Search results for: open dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4177

Search results for: open dataset

2647 Selection of Variogram Model for Environmental Variables

Authors: Sheikh Samsuzzhan Alam

Abstract:

The present study investigates the selection of variogram model in analyzing spatial variations of environmental variables with the trend. Sometimes, the autofitted theoretical variogram does not really capture the true nature of the empirical semivariogram. So proper exploration and analysis are needed to select the best variogram model. For this study, an open source data collected from California Soil Resource Lab1 is used to explain the problems when fitting a theoretical variogram. Five most commonly used variogram models: Linear, Gaussian, Exponential, Matern, and Spherical were fitted to the experimental semivariogram. Ordinary kriging methods were considered to evaluate the accuracy of the selected variograms through cross-validation. This study is beneficial for selecting an appropriate theoretical variogram model for environmental variables.

Keywords: anisotropy, cross-validation, environmental variables, kriging, variogram models

Procedia PDF Downloads 334
2646 Integrative Analysis of Urban Transportation Network and Land Use Using GIS: A Case Study of Siddipet City

Authors: P. Priya Madhuri, J. Kamini, S. C. Jayanthi

Abstract:

Assessment of land use and transportation networks is essential for sustainable urban growth, urban planning, efficient public transportation systems, and reducing traffic congestion. The study focuses on land use, population density, and their correlation with the road network for future development. The scope of the study covers inventory and assessment of the road network dataset (line) at the city, zonal, or ward level, which is extracted from very high-resolution satellite data (spatial resolution < 0.5 m) at 1:4000 map scale and ground truth verification. Road network assessment is carried out by computing various indices that measure road coverage and connectivity. In this study, an assessment of the road network is carried out for the study region at the municipal and ward levels. In order to identify gaps, road coverage and connectivity were associated with urban land use, built-up area, and population density in the study area. Ward-wise road connectivity and coverage maps have been prepared. To assess the relationship between road network metrics, correlation analysis is applied. The study's conclusions are extremely beneficial for effective road network planning and detecting gaps in the road network at the ward level in association with urban land use, existing built-up, and population.

Keywords: road connectivity, road coverage, road network, urban land use, transportation analysis

Procedia PDF Downloads 34
2645 Random Forest Classification for Population Segmentation

Authors: Regina Chua

Abstract:

To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.

Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling

Procedia PDF Downloads 94
2644 Enhancement in the Absorption Efficiency of Gaas/Inas Nanowire Solar Cells through a Decrease in Light Reflection

Authors: Latef M. Ali, Farah A. Abed

Abstract:

In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV.

Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, fdtd simulation

Procedia PDF Downloads 74
2643 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 123
2642 Oscillating Water Column Wave Energy Converter with Deep Water Reactance

Authors: William C. Alexander

Abstract:

The oscillating water column (OSC) wave energy converter (WEC) with deep water reactance (DWR) consists of a large hollow sphere filled with seawater at the base, referred to as the ‘stabilizer’, a hollow cylinder at the top of the device, with a said cylinder having a bottom open to the sea and a sealed top save for an orifice which leads to an air turbine, and a long, narrow rod connecting said stabilizer with said cylinder. A small amount of ballast at the bottom of the stabilizer and a small amount of floatation in the cylinder keeps the device upright in the sea. The floatation is set such that the mean water level is nominally halfway up the cylinder. The entire device is loosely moored to the seabed to keep it from drifting away. In the presence of ocean waves, seawater will move up and down within the cylinder, producing the ‘oscillating water column’. This gives rise to air pressure within the cylinder alternating between positive and negative gauge pressure, which in turn causes air to alternately leave and enter the cylinder through said top-cover situated orifice. An air turbine situated within or immediately adjacent to said orifice converts the oscillating airflow into electric power for transport to shore or elsewhere by electric power cable. Said oscillating air pressure produces large up and down forces on the cylinder. Said large forces are opposed through the rod to the large mass of water retained within the stabilizer, which is located deep enough to be mostly free of any wave influence and which provides the deepwater reactance. The cylinder and stabilizer form a spring-mass system which has a vertical (heave) resonant frequency. The diameter of the cylinder largely determines the power rating of the device, while the size (and water mass within) of the stabilizer determines said resonant frequency. Said frequency is chosen to be on the lower end of the wave frequency spectrum to maximize the average power output of the device over a large span of time (such as a year). The upper portion of the device (the cylinder) moves laterally (surge) with the waves. This motion is accommodated with minimal loading on the said rod by having the stabilizer shaped like a sphere, allowing the entire device to rotate about the center of the stabilizer without rotating the seawater within the stabilizer. A full-scale device of this type may have the following dimensions. The cylinder may be 16 meters in diameter and 30 meters high, the stabilizer 25 meters in diameter, and the rod 55 meters long. Simulations predict that this will produce 1,400 kW in waves of 3.5-meter height and 12 second period, with a relatively flat power curve between 5 and 16 second wave periods, as will be suitable for an open-ocean location. This is nominally 10 times higher power than similar-sized WEC spar buoys as reported in the literature, and the device is projected to have only 5% of the mass per unit power of other OWC converters.

Keywords: oscillating water column, wave energy converter, spar bouy, stabilizer

Procedia PDF Downloads 107
2641 Design of an Ensemble Learning Behavior Anomaly Detection Framework

Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia

Abstract:

Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.

Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing

Procedia PDF Downloads 128
2640 Analysis on Urban Form and Evolution Mechanism of High-Density City: Case Study of Hong Kong

Authors: Yuan Zhang

Abstract:

Along with large population and great demands for urban development, Hong Kong serves as a typical high-density city with multiple altitudes, advanced three-dimensional traffic system, rich city open space, etc. This paper contributes to analyzing its complex urban form and evolution mechanism from three aspects of view, separately as time, space and buildings. Taking both horizontal and vertical dimension into consideration, this paper provides a perspective to explore the fascinating process of growing and space folding in the urban form of high-density city, also as a research reference for related high-density urban design.

Keywords: evolution mechanism, high-density city, Hong Kong, urban form

Procedia PDF Downloads 404
2639 Comparative Forensic Analysis of Lipsticks Using Thin Layer Chromatography and Gas Chromatography

Authors: M. O. Ezegbogu, H. B. Osadolor

Abstract:

Lipsticks constitute a significant source of transfer evidence, and can, therefore, provide corroborative or inclusionary evidence in criminal investigation. This study aimed to determine the uniqueness and persistence of different lipstick smears using Thin Layer Chromatography (TLC), and Gas Chromatography with a Flame Ionisation Detector (GC-FID). In this study, we analysed lipstick smears retrieved from tea cups exposed to the environment for up to four weeks. The n-alkane content of each sample was determined using GC-FID, while TLC was used to determine the number of bands, and retention factor of each band per smear. This study shows that TLC gives more consistent results over a 4-week period than GC-FID. It also proposes a maximum exposure time of two weeks for the analysis of lipsticks left in the open using GC-FID. Finally, we conclude that neither TLC nor GC-FID can distinguish lipstick evidence recovered from hypothetical crime scenes.

Keywords: forensic science, chromatography, identification, lipstick

Procedia PDF Downloads 187
2638 Evaluation of Practicality of On-Demand Bus Using Actual Taxi-Use Data through Exhaustive Simulations

Authors: Jun-ichi Ochiai, Itsuki Noda, Ryo Kanamori, Keiji Hirata, Hitoshi Matsubara, Hideyuki Nakashima

Abstract:

We conducted exhaustive simulations for data assimilation and evaluation of service quality for various setting in a new shared transportation system, called SAVS. Computational social simulation is a key technology to design recent social services like SAVS as new transportation service. One open issue in SAVS was to determine the service scale through the social simulation. Using our exhaustive simulation framework, OACIS, we did data-assimilation and evaluation of effects of SAVS based on actual tax-use data at Tajimi city, Japan. Finally, we get the conditions to realize the new service in a reasonable service quality.

Keywords: on-demand bus sytem, social simulation, data assimilation, exhaustive simulation

Procedia PDF Downloads 321
2637 Assessment the Implications of Regional Transport and Local Emission Sources for Mitigating Particulate Matter in Thailand

Authors: Ruchirek Ratchaburi, W. Kevin. Hicks, Christopher S. Malley, Lisa D. Emberson

Abstract:

Air pollution problems in Thailand have improved over the last few decades, but in some areas, concentrations of coarse particulate matter (PM₁₀) are above health and regulatory guidelines. It is, therefore, useful to investigate how PM₁₀ varies across Thailand, what conditions cause this variation, and how could PM₁₀ concentrations be reduced. This research uses data collected by the Thailand Pollution Control Department (PCD) from 17 monitoring sites, located across 12 provinces, and obtained between 2011 and 2015 to assess PM₁₀ concentrations and the conditions that lead to different levels of pollution. This is achieved through exploration of air mass pathways using trajectory analysis, used in conjunction with the monitoring data, to understand the contribution of different months, an hour of the day and source regions to annual PM₁₀ concentrations in Thailand. A focus is placed on locations that exceed the national standard for the protection of human health. The analysis shows how this approach can be used to explore the influence of biomass burning on annual average PM₁₀ concentration and the difference in air pollution conditions between Northern and Southern Thailand. The results demonstrate the substantial contribution that open biomass burning from agriculture and forest fires in Thailand and neighboring countries make annual average PM₁₀ concentrations. The analysis of PM₁₀ measurements at monitoring sites in Northern Thailand show that in general, high concentrations tend to occur in March and that these particularly high monthly concentrations make a substantial contribution to the overall annual average concentration. In 2011, a > 75% reduction in the extent of biomass burning in Northern Thailand and in neighboring countries resulted in a substantial reduction not only in the magnitude and frequency of peak PM₁₀ concentrations but also in annual average PM₁₀ concentrations at sites across Northern Thailand. In Southern Thailand, the annual average PM₁₀ concentrations for individual years between 2011 and 2015 did not exceed the human health standard at any site. The highest peak concentrations in Southern Thailand were much lower than for Northern Thailand for all sites. The peak concentrations at sites in Southern Thailand generally occurred between June and October and were associated with air mass back trajectories that spent a substantial proportion of time over the sea, Indonesia, Malaysia, and Thailand prior to arrival at the monitoring sites. The results show that emissions reductions from biomass burning and forest fires require action on national and international scales, in both Thailand and neighboring countries, such action could contribute to ensuring compliance with Thailand air quality standards.

Keywords: annual average concentration, long-range transport, open biomass burning, particulate matter

Procedia PDF Downloads 183
2636 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 75
2635 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites

Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan

Abstract:

All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.

Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite

Procedia PDF Downloads 100
2634 Adolescent Social Anxiety, School Satisfaction, and School Absenteeism; Findings from Young-HUNT3 and Norwegian National Education Data

Authors: Malik D. Halidu, Cathrine F. Moe, Tommy Haugan

Abstract:

Purpose: The demand for effective school-based interventions in shaping adolescents' unmet mental health needs is growing. Grounding in the functional contextualism approach, this study investigates the role of school satisfaction (SS) in serving as a buffer to school absenteeism (SAB) among adolescents experiencing social anxiety (SA). Methods: A unique and large population-based sample of adolescents (upper secondary school pupils; n= 1864) from the Young-HUNT 3 survey dataset merged with the national educational registry from Norway. Moderation regression analysis was performed using Stata 17. Results: We find a statistically significant moderating role of school satisfaction on the relationship between social anxiety and school absenteeism (β=-0.109,p<0.01) among upper secondary school pupils. Among socially anxious adolescents associated with a higher perceived quality of school life, it functions as a buffer by reducing the positive relationship between SA and SAB. But, there was no statistically significant difference between social anxiety and school absenteeism for adolescents with low school satisfaction. Conclusion: Overall, the study's hypothesis model was statistically supported and contributes to the discourse that school satisfaction as a target of school-based interventions can effectively improve school outcomes (e.g., reduced absenteeism) among socially anxious pupils.

Keywords: social anxiety, school satisfaction, school absenteeism, Norwegian adolescent

Procedia PDF Downloads 90
2633 Investigating Teachers’ Confidence and Beliefs in Using Technology in Teaching Mathematics in Rwandan Secondary Schools

Authors: Odette Umugiraneza, Etienne Nzaramyimana

Abstract:

Confidence and beliefs are the main contributors to the improvement of teachers’ mathematical knowledge. The objective of this study was to investigate teachers’ confidence and beliefs towards technology use in teaching mathematics subjects in the Musanze District. The data were collected using closed and open questions. These were distributed to 118 secondary school senior 1 to 6 mathematics teachers in Musanze district. The findings revealed that the teachers’ confidence about the use of technology in teaching mathematics needs improvement. Apart from confidence, almost a third of the teachers convoyed negative beliefs that technology plays great importance in promoting the understanding of mathematics. Teachers as knowledge transmitters are required to join various professional courses towards technology integration in the teaching of mathematics, to improve the effectiveness of teaching and learning.

Keywords: knowledge, technology, teachers’ confidence, beliefs, barriers of technology use

Procedia PDF Downloads 125
2632 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms

Authors: Rikson Gultom

Abstract:

Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.

Keywords: abusive language, hate speech, machine learning, optimization, social media

Procedia PDF Downloads 129
2631 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights

Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan

Abstract:

The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.

Keywords: big data, COVID-19, health, indexing, NoSQL, sharding, scalability, well being

Procedia PDF Downloads 70
2630 Study Regarding Effect of Isolation on Social Behaviour in Mice

Authors: Ritu Shitak

Abstract:

Humans are social mammals, of the primate order. Our biology, behaviour, and pathologies are unique to us. In our desire to understand, reduce solitary confinement one source of information is the many reports of social isolation of other social mammals, especially primates. A behavioural study was conducted in the department of pharmacology at Indira Gandhi Medical College, Shimla in Himachal Pradesh province in India using white albino mice. Different behavioural parameters were observed by using open field, tail suspension, tests for aggressive behaviour and social interactions and the effect of isolation was studied. The results were evaluated and the standard statistics were applied. The said study was done to establish facts that isolation itself impairs social behaviour and can lead to alcohol dependence as well as related drug dependence.

Keywords: social isolation, albino mice, drug dependence, isolation on social behaviour

Procedia PDF Downloads 472
2629 Streaming Communication Component for Multi-Robots

Authors: George Oliveira, Luana D. Fronza, Luiza Medeiros, Patricia D. M. Plentz

Abstract:

The research presented in this article is part of a wide project that proposes a scheduling system for multi-robots in intelligent warehouses employing multi-robot path-planning (MPP) and multi-robot task allocation (MRTA) to reconcile multiple restrictions (task delivery time, task priorities, charging capacity, and robots battery capacity). We present the software component capable of interconnecting an open streaming processing architecture and robot operating system (ROS), ensuring communication and message exchange between robots and the environment in which they are inserted. Simulation results show the good performance of our proposed technique for connecting ROS and streaming platforms.

Keywords: complex distributed systems, mobile robots, smart warehouses, streaming platforms

Procedia PDF Downloads 194
2628 Getting to Know the Enemy: Utilization of Phone Record Analysis Simulations to Uncover a Target’s Personal Life Attributes

Authors: David S. Byrne

Abstract:

The purpose of this paper is to understand how phone record analysis can enable identification of subjects in communication with a target of a terrorist plot. This study also sought to understand the advantages of the implementation of simulations to develop the skills of future intelligence analysts to enhance national security. Through the examination of phone reports which in essence consist of the call traffic of incoming and outgoing numbers (and not by listening to calls or reading the content of text messages), patterns can be uncovered that point toward members of a criminal group and activities planned. Through temporal and frequency analysis, conclusions were drawn to offer insights into the identity of participants and the potential scheme being undertaken. The challenge lies in the accurate identification of the users of the phones in contact with the target. Often investigators rely on proprietary databases and open sources to accomplish this task, however it is difficult to ascertain the accuracy of the information found. Thus, this paper poses two research questions: how effective are freely available web sources of information at determining the actual identification of callers? Secondly, does the identity of the callers enable an understanding of the lifestyle and habits of the target? The methodology for this research consisted of the analysis of the call detail records of the author’s personal phone activity spanning the period of a year combined with a hypothetical theory that the owner of said phone was a leader of terrorist cell. The goal was to reveal the identity of his accomplices and understand how his personal attributes can further paint a picture of the target’s intentions. The results of the study were interesting, nearly 80% of the calls were identified with over a 75% accuracy rating via datamining of open sources. The suspected terrorist’s inner circle was recognized including relatives and potential collaborators as well as financial institutions [money laundering], restaurants [meetings], a sporting goods store [purchase of supplies], and airline and hotels [travel itinerary]. The outcome of this research showed the benefits of cellphone analysis without more intrusive and time-consuming methodologies though it may be instrumental for potential surveillance, interviews, and developing probable cause for wiretaps. Furthermore, this research highlights the importance of building upon the skills of future intelligence analysts through phone record analysis via simulations; that hands-on learning in this case study emphasizes the development of the competencies necessary to improve investigations overall.

Keywords: hands-on learning, intelligence analysis, intelligence education, phone record analysis, simulations

Procedia PDF Downloads 16
2627 Mapping of Alteration Zones in Mineral Rich Belt of South-East Rajasthan Using Remote Sensing Techniques

Authors: Mrinmoy Dhara, Vivek K. Sengar, Shovan L. Chattoraj, Soumiya Bhattacharjee

Abstract:

Remote sensing techniques have emerged as an asset for various geological studies. Satellite images obtained by different sensors contain plenty of information related to the terrain. Digital image processing further helps in customized ways for the prospecting of minerals. In this study, an attempt has been made to map the hydrothermally altered zones using multispectral and hyperspectral datasets of South East Rajasthan. Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion (Level1R) dataset have been processed to generate different Band Ratio Composites (BRCs). For this study, ASTER derived BRCs were generated to delineate the alteration zones, gossans, abundant clays and host rocks. ASTER and Hyperion images were further processed to extract mineral end members and classified mineral maps have been produced using Spectral Angle Mapper (SAM) method. Results were validated with the geological map of the area which shows positive agreement with the image processing outputs. Thus, this study concludes that the band ratios and image processing in combination play significant role in demarcation of alteration zones which may provide pathfinders for mineral prospecting studies.

Keywords: ASTER, hyperion, band ratios, alteration zones, SAM

Procedia PDF Downloads 280
2626 Towards a Broader Understanding of Journal Impact: Measuring Relationships between Journal Characteristics and Scholarly Impact

Authors: X. Gu, K. L. Blackmore

Abstract:

The impact factor was introduced to measure the quality of journals. Various impact measures exist from multiple bibliographic databases. In this research, we aim to provide a broader understanding of the relationship between scholarly impact and other characteristics of academic journals. Data used for this research were collected from Ulrich’s Periodicals Directory (Ulrichs), Cabell’s (Cabells), and SCImago Journal & Country Rank (SJR) from 1999 to 2015. A master journal dataset was consolidated via Journal Title and ISSN. We adopted a two-step analysis process to study the quantitative relationships between scholarly impact and other journal characteristics. Firstly, we conducted a correlation analysis over the data attributes, with results indicating that there are no correlations between any of the identified journal characteristics. Secondly, we examined the quantitative relationship between scholarly impact and other characteristics using quartile analysis. The results show interesting patterns, including some expected and others less anticipated. Results show that higher quartile journals publish more in both frequency and quantity, and charge more for subscription cost. Top quartile journals also have the lowest acceptance rates. Non-English journals are more likely to be categorized in lower quartiles, which are more likely to stop publishing than higher quartiles. Future work is suggested, which includes analysis of the relationship between scholars and their publications, based on the quartile ranking of journals in which they publish.

Keywords: academic journal, acceptance rate, impact factor, journal characteristics

Procedia PDF Downloads 304
2625 Corn Production in the Visayas: An Industry Study from 2002-2019

Authors: Julie Ann L. Gadin, Andrearose C. Igano, Carl Joseph S. Ignacio, Christopher C. Bacungan

Abstract:

Corn production has become an important and pervasive industry in the Visayas for many years. Its role as a substitute commodity to rice heightens demand for health-particular consumers. Unfortunately, the corn industry is confronted with several challenges, such as weak institutions. Considering these issues, the paper examined the factors that influence corn production in the three administrative regions in the Visayas, namely, Western Visayas, Central Visayas, and Eastern Visayas. The data used was retrieved from a variety of publicly available data sources such as the Philippine Statistics Authority, the Department of Agriculture, the Philippine Crop Insurance Corporation, and the International Disaster Database. Utilizing a dataset from 2002 to 2019, the indicators were tested using three multiple linear regression (MLR) models. Results showed that the land area harvested (p=0.02), and the value of corn production (p=0.00) are statistically significant variables that influence corn production in the Visayas. Given these findings, it is suggested that the policy of forest conversion and sustainable land management should be effective in enabling farmworkers to obtain land to grow corn crops, especially in rural regions. Furthermore, the Biofuels Act of 2006, the Livestock Industry Restructuring and Rationalization Act, and supported policy, Senate Bill No. 225, or an Act Establishing the Philippine Corn Research Institute and Appropriating Funds, should be enforced inclusively in order to improve the demand for the corn-allied industries which may lead to an increase in the value and volume of corn production in the Visayas.

Keywords: corn, industry, production, MLR, Visayas

Procedia PDF Downloads 213
2624 Attitudinal Change: A Major Therapy for Non–Technical Losses in the Nigerian Power Sector

Authors: Fina O. Faithpraise, Effiong O. Obisung, Azele E. Peter, Chris R. Chatwin

Abstract:

This study investigates and identifies consumer attitude as a major influence that results in non-technical losses in the Nigerian electricity supply sector. This discovery is revealed by the combination of quantitative and qualitative research to complete a survey. The dataset employed is a simple random sampling of households using electricity (public power supply), and the number of units chosen is based on statistical power analysis. The units were subdivided into two categories (household with and without electrical meters). The hypothesis formulated was tested and analyzed using a chi-square statistical method. The results obtained shows that the critical value for the household with electrical prepared meter (EPM) was (9.488 < 427.4) and those without electrical prepared meter (EPMn) was (9.488 < 436.1) with a p-value of 0.01%. The analysis demonstrated so far established the real-time position, which shows that the wrong attitude towards handling the electricity supplied (not turning off light bulbs and electrical appliances when not in use within the rooms and outdoors within 12 hours of the day) characterized the non-technical losses in the power sector. Therefore the adoption of efficient lighting attitudes in individual households as recommended by the researcher is greatly encouraged. The results from this study should serve as a model for energy efficiency and use for the improvement of electricity consumption as well as a stable economy.

Keywords: attitudinal change, household, non-technical losses, prepared meter

Procedia PDF Downloads 179
2623 Studies on the Feasibility of Cow’s Urine as Non-Conventional Energy Sources

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-batteries represent an entirely new long-term, reasonable, reachable, and eco-friendly approach to generation of sustainable energy. In the present experimental work, we have studied the effect of the generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. C-Mg electrode pair shows maximum Voltage and Short Circuit Current (SCC), while C-Zn electrode pair shows less Open Circuit Voltage (OCV) and SCC. By the studies of cow urine and different electrodes, it is found that C-Zn electrode battery is more economical. The cow urine battery with C-Zn electrode provides maximum power (707.4 mW) and durability (up to 145 h). This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.

Keywords: bio-batteries, cow's urine, electrodes, non-conventional

Procedia PDF Downloads 202
2622 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct

Procedia PDF Downloads 226
2621 Investigating the Feasibility of Berry Production in Central Oregon under Protected and Unprotected Culture

Authors: Clare S. Sullivan

Abstract:

The high desert of central Oregon, USA is a challenging growing environment: short growing season (70-100 days); average annual precipitation of 280 mm; drastic swings in diurnal temperatures; possibility of frost any time of year; and sandy soils low in organic matter. Despite strong demand, there is almost no fruit grown in central Oregon due to potential yield loss caused by early and late frosts. Elsewhere in the USA, protected culture (i.e., high tunnels) has been used to extend fruit production seasons and improve yields. In central Oregon, high tunnels are used to grow multiple high-value vegetable crops, and farmers are unlikely to plant a perennial crop in a high tunnel unless proven profitable. In May 2019, two berry trials were established on a farm in Alfalfa, OR, to evaluate raspberry and strawberry yield, season length, and fruit quality in protected (high tunnels) vs. unprotected culture (open field). The main objective was to determine whether high tunnel berry production is a viable enterprise for the region. Each trial was arranged using a split-plot design. The main factor was the production system (high tunnel vs. open field), and the replicated, subplot factor was berry variety. Four day-neutral strawberry varieties and four primocane-bearing raspberry varieties were planted for the study and were managed using organic practices. Berries were harvested once a week early in the season, and twice a week as production increased. Harvested berries were separated into ‘marketable’ and ‘unmarketable’ in order to calculate percent cull. First-year results revealed berry yield and quality differences between varieties and production systems. Strawberry marketable yield and berry fruit size increased significantly in the high tunnel compared to the field; percent yield increase ranged from 7-46% by variety. Evie 2 was the highest yielding strawberry, although berry quality was lower than other berries. Raspberry marketable yield and berry fruit size tended to increase in the high tunnel compared to the field, although variety had a more significant effect. Joan J was the highest yielding raspberry and out-yielded the other varieties by 250% outdoor and 350% indoor. Overall, strawberry and raspberry yields tended to improve in high tunnels as compared to the field, but data from a second year will help determine whether high tunnel investment is worthwhile. It is expected that the production system will have more of an effect on berry yield and season length for second-year plants in 2020.

Keywords: berries, high tunnel, local food, organic

Procedia PDF Downloads 118
2620 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis

Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin

Abstract:

In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.

Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry

Procedia PDF Downloads 546
2619 Analysis of Business Intelligence Tools in Healthcare

Authors: Avishkar Gawade, Omkar Bansode, Ketan Bhambure, Bhargav Deore

Abstract:

In recent year wide range of business intelligence technology have been applied to different area in order to support decision making process BI enables extraction of knowledge from data store. BI tools usually used in public health field for financial and administrative purposes.BI uses a dashboard in presentation stage to deliver information to information to end users.In this paper,we intend to analyze some open source BI tools on the market and their applicability in the clinical sphere taking into consideration the general characteristics of the clinical environment.A pervasive BI platform was developed using a real case in order to prove the tool viability.Analysis of various BI Tools in done with the help of several parameters such as data security,data integration,data quality reporting and anlaytics,performance,scalability and cost effectivesness.

Keywords: CDSS, EHR, business intelliegence, tools

Procedia PDF Downloads 137
2618 Discursive Psychology of Emotions in Mediation

Authors: Katarzyna Oberda

Abstract:

The aim of this paper is to conceptual emotions in the process of mediation. Although human emotions have been approached from various disciplines and perspectives, e.g. philosophy, linguistics, psychology and neurology, this complex phenomenon still needs further investigation into its discursive character with the an open mind and heart. To attain this aim, the theoretical and practical considerations are taken into account both to contextualize the discursive psychology of emotions in mediation and show how cognitive and linguistic activity expressed in language may lead to the emotional turn in the process of mediation. The double directions of this research into the discursive psychology of emotions have been partially inspired by the evaluative components of mediation forms. In the conducted research, we apply the methodology of discursive psychology with the discourse analysis as a tool. The practical data come from the recorded mediations online. The major findings of the conducted research result in the reconstruction of the emotional transformation model in mediation.

Keywords: discourse analysis, discursive psychology, emotions, mediation

Procedia PDF Downloads 156