Search results for: feature noise
1106 Predicting Destination Station Based on Public Transit Passenger Profiling
Authors: Xuyang Song, Jun Yin
Abstract:
The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.Keywords: travel behavior, destination prediction, public transit, passenger profiling
Procedia PDF Downloads 191105 Leveraging Quality Metrics in Voting Model Based Thread Retrieval
Authors: Atefeh Heydari, Mohammadali Tavakoli, Zuriati Ismail, Naomie Salim
Abstract:
Seeking and sharing knowledge on online forums have made them popular in recent years. Although online forums are valuable sources of information, due to variety of sources of messages, retrieving reliable threads with high quality content is an issue. Majority of the existing information retrieval systems ignore the quality of retrieved documents, particularly, in the field of thread retrieval. In this research, we present an approach that employs various quality features in order to investigate the quality of retrieved threads. Different aspects of content quality, including completeness, comprehensiveness, and politeness, are assessed using these features, which lead to finding not only textual, but also conceptual relevant threads for a user query within a forum. To analyse the influence of the features, we used an adopted version of voting model thread search as a retrieval system. We equipped it with each feature solely and also various combinations of features in turn during multiple runs. The results show that incorporating the quality features enhances the effectiveness of the utilised retrieval system significantly.Keywords: content quality, forum search, thread retrieval, voting techniques
Procedia PDF Downloads 2131104 Meteosat Second Generation Image Compression Based on the Radon Transform and Linear Predictive Coding: Comparison and Performance
Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane
Abstract:
Image compression is used to reduce the number of bits required to represent an image. The Meteosat Second Generation satellite (MSG) allows the acquisition of 12 image files every 15 minutes. Which results a large databases sizes. The transform selected in the images compression should contribute to reduce the data representing the images. The Radon transform retrieves the Radon points that represent the sum of the pixels in a given angle for each direction. Linear predictive coding (LPC) with filtering provides a good decorrelation of Radon points using a Predictor constitute by the Symmetric Nearest Neighbor filter (SNN) coefficients, which result losses during decompression. Finally, Run Length Coding (RLC) gives us a high and fixed compression ratio regardless of the input image. In this paper, a novel image compression method based on the Radon transform and linear predictive coding (LPC) for MSG images is proposed. MSG image compression based on the Radon transform and the LPC provides a good compromise between compression and quality of reconstruction. A comparison of our method with other whose two based on DCT and one on DWT bi-orthogonal filtering is evaluated to show the power of the Radon transform in its resistibility against the quantization noise and to evaluate the performance of our method. Evaluation criteria like PSNR and the compression ratio allows showing the efficiency of our method of compression.Keywords: image compression, radon transform, linear predictive coding (LPC), run lengthcoding (RLC), meteosat second generation (MSG)
Procedia PDF Downloads 4211103 English Learning Speech Assistant Speak Application in Artificial Intelligence
Authors: Albatool Al Abdulwahid, Bayan Shakally, Mariam Mohamed, Wed Almokri
Abstract:
Artificial intelligence has infiltrated every part of our life and every field we can think of. With technical developments, artificial intelligence applications are becoming more prevalent. We chose ELSA speak because it is a magnificent example of Artificial intelligent applications, ELSA speak is a smartphone application that is free to download on both IOS and Android smartphones. ELSA speak utilizes artificial intelligence to help non-native English speakers pronounce words and phrases similar to a native speaker, as well as enhance their English skills. It employs speech-recognition technology that aids the application to excel the pronunciation of its users. This remarkable feature distinguishes ELSA from other voice recognition algorithms and increase the efficiency of the application. This study focused on evaluating ELSA speak application, by testing the degree of effectiveness based on survey questions. The results of the questionnaire were variable. The generality of the participants strongly agreed that ELSA has helped them enhance their pronunciation skills. However, a few participants were unconfident about the application’s ability to assist them in their learning journey.Keywords: ELSA speak application, artificial intelligence, speech-recognition technology, language learning, english pronunciation
Procedia PDF Downloads 1061102 Artificial Bee Colony Optimization for SNR Maximization through Relay Selection in Underlay Cognitive Radio Networks
Authors: Babar Sultan, Kiran Sultan, Waseem Khan, Ijaz Mansoor Qureshi
Abstract:
In this paper, a novel idea for the performance enhancement of secondary network is proposed for Underlay Cognitive Radio Networks (CRNs). In Underlay CRNs, primary users (PUs) impose strict interference constraints on the secondary users (SUs). The proposed scheme is based on Artificial Bee Colony (ABC) optimization for relay selection and power allocation to handle the highlighted primary challenge of Underlay CRNs. ABC is a simple, population-based optimization algorithm which attains global optimum solution by combining local search methods (Employed and Onlooker Bees) and global search methods (Scout Bees). The proposed two-phase relay selection and power allocation algorithm aims to maximize the signal-to-noise ratio (SNR) at the destination while operating in an underlying mode. The proposed algorithm has less computational complexity and its performance is verified through simulation results for a different number of potential relays, different interference threshold levels and different transmit power thresholds for the selected relays.Keywords: artificial bee colony, underlay spectrum sharing, cognitive radio networks, amplify-and-forward
Procedia PDF Downloads 5811101 Alienation in Somecontemporary Anglo Arab Novels
Authors: Atef Abdallah Abouelmaaty
Abstract:
The aim of this paper is to study the theme of alienation in some contemporary novels of the most prominent Arab writers who live in Britain and write in English. The paper will focus on three female novelists of Arab origins who won wide fame among reading public, and also won international prizes for their literary creation. The first is the Egyptian Ahdaf Soueif(born in 1950) whose novel The Map of Love(1999) was shortlisted for the Man Booker Prize, and has been translated into twenty one languages and sold over a million copies. The second is the Jordanian Fadia Faqir (born in 1956) whose My Name is Salma(2007) was translated into thirteen languages, and was a runner up for the ALOA literary prize. The third is the Sudanese Leila Aboulela(born in 1964) who The Translator was nominated for the Orange Prize and was chosen as a a notable book of the year by the New York Times in 2006. The main reason of choosing the theme of alienation is that it is the qualifying feature of the above mentioned novels. This is because the theme is clearly projected and we can see different kinds of alienation: alienation of man from himself, alienation of man from other men, and alienation of man from society. The paper is concerned with studying this central theme together with its different forms. Moreover, the paper will try to identify the main causes of this alienation among which are frustrated love, the failure to adjust to change, and ethnic pride.Keywords: alienation, Anglo-Arab, contemporary, novels
Procedia PDF Downloads 4401100 Color Fusion of Remote Sensing Images for Imparting Fluvial Geomorphological Features of River Yamuna and Ganga over Doon Valley
Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, Rebecca K. Rossi, Yanmin Yuan, Xianpei Li
Abstract:
The fiscal growth of any country hinges on the prudent administration of water resources. The river Yamuna and Ganga are measured as the life line of India as it affords the needs for life to endure. Earth observation over remote sensing images permits the precise description and identification of ingredients on the superficial from space and airborne platforms. Multiple and heterogeneous image sources are accessible for the same geographical section; multispectral, hyperspectral, radar, multitemporal, and multiangular images. In this paper, a taxonomical learning of the fluvial geomorphological features of river Yamuna and Ganga over doon valley using color fusion of multispectral remote sensing images was performed. Experimental results exhibited that the segmentation based colorization technique stranded on pattern recognition, and color mapping fashioned more colorful and truthful colorized images for geomorphological feature extraction.Keywords: color fusion, geomorphology, fluvial processes, multispectral images, pattern recognition
Procedia PDF Downloads 3061099 The Effects of Electron Trapping by Electron-Ecoustic Waves Excited with Electron Beam
Authors: Abid Ali Abid
Abstract:
One-dimensional (1-D) particle-in-cell (PIC) electrostatic simulations are carried out to investigate the electrostatic waves, whose constituents are hot, cold and beam electrons in the background of motionless positive ions. In fact, the electrostatic modes excited are electron acoustic waves, beam driven waves as well as Langmuir waves. It is assessed that the relevant plasma parameters, for example, hot electron temperature, beam electron drift speed, and the electron beam density significantly modify the electrostatics wave's profiles. In the nonlinear stage, the wave-particle interaction becomes more evident and the waves have obtained its saturation level. Consequently, electrons become trapped in the waves and trapping vortices are clearly formed. Because of this trapping vortices and mixing of the electrons in phase space, finally, lead to electrons thermalization. It is observed that for the high-density value of the beam-electron, the solitary waves having a bipolar form of the electric field. These solitons are the nonlinear Brenstein-Greene and Kruskal wave mode that attributes the trapping of electrons potential well of phase-space hole. These examinations revealed that electrostatic waves have been exited in beam-plasma model and producing waves having broad-frequency ranges, which may clarify the broadband electrostatic noise (BEN) spectrum studied in the auroral zone.Keywords: electron acoustic waves, trapping of cold electron, Langmuir waves, particle-in cell simulation
Procedia PDF Downloads 2061098 Design and Optimization for a Compliant Gripper with Force Regulation Mechanism
Authors: Nhat Linh Ho, Thanh-Phong Dao, Shyh-Chour Huang, Hieu Giang Le
Abstract:
This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array L9 is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems.Keywords: flexure hinge, compliant mechanism, compliant gripper, force regulation mechanism, Taguchi method, response surface methodology, design of experiment
Procedia PDF Downloads 3311097 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 1821096 Research on the Two-Way Sound Absorption Performance of Multilayer Material
Authors: Yang Song, Xiaojun Qiu
Abstract:
Multilayer materials are applied to much acoustics area. Multilayer porous materials are dominant in room absorber. Multilayer viscoelastic materials are the basic parts in underwater absorption coating. In most cases, the one-way sound absorption performance of multilayer material is concentrated according to the sound source site. But the two-way sound absorption performance is also necessary to be known in some special cases which sound is produced in both sides of the material and the both sides especially might contact with different media. In this article, this kind of case was research. The multilayer material was composed of viscoelastic layer and steel plate and the porous layer. The two sides of multilayer material contact with water and air, respectively. A theory model was given to describe the sound propagation and impedance in multilayer absorption material. The two-way sound absorption properties of several multilayer materials were calculated whose two sides all contacted with different media. The calculated results showed that the difference of two-way sound absorption coefficients is obvious. The frequency, the relation of layers thickness and parameters of multilayer materials all have an influence on the two-way sound absorption coefficients. But the degrees of influence are varied. All these simulation results were analyzed in the article. It was obtained that two-way sound absorption at different frequencies can be promoted by optimizing the configuration parameters. This work will improve the performance of underwater sound absorption coating which can absorb incident sound from the water and reduce the noise radiation from inside space.Keywords: different media, multilayer material, sound absorption coating, two-way sound absorption
Procedia PDF Downloads 5421095 Landsat 8-TIRS NEΔT at Kīlauea Volcano and the Active East Rift Zone, Hawaii
Authors: Flora Paganelli
Abstract:
The radiometric performance of remotely sensed images is important for volcanic monitoring. The Thermal Infrared Sensor (TIRS) on-board Landsat 8 was designed with specific requirements in regard to the noise-equivalent change in temperature (NEΔT) at ≤ 0.4 K at 300 K for the two thermal infrared bands B10 and B11. This study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over the volcanic activity of Kīlauea Volcano and the active East Rift Zone (Hawaii), in order to optimize the use of TIRS data. Results showed that the NEΔTs of the two bands exceeded the design specification by an order of magnitude at 300 K. Both separate bands and split window algorithm were examined to estimate the effect of NEΔT on the land surface temperature (LST) retrieval, and NEΔT contribution to the final LST error. These results were also useful in the current efforts to assess the requirements for volcanology research campaign using the Hyperspectral Infrared Imager (HyspIRI) whose airborne prototype MODIS/ASTER instruments is plan to be flown by NASA as a single campaign to the Hawaiian Islands in support of volcanology and coastal area monitoring in 2016.Keywords: landsat 8, radiometric performance, thermal infrared sensor (TIRS), volcanology
Procedia PDF Downloads 2411094 A Simple Algorithm for Real-Time 3D Capturing of an Interior Scene Using a Linear Voxel Octree and a Floating Origin Camera
Authors: Vangelis Drosos, Dimitrios Tsoukalos, Dimitrios Tsolis
Abstract:
We present a simple algorithm for capturing a 3D scene (focused on the usage of mobile device cameras in the context of augmented/mixed reality) by using a floating origin camera solution and storing the resulting information in a linear voxel octree. Data is derived from cloud points captured by a mobile device camera. For the purposes of this paper, we assume a scene of fixed size (known to us or determined beforehand) and a fixed voxel resolution. The resulting data is stored in a linear voxel octree using a hashtable. We commence by briefly discussing the logic behind floating origin approaches and the usage of linear voxel octrees for efficient storage. Following that, we present the algorithm for translating captured feature points into voxel data in the context of a fixed origin world and storing them. Finally, we discuss potential applications and areas of future development and improvement to the efficiency of our solution.Keywords: voxel, octree, computer vision, XR, floating origin
Procedia PDF Downloads 1331093 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction
Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba
Abstract:
Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform
Procedia PDF Downloads 501092 Experiment Study on the Influence of Tool Materials on the Drilling of Thick Stacked Plate of 2219 Aluminum Alloy
Authors: G. H. Li, M. Liu, H. J. Qi, Q. Zhu, W. Z. He
Abstract:
The drilling and riveting processes are widely used in the assembly of carrier rocket, which makes the efficiency and quality of drilling become the important factor affecting the assembly process. According to the problem existing in the drilling of thick stacked plate (thickness larger than 10mm) of carrier rocket, such as drill break, large noise and burr etc., experimental study of the influence of tool material on the drilling was carried out. The cutting force was measured by a piezoelectric dynamometer, the aperture was measured with an outline projector, and the burr is observed and measured by a digital stereo microscope. Through the measurement, the effects of tool material on the drilling were analyzed from the aspects of drilling force, diameter, and burr. The results show that, compared with carbide drill and coated carbide one, the drilling force of high speed steel is larger. But, the application of high speed steel also has some advantages, e.g. a higher number of hole can be obtained, the height of burr is small, the exit is smooth and the slim burr is less, and the tool experiences wear but not fracture. Therefore, the high speed steel tool is suitable for the drilling of thick stacked plate of 2219 Aluminum alloy.Keywords: 2219 aluminum alloy, thick stacked plate, drilling, tool material
Procedia PDF Downloads 2351091 Output-Feedback Control Design for a General Class of Systems Subject to Sampling and Uncertainties
Authors: Tomas Menard
Abstract:
The synthesis of output-feedback control law has been investigated by many researchers since the last century. While many results exist for the case of Linear Time Invariant systems whose measurements are continuously available, nowadays, control laws are usually implemented on micro-controller, then the measurements are discrete-time by nature. This fact has to be taken into account explicitly in order to obtain a satisfactory behavior of the closed-loop system. One considers here a general class of systems corresponding to an observability normal form and which is subject to uncertainties in the dynamics and sampling of the output. Indeed, in practice, the modeling of the system is never perfect, this results in unknown uncertainties in the dynamics of the model. We propose here an output feedback algorithm which is based on a linear state feedback and a continuous-discrete time observer. The main feature of the proposed control law is that only discrete-time measurements of the output are needed. Furthermore, it is formally proven that the state of the closed loop system exponentially converges toward the origin despite the unknown uncertainties. Finally, the performances of this control scheme are illustrated with simulations.Keywords: dynamical systems, output feedback control law, sampling, uncertain systems
Procedia PDF Downloads 2861090 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 641089 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection
Authors: Hongyu Chen, Li Jiang
Abstract:
Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers
Procedia PDF Downloads 1291088 Classifications of Images for the Recognition of People’s Behaviors by SIFT and SVM
Authors: Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen
Abstract:
Behavior recognition has been studied for realizing drivers assisting system and automated navigation and is an important studied field in the intelligent Building. In this paper, a recognition method of behavior recognition separated from a real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect key points and describe them because the SIFT (Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. My goal is to develop a robust and reliable system which is composed of two fixed cameras in every room of intelligent building which are connected to a computer for acquisition of video sequences, with a program using these video sequences as inputs, we use SIFT represented different images of video sequences, and SVM (support vector machine) Lights as a programming tool for classification of images in order to classify people’s behaviors in the intelligent building in order to give maximum comfort with optimized energy consumption.Keywords: video analysis, people behavior, intelligent building, classification
Procedia PDF Downloads 3781087 Shape Sensing and Damage Detection of Thin-Walled Cylinders Using an Inverse Finite Element Method
Authors: Ionel D. Craiu, Mihai Nedelcu
Abstract:
Thin-walled cylinders are often used by the offshore industry as columns of floating installations. Based on observed strains, the inverse Finite Element Method (iFEM) may rebuild the deformation of structures. Structural Health Monitoring uses this approach extensively. However, the number of in-situ strain gauges is what determines how accurate it is, and for shell structures with complicated deformation, this number can easily become too high for practical use. Any thin-walled beam member's complicated deformation can be modeled by the Generalized Beam Theory (GBT) as a linear combination of pre-specified cross-section deformation modes. GBT uses bar finite elements as opposed to shell finite elements. This paper proposes an iFEM/GBT formulation for the shape sensing of thin-walled cylinders based on these benefits. This method significantly reduces the number of strain gauges compared to using the traditional inverse-shell finite elements. Using numerical simulations, dent damage detection is achieved by comparing the strain distributions of the undamaged and damaged members. The effect of noise on strain measurements is also investigated.Keywords: damage detection, generalized beam theory, inverse finite element method, shape sensing
Procedia PDF Downloads 1131086 Feature Evaluation and Applications of Various Advanced Conductors with High Conductivity and Low Flash in Overhead Lines
Authors: Atefeh Pourshafie, Homayoun Bakhtiari
Abstract:
In power transmission lines, electricity conductors are main tools to carry electric power. Thus, other devices such as shield wires, insulators, towers, foundations etc. should be designed in a way that the conductors be able to successfully do their task which is appropriate power delivery to the customers. Non-stop increase of energy demand has led to saturated capacity of transmission lines which, in turn, causing line flash to exceed acceptable limits in some points. An approach which may be used to solve this issue is replacement of current conductors with new ones having the capability of withstanding higher heating such that reduced flash would be observed when heating increases. These novel conductors are able to transfer higher currents and operate in higher heating conditions while line flash will remain within standard limits. In this paper, we will attempt to introduce three types of advanced overhead conductors and analyze the replacement of current conductors by new ones technically and economically in transmission lines. In this regard, progressive conductors of transmission lines are introduced such as ACC (Aluminum Conductor Composite Core), AAAC-UHC (Ultra High Conductivity, All Aluminum Alloy Conductors), and G(Z)TACSR-Gap Type.Keywords: ACC, AAAC-UHC, gap type, transmission lines
Procedia PDF Downloads 2691085 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth
Authors: Valentina Zhang
Abstract:
While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning
Procedia PDF Downloads 1471084 High Frequency Memristor-Based BFSK and 8QAM Demodulators
Authors: Nahla Elazab, Mohamed Aboudina, Ghada Ibrahim, Hossam Fahmy, Ahmed Khalil
Abstract:
This paper presents the developed memristor based demodulators for eight circular Quadrature Amplitude Modulation (QAM) and Binary Frequency Shift Keying (BFSK) operating at relatively high frequency. In our implementations, the experimental-based ‘nonlinear’ dopant drift model is adopted along with the proposed circuits providing incorporation of all known non-idealities of practically realized memristor and gaining high operation frequency. The suggested designs leverage the distinctive characteristics of the memristor device, definitely, its changeable average memristance versus the frequency, phase and amplitude of the periodic excitation input. The proposed demodulators feature small integration area, low power consumption, and easy implementation. Moreover, the proposed QAM demodulator precludes the requirement for the carrier recovery circuits. In doing so, the designs were validated by transient simulations using the nonlinear dopant drift memristor model. The simulations results show high agreement with the theory presented.Keywords: BFSK, demodulator, high frequency memristor applications, memristor based analog circuits, nonlinear dopant drift model, QAM
Procedia PDF Downloads 1671083 Impacts of Filmmaking on Destinations: Perceptions of the Residents of Arcos de Valdevez
Authors: André Rafael Ferreira, Laurentina Vareiro, Raquel Mendes
Abstract:
This study’s main objective is to explore residents’ perceptions of film-induced tourism and the impacts of filmmaking on the development of a destination. Specifically, the research examines resident´s perceptions of the social, economic, and environmental impacts on a Portuguese municipality (Arcos de Valdevez) given its feature in a popular Portuguese television series. Data is collected by means of an Internet survey, in which resident´s perceptions of the impacts of filmmaking are solicited. Residents generally agree that the recording and exhibition of the television series is important to the municipality, and contributes to the increased number of tourists. Given that residents consider that the positive impacts are more significant than the negative impacts, they supported the recording of another television series in the same municipality. Considering that destination managers and tourism development authorities aim to plan for optimal tourism development, and at the same time wish to minimize the negative impacts of this development on the local communities, monitoring residents’ opinions of perceived impacts is a good way of incorporating their reaction into tourism planning and development. The results of this research may provide useful information in this sense.Keywords: film-induced tourism, residents’ perceptions, tourism development, tourism impacts
Procedia PDF Downloads 4531082 Tourism Potentials of Ikogosi Warm Spring in Nigeria
Authors: A.I. Adeyemo
Abstract:
Ikogosi warm spring results from a complex mechanical and chemical forces that generates internal heat in the rocks forming a warm and cold water at the same geographical location at the same time. From time immemorial, the local community had thought, it to be the work of a deity, and they were worshipping the spring. This complex phenomenon has been a source of tourist attraction to both local and international tourists over the years. 450 copies of a structured questionnaire were given out, and a total of 500 respondents were interviewed. The result showed that ikogosi warm spring impacts the community positively by providing employment to the teeming youths, and it provides income to traders. The result shows that 66% of the respondents confirmed that it increased their income and that transportation business increased more than 73%.the level of enlightenment and socialization increased greatly in the community. However, it also impacted the community negatively as it increased crime rates such as stealing, kidnapping, prostitution, and unwanted pregnancy among the secondary school girls and the other teenagers. Generally, 50% of the respondents reported that tourism in the warm spring results in insecurity in the community. IT also increased environmental problems such as noise and waste pollutions; the continuous movement on the land results in soil compartment leading to erosion, and leaching, which also results in loss of soil fertility. It was concluded that if the potentials of the spring are fully tapped, it will be a good avenue for income generation to the country.Keywords: community, Ikogosi, revenue, warm spring
Procedia PDF Downloads 1591081 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 2631080 Application of Random Forest Model in The Prediction of River Water Quality
Authors: Turuganti Venkateswarlu, Jagadeesh Anmala
Abstract:
Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.Keywords: water quality, land use factors, random forest, fecal coliform
Procedia PDF Downloads 1971079 Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant
Authors: E. Benga, T. Tengen, A. Alugongo
Abstract:
Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions.Keywords: periodic inventory, continuous inventory, hybrid inventory, optimization, manufacturing plant
Procedia PDF Downloads 3821078 Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning
Authors: Beilei Xu, Wencheng Wu, Lei Lin, Rachel Melnyk, Ahmed Ghazi
Abstract:
In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects.Keywords: surgical metric, task evoked pupillary response, multitask learning, TSFresh
Procedia PDF Downloads 1461077 Numerical Study of Dynamic Buckling of Fiber Metal Laminates's Profile
Authors: Monika Kamocka, Radoslaw Mania
Abstract:
The design of Fiber Metal Laminates - combining thin aluminum sheets and prepreg layers, allows creating a hybrid structure with high strength to weight ratio. This feature makes FMLs very attractive for aerospace industry, where thin-walled structures are commonly used. Nevertheless, those structures are prone to buckling phenomenon. Buckling could occur also under static load as well as dynamic pulse loads. In this paper, the problem of dynamic buckling of open cross-section FML profiles under axial dynamic compression in the form of pulse load of finite duration is investigated. In the numerical model, material properties of FML constituents were assumed as nonlinear elastic-plastic aluminum and linear-elastic glass-fiber-reinforced composite. The influence of pulse shape was investigated. Sinusoidal and rectangular pulse loads of finite duration were compared in two ways, i.e. with respect to magnitude and force pulse. The dynamic critical buckling load was determined based on Budiansky-Hutchinson, Ari Gur, and Simonetta dynamic buckling criteria.Keywords: dynamic buckling, dynamic stability, Fiber Metal Laminate, Finite Element Method
Procedia PDF Downloads 194