ= 0.1, 0.2), the Rayleigh number (Ra=103, 104, 105, 106),the inclination angle of the cavity( égale à 0°, 30°, 45°, 90°, 135°, 180°), types of temperature (constant ,random), types of (NF) (Ag andTiO2). The results reveal that (NPs) addition remarkably enhances heat transfer in the cavity especially for (Ψ= 0.2). Besides, the effect of inclination angle and type of temperature is more pronounced at higher Rayleigh number.

Keywords: nanofluid, natural convection, inclined cavity, random temperature, finite-volume

Procedia PDF Downloads 287
6478 Specialized Phytochemical Properties of Stachys inflata Eco-Types in Different Ecological Circumstances of Southern Iran

Authors: Ghasem Khodahami, Vahid Rowshan, Mojtaba Pakparvar

Abstract:

Stachys forms one of the largest genera in the flowering plant family Lamiaceae. The number of species in the genus is estimated from about 300 to about 450 and comprises some 34 species in Iran. This genus is one of the richest sources of diterpenes which are particularly interesting because of their ecological role as antifeedants against different species of insects and for their role as the medicinal properties of the plants. The ecological distribution of Stachys inflata was studied and the resulted eco-types were sampled from four regions ranging 230-340 mm of rainfall and 1690-2125 m a.s.l of height In Fars Province Southern Iran. The essential oils of air-dried samples were obtained by hydrodistillation and analyzed by gas chromatography and gas chromatography/mass spectrometry. The number of secondary metabolites varied from 25 to 50 depending to ecological conditions. The main compounds in these areas were: Germacrene D, Bicyclogermacrene, spathulenol, δ-cadinene. Statistical analysis of photochemical resulted in recognizing 3 distinct groups that show internal variety in these herbs.

Keywords: eco-type, phytochemistry, secondary metabolites, Stachys inflata

Procedia PDF Downloads 227
6477 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: Bahareh Golchin, Nooshin Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia PDF Downloads 137
6476 Estimating Destinations of Bus Passengers Using Smart Card Data

Authors: Hasik Lee, Seung-Young Kho

Abstract:

Nowadays, automatic fare collection (AFC) system is widely used in many countries. However, smart card data from many of cities does not contain alighting information which is necessary to build OD matrices. Therefore, in order to utilize smart card data, destinations of passengers should be estimated. In this paper, kernel density estimation was used to forecast probabilities of alighting stations of bus passengers and applied to smart card data in Seoul, Korea which contains boarding and alighting information. This method was also validated with actual data. In some cases, stochastic method was more accurate than deterministic method. Therefore, it is sufficiently accurate to be used to build OD matrices.

Keywords: destination estimation, Kernel density estimation, smart card data, validation

Procedia PDF Downloads 352
6475 Cataloguing Beetle Fauna (Insecta: Coleoptera) of India: Estimating Diversity, Distribution, and Taxonomic Challenges

Authors: Devanshu Gupta, Kailash Chandra, Priyanka Das, Joyjit Ghosh

Abstract:

Beetles, in the insect order Coleoptera are the most species-rich group on this planet today. They represent about 40% of the total insect diversity of the world. With a considerable range of landform types including significant mountain ranges, deserts, fertile irrigational plains, and hilly forested areas, India is one of the mega-diverse countries and includes more than 0.1 million faunal species. Despite having rich biodiversity, the efforts to catalogue the beetle diversity of the extant species/taxa reported from India have been less. Therefore, in this paper, the information on the beetle fauna of India is provided based on the data available with the museum collections of Zoological Survey of India and taxa extracted from zoological records and published literature. The species were listed with their valid names, synonyms, type localities, type depositories, and their distribution in states and biogeographic zones of India. The catalogue also incorporates the bibliography on Indian Coleoptera. The exhaustive species inventory, prepared by us include distributional records from Himalaya, Trans Himalaya, Desert, Semi-Arid, Western Ghats, Deccan Peninsula, Gangetic Plains, Northeast, Islands, and Coastal areas of the country. Our study concludes that many of the species are still known from their type localities only, so there is need to revisit and resurvey those collection localities for the taxonomic evaluation of those species. There are species which exhibit single locality records, and taxa-specific biodiversity assessments are required to be undertaken to understand the distributional range of such species. The primary challenge is taxonomic identifications of the species which were described before independence, and the type materials are present in overseas museums. For such species, taxonomic revisions of the different group of beetles are required to solve the problems of identification and classification.

Keywords: checklist, taxonomy, museum collections, biogeographic zones

Procedia PDF Downloads 274