Search results for: four-level output voltage
1537 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs
Authors: Dingyang Hu, Dan Liu
Abstract:
DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.Keywords: adversarial sample, gradient, probability, black box
Procedia PDF Downloads 1051536 Diversified Farming and Agronomic Interventions Improve Soil Productivity, Soybean Yield and Biomass under Soil Acidity Stress
Authors: Imran, Murad Ali Rahat
Abstract:
One of the factors affecting crop production and nutrient availability is acidic stress. The most important element decreasing under acidic stress conditions is phosphorus deficiency, which results in stunted growth and yield because of inefficient nutrient cycling. At the Agriculture Research Institute Mingora Swat, Pakistan, tests were carried out for the first time throughout the course of two consecutive summer seasons in 2016 (year 1) and 2017 (year 2) with the goal of increasing crop productivity and nutrient availability under acidic stress. Three organic supplies (peach nano-black carbon, compost, and dry-based peach wastes), three phosphorus rates, and two advantageous microorganisms (Trichoderma and PSB) were incorporated in the experimental treatments. The findings showed that, in conditions of acid stress, peach organic sources had a significant impact on yield and yield components. The application of nano-black carbon produced the greatest thousand seed weight of 164.6 g among organic sources, however the use of phosphorus solubilizing bacteria (PSB) for seed inoculation increased the thousand seed weight of beneficial microbes when compared to Trichoderma soil application. The thousand seed weight was significantly impacted by the quantities of phosphorus. The treatment of 100 kg P ha-1 produced the highest thousand seed weight (167.3 g), which was followed by 75 kg P ha-1 (162.5 g). Compost amendments provided the highest seed yield (2,140 kg ha-1) and were comparable to the application of nano-black carbon (2,120 kg ha-1). With peach residues, the lowest seed output (1,808 kg ha-1) was observed.Compared to seed inoculation with PSB (1,913 kg ha-1), soil treatment with Trichoderma resulted in the maximum seed production (2,132 kg ha-1). Applying phosphorus to the soybean crop greatly increased its output. The highest seed yield (2,364 kg ha-1) was obtained with 100 kg P ha-1, which was comparable to 75 kg P ha-1 (2,335 kg ha-1), while the lowest seed yield (1,569 kg ha-1) was obtained with 50 kg P ha-1. The average values showed that compared to control plots (3.3 g kg-1), peach organic sources produced greatest SOC (10.0 g kg-1). Plots with treated soil had a maximum soil P of 19.7 mg kg-1, while plots under stress had a maximum soil P of 4.8 mg kg-1. While peach compost resulted in the lowest soil P levels, peach nano-black carbon yielded the highest soil P levels (21.6 mg kg-1). Comparing beneficial bacteria with PSB to Trichoderma (18.3 mg/kg-1), the former also shown an improvement in soil P (21.1 mg kg-1). Regarding P treatments, the application of 100 kg P per ha produced significantly higher soil P values (26.8 mg /kg-1), followed by 75 kg P per ha (18.3 mg /kg-1), and 50 kg P ha-1 produced the lowest soil P values (14.1 mg /kg-1). Comparing peach wastes and compost to peach nano-black carbon (13.7 g kg-1), SOC rose. In contrast to PSB (8.8 g kg-1), soil-treated Trichoderma was shown to have a greater SOC (11.1 g kg-1). Higher among the P levels.Keywords: acidic stress, trichoderma, beneficial microbes, nano-black carbon, compost, peach residues, phosphorus, soybean
Procedia PDF Downloads 781535 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing
Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev
Abstract:
The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect
Procedia PDF Downloads 1321534 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio
Authors: O. S. Omorogiuwa, E. J. Omozusi
Abstract:
The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.Keywords: spectrum, interference, telecommunication, cognitive radio, frequency
Procedia PDF Downloads 2261533 Effects of Sprint Training on Athletic Performance Related Physiological, Cardiovascular, and Neuromuscular Parameters
Authors: Asim Cengiz, Dede Basturk, Hakan Ozalp
Abstract:
Practicing recurring resistance workout such as may cause changes in human muscle. These changes may be because combination if several factors determining physical fitness. Thus, it is important to identify these changes. Several studies were reviewed to investigate these changes. As a result, the changes included positive modifications in amplified citrate synthase (CS) maximal activity, increased capacity for pyruvate oxidation, improvement on molecular signaling on human performance, amplified resting muscle glycogen and whole GLUT4 protein content, better health outcomes such as enhancement in cardiorespiratory fitness. Sprint training also have numerous long long-term changes inhuman body such as better enzyme action, changes in muscle fiber and oxidative ability. This is important because SV is the critical factor influencing maximal cardiac output and therefore oxygen delivery and maximal aerobic power.Keywords: sprint, training, performance, exercise
Procedia PDF Downloads 3031532 Piezoelectric and Dielectric Properties of Poly(Vinylideneflouride-Hexafluoropropylene)/ZnO Nanocomposites
Authors: P. Hemalatha, Deepalekshmi Ponnamma, Mariam Al Ali Al-Maadeed
Abstract:
The Poly(vinylideneflouride-hexafluoropropylene) (PVDF-HFP)/ zinc oxide (ZnO) nanocomposites films were successfully prepared by mixing the fine ZnO particles into PVDF-HFP solution followed by film casting and sandwich techniques. Zinc oxide nanoparticles were synthesized by hydrothermal method. Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and properties of the obtained nanocomposites. The dielectric properties of the PVDF-HFP/ZnO nanocomposites were analyzed in detail. In comparison with pure PVDF-HFP, the dielectric constant of the nanocomposite (1wt% ZnO) was significantly improved. The piezoelectric co-efficients of the nanocomposites films were measured. Experimental results revealed the influence of filler on the properties of PVDF-HFP and enhancement in the output performance and dielectric properties reflects the ability for energy storage capabilities.Keywords: dielectric constant, hydrothermal, nanoflowers, organic compounds
Procedia PDF Downloads 2861531 Low Cost Inertial Sensors Modeling Using Allan Variance
Authors: A. A. Hussen, I. N. Jleta
Abstract:
Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to the low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effect of these random errors, they must be accurately modeled. Where the key is the successful implementation that depends on how well the noise statistics of the inertial sensors is selected. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.Keywords: Allan variance, accelerometer, gyroscope, stochastic errors
Procedia PDF Downloads 4421530 Branding a Powerful Catalyst for Rural Economic Development
Authors: Mojtaba Borhani
Abstract:
By employing the unique characteristics of a region, its economy, climate, geography, and culture, rural communities can create distinctive products. This approach not only boosts economic opportunities but also promotes sustainable growth and preserves cultural heritage. A strategic focus on branding and intellectual property (IP) is essential. By developing strong brands, rural areas can differentiate their products, increase their market value, and build consumer loyalty. Moreover, IP protection safeguards the creative and innovative output of rural communities, incentivizing further development. Rural branding can serve as a cornerstone for community empowerment. It can help to prevent rural exodus by providing economic incentives and a strong sense of place. Additionally, by protecting traditional knowledge and cultural expressions, branding contributes to the long-term sustainability of rural livelihoods.Keywords: intellectual property, regional branding, sustainable development, rural economy
Procedia PDF Downloads 261529 Adaptive Filtering in Subbands for Supervised Source Separation
Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia
Abstract:
This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.Keywords: adaptive filtering, multi-rate processing, normalized subband adaptive filter, source separation
Procedia PDF Downloads 4381528 Reinforcement Learning the Born Rule from Photon Detection
Authors: Rodrigo S. Piera, Jailson Sales Ara´ujo, Gabriela B. Lemos, Matthew B. Weiss, John B. DeBrota, Gabriel H. Aguilar, Jacques L. Pienaar
Abstract:
The Born rule was historically viewed as an independent axiom of quantum mechanics until Gleason derived it in 1957 by assuming the Hilbert space structure of quantum measurements [1]. In subsequent decades there have been diverse proposals to derive the Born rule starting from even more basic assumptions [2]. In this work, we demonstrate that a simple reinforcement-learning algorithm, having no pre-programmed assumptions about quantum theory, will nevertheless converge to a behaviour pattern that accords with the Born rule, when tasked with predicting the output of a quantum optical implementation of a symmetric informationally-complete measurement (SIC). Our findings support a hypothesis due to QBism (the subjective Bayesian approach to quantum theory), which states that the Born rule can be thought of as a normative rule for making decisions in a quantum world [3].Keywords: quantum Bayesianism, quantum theory, quantum information, quantum measurement
Procedia PDF Downloads 1091527 Discursivity and Creativity: Implementing Pigrum's Multi-Mode Transitional Practices in Upper Division Creative Production Courses
Authors: Michael Filimowicz, Veronika Tzankova
Abstract:
This paper discusses the practical implementation of Derek Pigrum’s multi-mode model of transitional practices in the context of upper division production courses in an interaction design curriculum. The notion of teaching creativity directly was connected to a general notion of “discursivity” by which is meant students’ overall ability to discuss, describe, and engage in dialogue about their creative work. We present a study of how Pigrum’s transitional modes can be mapped onto a variety of course activities, and discuss challenges and outcomes of directly engaging student discursivity in their creative output.Keywords: teaching creativity, multi-mode transitional practices, discursivity, rich dialogue, art and design education, pedagogy
Procedia PDF Downloads 5031526 Technology of Electrokinetic Disintegration of Virginia Fanpetals (Sida hermaphrodita) Biomass in a Biogas Production System
Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski
Abstract:
Electrokinetic disintegration is one of the high-voltage electric methods. The design of systems is exceptionally simple. Biomass flows through a system of pipes with alongside mounted electrodes that generate an electric field. Discharges in the electric field deform cell walls and lead to their successive perforation, thereby making their contents easily available to bacteria. The spark-over occurs between electrode surface and pipe jacket which is the second pole and closes the circuit. The value of voltage ranges from 10 to 100kV. Electrodes are supplied by normal “power grid” monophase electric current (230V, 50Hz). Next, the electric current changes into direct current of 24V in modules serving for particular electrodes, and this current directly feeds the electrodes. The installation is completely safe because the value of generated current does not exceed 250mA and because conductors are grounded. Therefore, there is no risk of electric shock posed to the personnel, even in the case of failure or incorrect connection. Low values of the electric current mean small energy consumption by the electrode which is extremely low – only 35W per electrode – compared to other methods of disintegration. Pipes with electrodes with diameter of DN150 are made of acid-proof steel and connected from both sides with 90º elbows ended with flanges. The available S and U types of pipes enable very convenient fitting with system construction in the existing installations and rooms or facilitate space management in new applications. The system of pipes for electrokinetic disintegration may be installed horizontally, vertically, askew, on special stands or also directly on the wall of a room. The number of pipes and electrodes is determined by operating conditions as well as the quantity of substrate, type of biomass, content of dry matter, method of disintegration (single or circulatory), mounting site etc. The most effective method involves pre-treatment of substrate that may be pumped through the disintegration system on the way to the fermentation tank or recirculated in a buffered intermediate tank (substrate mixing tank). Biomass structure destruction in the process of electrokinetic disintegration causes shortening of substrate retention time in the tank and acceleration of biogas production. A significant intensification of the fermentation process was observed in the systems operating in the technical scale, with the greatest increase in biogas production reaching 18%. The secondary, but highly significant for the energetic balance, effect is a tangible decrease of energy input by agitators in tanks. It is due to reduced viscosity of the biomass after disintegration, and may result in energy savings reaching even 20-30% of the earlier noted consumption. Other observed phenomena include reduction in the layer of surface scum, reduced sewage capability for foaming and successive decrease in the quantity of bottom sludge banks. Considering the above, the system for electrokinetic disintegration seems a very interesting and valuable solutions meeting the offer of specialist equipment for the processing of plant biomass, including Virginia fanpetals, before the process of methane fermentation.Keywords: electrokinetic disintegration, biomass, biogas production, fermentation, Virginia fanpetals
Procedia PDF Downloads 3771525 Steady State Charge Transport in Quantum Dots: Nonequilibrium Green's Function (NEGF) vs. Single Electron Analysis
Authors: Mahesh Koti
Abstract:
In this paper, we present a quantum transport study of a quantum dot in steady state in the presence of static gate potential. We consider a quantum dot coupled to the two metallic leads. The quantum dot under study is modeled through Anderson Impurity Model (AIM) with hopping parameter modulated through voltage drop between leads and the central dot region. Based on the Landauer's formula derived from Nonequilibrium Green's Function and Single Electron Theory, the essential ingredients of transport properties are revealed. We show that the results out of two approaches closely agree with each other. We demonstrate that Landauer current response derived from single electron approach converges with non-zero interaction through gate potential whereas Landauer current response derived from Nonequilibrium Green's Function (NEGF) hits a pole.Keywords: Anderson impurity model (AIM), nonequilibrium Green's function (NEGF), Landauer's formula, single electron analysis
Procedia PDF Downloads 4731524 Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability
Authors: Vincent King Soon Wong, Hong Seng Ng, Florinna Sim
Abstract:
Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference.Keywords: fast vs slow BTI, fast wafer level reliability (FWLR), negative bias temperature instability (NBTI), NBTI measurement system, metal-oxide-semiconductor field-effect transistor (MOSFET), NBTI recovery, reliability
Procedia PDF Downloads 4271523 Intelligent Irrigation Control System Using Wireless Sensors and Android Application
Authors: Rajeshwari Madli, Santhosh Hebbar, Vishwanath Heddoori, G. V. Prasad
Abstract:
Agriculture is the major occupation in India and forms the backbone of Indian economy in which irrigation plays a crucial role for increasing the quality and quantity of crop yield. In spite of many revolutionary advancements in agriculture, there has not been a dramatic increase in agricultural performance. Lack of irrigation infrastructure and agricultural knowledge are the critical factors influencing agricultural performance. However, by using advanced agricultural equipment, the effect of these factors can be curtailed. The presented system aims at increasing the yield of crops by using an intelligent irrigation controller that makes use of wireless sensors. Sensors are used to monitor primary parameters such as soil moisture, soil pH, temperature and humidity. Irrigation decisions are taken based on the sensed data and the type of crop being grown. The system provides a mobile application in which farmers can remotely monitor and control the irrigation system. Also, the water pump is protected against damages due to voltage variations and dry running.Keywords: android application, Bluetooth, wireless sensors, irrigation, temperature, soil pH
Procedia PDF Downloads 3821522 Simulation of 1D Dielectric Barrier Discharge in Argon Mixtures
Authors: Lucas Wilman Crispim, Patrícia Hallack, Maikel Ballester
Abstract:
This work aims at modeling electric discharges in gas mixtures. The mathematical model mimics the ignition process in a commercial spark-plug when a high voltage is applied to the plug terminals. A longitudinal unidimensional Cartesian domain is chosen for the simulation region. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions are contemplated at microscopic level. The macroscopic model is represented by a set of uncoupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modeling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The simulation gas is a mixture of atomic Argon neutral, excited and ionized. Spatial and temporal evolution of such species and temperature are presented and discussed.Keywords: CFD, electronic discharge, ignition, spark plug
Procedia PDF Downloads 1621521 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression
Authors: Anne M. Denton, Rahul Gomes, David W. Franzen
Abstract:
High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression
Procedia PDF Downloads 1291520 Mathematical Modeling and Optimization of Burnishing Parameters for 15NiCr6 Steel
Authors: Tarek Litim, Ouahiba Taamallah
Abstract:
The present paper is an investigation of the effect of burnishing on the surface integrity of a component made of 15NiCr6 steel. This work shows a statistical study based on regression, and Taguchi's design has allowed the development of mathematical models to predict the output responses as a function of the technological parameters studied. The response surface methodology (RSM) showed a simultaneous influence of the burnishing parameters and observe the optimal processing parameters. ANOVA analysis of the results resulted in the validation of the prediction model with a determination coefficient R=90.60% and 92.41% for roughness and hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=10kgf, i=3passes, and f=0.074mm/rev, which favours minimum roughness and maximum hardness. The result was validated by the desirability of D= (0.99 and 0.95) for roughness and hardness, respectively.Keywords: 15NiCr6 steel, burnishing, surface integrity, Taguchi, RSM, ANOVA
Procedia PDF Downloads 1941519 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network
Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah
Abstract:
Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.Keywords: CNN, deep-learning, facial emotion recognition, machine learning
Procedia PDF Downloads 951518 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect
Authors: Yanshuang Zhang, Byungho Jeong
Abstract:
In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model.Keywords: DEA, super-efficiency, time lag, multi-periods input
Procedia PDF Downloads 4741517 Optimization Design of Single Phase Inverter Connected to the Grid
Authors: Linda Hassaine, Abdelhamid Mraoui, Mohamed Rida Bengourina
Abstract:
In grid-connected photovoltaic systems, significant improvements can be carried out in the design and implementation of inverters: reduction of harmonic distortion, elimination of the DC component injected into the grid and the proposed control. This paper proposes a control strategy based on PWM switching patterns for an inverter for the photovoltaic system connected to the grid in order to control the injected current. The current injected must be sinusoidal with reduced harmonic distortion. An additional filter is designed to reduce high-order harmonics on the output side. This strategy exhibits the advantages: Simplicity, reduction of harmonics, the size of the line filter, reduction of the memory requirements and power calculation for the control.Keywords: control, inverters, LCL filter, grid-connected photovoltaic system
Procedia PDF Downloads 3271516 Temperature Distribution Control for Baby Incubator System Using Arduino AT Mega 2560
Authors: W. Widhiada, D. N. K. P. Negara, P. A. Suryawan
Abstract:
The technological advances in the field of health to be very important, especially on the safety of the baby. In this case a lot of premature infants death caused by poorly managed health facilities. Mostly the death of premature baby caused by bacteria since the temperature around the baby is not normal. Related to this, the incubator equipment needs to be important, especially in how to control the temperature in incubator. On/Off controls is used to regulate the temperature distribution in the incubator so that the desired temperature is 36 °C to stay awake and stable. The authors have been observed and analyzed the data to determine the temperature distribution in the incubator using program of MATLAB/Simulink. The output temperature distribution is obtained at 36 °C in 400 seconds using an Arduino AT 2560. This incubator is able to maintain an ambient temperature and maintain the baby's body temperature within normal limits and keep the moisture in the air in accordance with the limit values required in infant incubator.Keywords: on/off control, distribution temperature, Arduino AT 2560, baby incubator
Procedia PDF Downloads 5041515 Energy Harvesting with Zinc Oxide Based Nanogenerator: Design and Simulation Using Comsol-4.3 Software
Authors: Akanksha Rohit, Ujjwala Godavarthi, Anshua Mukherjee
Abstract:
Nanotechnology is one of the promising sustainable solutions in the era of miniaturization due to its multidisciplinary nature. The most interesting aspect about nanotechnology is its wide ranging applications from electronics to military and biomedical. It tries to connect individuals more closely to the environment. In this paper, concept of parasitic energy harvesting is used in designing nanogenerators using COMSOL 4.3 software. The output of the nanogenerator is optimized using following constraints: ease of availability of the material, fabrication process and cost of the material. The nanogenerator is optimized using ZnO based nanowires, PMMA as insulator and aluminum and silicon as metal electrodes. The energy harvested from the model can be used to power nanobots, several other biomedical sensors and eventually to replace batteries. Thus, advancements in this field can be very challenging but it is the future of the nano era.Keywords: zinc oxide, piezoelectric, PMMA, parasitic energy harvesting, renewable energy engineering
Procedia PDF Downloads 3651514 Semiconductor Variable Wavelength Generator of Near-Infrared-to-Terahertz Regions
Authors: Isao Tomita
Abstract:
Power characteristics are obtained for laser beams of near-infrared and terahertz wavelengths when produced by difference-frequency generation with a quasi-phase-matched (QPM) waveguide made of gallium phosphide (GaP). A refractive-index change of the QPM GaP waveguide is included in computations with Sellmeier’s formula for varying input wavelengths, where optical loss is also included. Although the output power decreases with decreasing photon energy as the beam wavelength changes from near-infrared to terahertz wavelengths, the beam generation with such greatly different wavelengths, which is not achievable with an ordinary laser diode without the replacement of semiconductor material with a different bandgap one, can be made with the same semiconductor (GaP) by changing the QPM period, where a way of changing the period is provided.Keywords: difference-frequency generation, gallium phosphide, quasi-phase-matching, waveguide
Procedia PDF Downloads 1171513 iSEA: A Mobile Based Learning Application for History and Culture Knowledge Enhancement for the ASEAN Region
Authors: Maria Visitacion N. Gumabay, Byron Joseph A. Hallar, Annjeannette Alain D. Galang
Abstract:
This study was intended to provide a more efficient and convenient way for mobile users to enhance their knowledge about ASEAN countries. The researchers evaluated the utility of the developed crossword puzzle application and assessed the general usability of its user interface for its intended purpose and audience of users. The descriptive qualitative research method for the research design and the Mobile-D methodology was employed for the development of the software application output. With a generally favorable reception from its users, the researchers concluded that the iSEA Mobile Based Learning Application can be considered ready for general deployment and use. It was also concluded that additional studies can also be done to make a more complete assessment of the knowledge gained by its users before and after using the application.Keywords: mobile learning, eLearning, crossword, ASEAN, iSEA
Procedia PDF Downloads 3141512 Management of Indigenous Knowledge: Expectations of Library and Information Professionals in Developing Countries
Authors: Desmond Chinedu Oparaku, Pearl C. Akanwa, Oyemike Victor Benson
Abstract:
This paper examines the challenges facing library and information centers (LICs) in managing indigenous knowledge in academic libraries in developing countries. The need for managing an indigenous knowledge in library and information centers in developing nations is becoming more critical. There is an ever increasing output of indigenous knowledge; effective management of indigenous knowledge becomes necessary to enable the next generation benefit from them. This paper thus explores the concept of indigenous knowledge (IK), nature of indigenous knowledge (IK), the various forms of indigenous knowledge (IK), sources of indigenous knowledge (IK), and relevance of indigenous knowledge (IK). The expectations of library and information professionals towards effective management of indigenous knowledge and the challenges to effective management of indigenous knowledge were highlighted. Recommendations were made based on the identified challenges.Keywords: library, indigenous knowledge, information centres, information professionals
Procedia PDF Downloads 4221511 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems
Authors: N. Kaewpraek, W. Assawinchaichote
Abstract:
This paper considers an H∞ TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an H∞ TS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H∞ performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.Keywords: h-infinity fuzzy control, an LMI approach, Takagi-Sugano (TS) fuzzy system, the photovoltaic systems
Procedia PDF Downloads 3851510 Towards a Competitive South African Tooling Industry
Authors: Mncedisi Trinity Dewa, Andre Francois Van Der Merwe, Stephen Matope
Abstract:
Tool, Die and Mould-making (TDM) firms have been known to play a pivotal role in the growth and development of the manufacturing sectors in most economies. Their output contributes significantly to the quality, cost and delivery speed of final manufactured parts. Unfortunately, the South African Tool, Die and Mould-making manufacturers have not been competing on the local or global market in a significant way. This reality has hampered the productivity and growth of the sector thus attracting intervention. The paper explores the shortcomings South African toolmakers have to overcome to restore their competitive position globally. Results from a global benchmarking survey on the tooling sector are used to establish a roadmap of what South African toolmakers can do to become a productive, World Class force on the global market.Keywords: competitive performance objectives, toolmakers, world-class manufacturing, lead times
Procedia PDF Downloads 5211509 [Keynote Speech]: Simulation Studies of Pulsed Voltage Effects on Cells
Authors: Jiahui Song
Abstract:
In order to predict or explain a complicated biological process, it is important first to construct mathematical models that can be used to yield analytical solutions. Through numerical simulation, mathematical model results can be used to test scenarios that might not be easily attained in a laboratory experiment, or to predict parameters or phenomena. High-intensity, nanosecond pulse electroporation has been a recent development in bioelectrics. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into pore formation energy equation to analyze and predict such electroporation effects. For greater accuracy, with inclusion of atomistic details, molecular dynamics (MD) simulations were also carried out during this study. Besides inducing pores in cells, external voltages could also be used in principle to modulate action potential generation in nerves. This could have an application in electrically controlled ‘pain management’. Also a simple model-based rate equation treatment of the various cellular bio-chemical processes has been used to predict the pulse number dependent cell survival trends.Keywords: model, high-intensity, nanosecond, bioelectrics
Procedia PDF Downloads 2281508 The Analysis of Loss-of-Excitation Algorithm for Synchronous Generators
Authors: Pavle Dakić, Dimitrije Kotur, Zoran Stojanović
Abstract:
This paper presents the results of the study in which the excitation system fault of synchronous generator is simulated. In a case of excitation system fault (loss of field), distance relay is used to prevent further damage. Loss-of-field relay calculates complex impedance using measured voltage and current at the generator terminals. In order to obtain phasors from sampled measured values, discrete Fourier transform is used. All simulations are conducted using Matlab and Simulink software package. The analysis is conducted on the two machine system which supplies equivalent load. While simulating loss of excitation on one generator in different conditions (at idle operation, weakly loaded, and fully loaded), diagrams of active power, reactive power, and measured impedance are analyzed and monitored. Moreover, in the simulations, the effect of generator load on relay tripping time is investigated. In conclusion, the performed tests confirm that the fault in the excitation system can be detected by measuring the impedance.Keywords: loss-of-excitation, synchronous generator, distance protection, Fourier transformation
Procedia PDF Downloads 333