Search results for: efficiency increase
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15987

Search results for: efficiency increase

477 The Association between Attachment Styles, Satisfaction of Life, Alexithymia, and Psychological Resilience: The Mediational Role of Self-Esteem

Authors: Zahide Tepeli Temiz, Itir Tari Comert

Abstract:

Attachment patterns based on early emotional interactions between infant and primary caregiver continue to be influential in adult life, in terms of mental health and behaviors of individuals. Several studies reveal that infant-caregiver relationships have impressed the affect regulation, coping with stressful and negative situations, general satisfaction of life, and self image in adulthood, besides the attachment styles. The present study aims to examine the relationships between university students’ attachment style and their self-esteem, alexithymic features, satisfaction of life, and level of resilience. In line with this aim, the hypothesis of the prediction of attachment styles (anxious and avoidant) over life satisfaction, self-esteem, alexithymia, and psychological resilience was tested. Additionally, in this study Structural Equational Modeling was conducted to investigate the mediational role of self-esteem in the relationship between attachment styles and alexithymia, life satisfaction, and resilience. This model was examined with path analysis. The sample of the research consists of 425 university students who take education from several region of Turkey. The participants who sign the informed consent completed the Demographic Information Form, Experiences in Close Relationships-Revised, Rosenberg Self-Esteem Scale, The Satisfaction with Life Scale, Toronto Alexithymia Scale, and Resilience Scale for Adults. According to results, anxious, and avoidant dimensions of insecure attachment predicted the self-esteem score and alexithymia in positive direction. On the other hand, these dimensions of attachment predicted life satisfaction in negative direction. The results of linear regression analysis indicated that anxious and avoidant attachment styles didn’t predict the resilience. This result doesn’t support the theory and research indicating the relationship between attachment style and psychological resilience. The results of path analysis revealed the mediational role self esteem in the relation between anxious, and avoidant attachment styles and life satisfaction. In addition, SEM analysis indicated the indirect effect of attachment styles over alexithymia and resilience besides their direct effect. These findings support the hypothesis of this research relation to mediating role of self-esteem. Attachment theorists suggest that early attachment experiences, including supportive and responsive family interactions, have an effect on resilience to harmful situations in adult life, ability to identify, describe, and regulate emotions and also general satisfaction with life. Several studies examining the relationship between attachment styles and life satisfaction, alexithymia, and psychological resilience draw attention to mediational role of self-esteem. Results of this study support the theory of attachment patterns with the mediation of self-image influence the emotional, cognitive, and behavioral regulation of person throughout the adulthood. Therefore, it is thought that any intervention intended for recovery in attachment relationship will increase the self-esteem, life satisfaction, and resilience level, on the one side, decrease the alexithymic features, on the other side.

Keywords: alexithymia, anxious attachment, avoidant attachment, life satisfaction, path analysis, resilience, self-esteem, structural equation

Procedia PDF Downloads 195
476 Cognitive Radio in Aeronautic: Comparison of Some Spectrum Sensing Technics

Authors: Abdelkhalek Bouchikhi, Elyes Benmokhtar, Sebastien Saletzki

Abstract:

The aeronautical field is experiencing issues with RF spectrum congestion due to the constant increase in the number of flights, aircrafts and telecom systems on board. In addition, these systems are bulky in size, weight and energy consumption. The cognitive radio helps particularly solving the spectrum congestion issue by its capacity to detect idle frequency channels then, allowing an opportunistic exploitation of the RF spectrum. The present work aims to propose a new use case for aeronautical spectrum sharing and to study the performances of three different detection techniques: energy detector, matched filter and cyclostationary detector within the aeronautical use case. The spectrum in the proposed cognitive radio is allocated dynamically where each cognitive radio follows a cognitive cycle. The spectrum sensing is a crucial step. The goal of the sensing is gathering data about the surrounding environment. Cognitive radio can use different sensors: antennas, cameras, accelerometer, thermometer, etc. In IEEE 802.22 standard, for example, a primary user (PU) has always the priority to communicate. When a frequency channel witch used by the primary user is idle, the secondary user (SU) is allowed to transmit in this channel. The Distance Measuring Equipment (DME) is composed of a UHF transmitter/receiver (interrogator) in the aircraft and a UHF receiver/transmitter on the ground. While the future cognitive radio will be used jointly to alleviate the spectrum congestion issue in the aeronautical field. LDACS, for example, is a good candidate; it provides two isolated data-links: ground-to-air and air-to-ground data-links. The first contribution of the present work is a strategy allowing sharing the L-band. The adopted spectrum sharing strategy is as follow: the DME will play the role of PU which is the licensed user and the LDACS1 systems will be the SUs. The SUs could use the L-band channels opportunely as long as they do not causing harmful interference signals which affect the QoS of the DME system. Although the spectrum sensing is a key step, it helps detecting holes by determining whether the primary signal is present or not in a given frequency channel. A missing detection on primary user presence creates interference between PU and SU and will affect seriously the QoS of the legacy radio. In this study, first brief definitions, concepts and the state of the art of cognitive radio will be presented. Then, a study of three communication channel detection algorithms in a cognitive radio context is carried out. The study is made from the point of view of functions, material requirements and signal detection capability in the aeronautical field. Then, we presented a modeling of the detection problem by three different methods (energy, adapted filter, and cyclostationary) as well as an algorithmic description of these detectors is done. Then, we study and compare the performance of the algorithms. Simulations were carried out using MATLAB software. We analyzed the results based on ROCs curves for SNR between -10dB and 20dB. The three detectors have been tested with a synthetics and real world signals.

Keywords: aeronautic, communication, navigation, surveillance systems, cognitive radio, spectrum sensing, software defined radio

Procedia PDF Downloads 174
475 Carbon Nanotubes Functionalization via Ullmann-Type Reactions Yielding C-C, C-O and C-N Bonds

Authors: Anna Kolanowska, Anna Kuziel, Sławomir Boncel

Abstract:

Carbon nanotubes (CNTs) represent a combination of lightness and nanoscopic size with high tensile strength, excellent thermal and electrical conductivity. By now, CNTs have been used as a support in heterogeneous catalysis (CuCl anchored to pre-functionalized CNTs) in the Ullmann-type coupling with aryl halides toward formation of C-N and C-O bonds. The results indicated that the stability of the catalyst was much improved and the elaborated catalytic system was efficient and recyclable. However, CNTs have not been considered as the substrate itself in the Ullmann-type reactions. But if successful, this functionalization would open new areas of CNT chemistry leading to enhanced in-solvent/matrix nanotube individualization. The copper-catalyzed Ullmann-type reaction is an attractive method for the formation of carbon-heteroatom and carbon-carbon bonds in organic synthesis. This condensation reaction is usually conducted at temperature as high as 200 oC, often in the presence of stoichiometric amounts of copper reagent and with activated aryl halides. However, a small amount of organic additive (e.g. diamines, amino acids, diols, 1,10-phenanthroline) can be applied in order to increase the solubility and stability of copper catalyst, and at the same time to allow performing the reaction under mild conditions. The copper (pre-)catalyst is prepared by in situ mixing of copper salt and the appropriate chelator. Our research is focused on the application of Ullmann-type reaction for the covalent functionalization of CNTs. Firstly, CNTs were chlorinated by using iodine trichloride (ICl3) in carbon tetrachloride (CCl4). This method involves formation of several chemical species (ICl, Cl2 and I2Cl6), but the most reactive is the dimer. The fact (that the dimer is the main individual in CCl4) is the reason for high reactivity and possibly high functionalization levels of CNTs. This method, indeed, yielded a notable amount of chlorine onto the MWCNT surface. The next step was the reaction of CNT-Cl with three substrates: aniline, iodobenzene and phenol for the formation C-N, C-C and C-O bonds, respectively, in the presence of 1,10-phenanthroline and cesium carbonate (Cs2CO3) as a base. As the CNT substrates, two multi-wall CNT (MWCNT) types were used: commercially available Nanocyl NC7000™ (9.6 nm diameter, 1.5 µm length, 90% purity) and thicker MWCNTs (in-house) synthesized in our laboratory using catalytic chemical vapour deposition (c-CVD). In-house CNTs had diameter ranging between 60-70 nm and length up to 300 µm. Since classical Ullmann reaction was found as suffering from poor yields, we have investigated the effect of various solvents (toluene, acetonitrile, dimethyl sulfoxide and N,N-dimethylformamide) on the coupling of substrates. Owing to the fact that the aryl halides show the reactivity order of I>Br>Cl>F, we have also investigated the effect of iodine presence on CNT surface on reaction yield. In this case, in first step we have used iodine monochloride instead of iodine trichloride. Finally, we have used the optimized reaction conditions with p-bromophenol and 1,2,4-trihydroxybenzene for the control of CNT dispersion.

Keywords: carbon nanotubes, coupling reaction, functionalization, Ullmann reaction

Procedia PDF Downloads 168
474 Hydrocarbons and Diamondiferous Structures Formation in Different Depths of the Earth Crust

Authors: A. V. Harutyunyan

Abstract:

The investigation results of rocks at high pressures and temperatures have revealed the intervals of changes of seismic waves and density, as well as some processes taking place in rocks. In the serpentinized rocks, as a consequence of dehydration, abrupt changes in seismic waves and density have been recorded. Hydrogen-bearing components are released which combine with carbon-bearing components. As a result, hydrocarbons formed. The investigated samples are smelted. Then, geofluids and hydrocarbons migrate into the upper horizons of the Earth crust by the deep faults. Then their differentiation and accumulation in the jointed rocks of the faults and in the layers with collecting properties takes place. Under the majority of the hydrocarbon deposits, at a certain depth, magmatic centers and deep faults are recorded. The investigation results of the serpentinized rocks with numerous geological-geophysical factual data allow understanding that hydrocarbons are mainly formed in both the offshore part of the ocean and at different depths of the continental crust. Experiments have also shown that the dehydration of the serpentinized rocks is accompanied by an explosion with the instantaneous increase in pressure and temperature and smelting the studied rocks. According to numerous publications, hydrocarbons and diamonds are formed in the upper part of the mantle, at the depths of 200-400km, and as a consequence of geodynamic processes, they rise to the upper horizons of the Earth crust through narrow channels. However, the genesis of metamorphogenic diamonds and the diamonds found in the lava streams formed within the Earth crust, remains unclear. As at dehydration, super high pressures and temperatures arise. It is assumed that diamond crystals are formed from carbon containing components present in the dehydration zone. It can be assumed that besides the explosion at dehydration, secondary explosions of the released hydrogen take place. The process is naturally accompanied by seismic phenomena, causing earthquakes of different magnitudes on the surface. As for the diamondiferous kimberlites, it is well-known that the majority of them are located within the ancient shield and platforms not obligatorily connected with the deep faults. The kimberlites are formed at the shallow location of dehydrated masses in the Earth crust. Kimberlites are younger in respect of containing ancient rocks containing serpentinized bazites and ultrbazites of relicts of the paleooceanic crust. Sometimes, diamonds containing water and hydrocarbons showing their simultaneous genesis are found. So, the geofluids, hydrocarbons and diamonds, according to the new concept put forward, are formed simultaneously from serpentinized rocks as a consequence of their dehydration at different depths of the Earth crust. Based on the concept proposed by us, we suggest discussing the following: -Genesis of gigantic hydrocarbon deposits located in the offshore area of oceans (North American, Mexican Gulf, Cuanza-Kamerunian, East Brazilian etc.) as well as in the continental parts of different mainlands (Kanadian-Arctic Caspian, East Siberian etc.) - Genesis of metamorphogenic diamonds and diamonds in the lava streams (Guinea-Liberian, Kokchetav, Kanadian, Kamchatka-Tolbachinian, etc.).

Keywords: dehydration, diamonds, hydrocarbons, serpentinites

Procedia PDF Downloads 340
473 Contrastive Analysis of Parameters Registered in Training Rowers and the Impact on the Olympic Performance

Authors: Gheorghe Braniste

Abstract:

The management of the training process in sports is closely related to the awareness of the close connection between performance and the morphological, functional and psychological characteristics of the athlete's body. Achieving high results in Olympic sports is influenced, on the one hand, by the genetically determined characteristics of the body and, on the other hand, by the morphological, functional and motor abilities of the athlete. Taking into account the importance of properly understanding the evolutionary specificity of athletes to assess their competitive potential, this study provides a comparative analysis of the parameters that characterize the growth and development of the level of adaptation of sweeping rowers, considering the growth interval between 12 and 20 years. The study established that, in the multi-annual training process, the bodies of the targeted athletes register significant adaptive changes while analyzing parameters of the morphological, functional, psychomotor and sports-technical spheres. As a result of the influence of physical efforts, both specific and non-specific, there is an increase in the adaptability of the body, its transfer to a much higher level of functionality within the parameters, useful and economical adaptive reactions influenced by environmental factors, be they internal or external. The research was carried out for 7 years, on a group of 28 athletes, following their evolution and recording the specific parameters of each age stage. In order to determine the level of physical, morpho-functional, psychomotor development and technical training of rowers, the screening data were applied at the State University of Physical Education and Sports in the Republic of Moldova. During the research, measurements were made on the waist, in the standing and sitting position, arm span, weight, circumference and chest perimeter, vital capacity of the lungs, with the subsequent determination of the vital index (tolerance level to oxygen deficiency in venous blood in Stange and Genchi breath-taking tests that characterize the level of oxygen saturation, absolute and relative strength of the hand and back, calculation of body mass and morphological maturity indices (Kettle index), body surface area (body gait), psychomotor tests (Romberg test), test-tepping 10 s., reaction to a moving object, visual and auditory-motor reaction, recording of technical parameters of rowing on a competitive distance of 200 m. At the end of the study it was found that highly performance is sports is to be associated on the one hand with the genetically determined characteristics of the body and, on the other hand, with favorable adaptive reactions and energy saving, as well as morphofunctional changes influenced by internal and external environmental factors. The importance of the results obtained at the end of the study was positively reflected in obtaining the maximum level of training of athletes in order to demonstrate performance in large-scale competitions and mostly in the Olympic Games.

Keywords: olympics, parameters, performance, peak

Procedia PDF Downloads 123
472 Non Pharmacological Approach to IBS (Irritable Bowel Syndrome)

Authors: A. Aceranti, L. Moretti, S. Vernocchi, M. Colorato, P. Caristia

Abstract:

Irritable bowel syndrome (IBS) is the association between abdominal pain, abdominal distension and intestinal dysfunction for recurring periods. About 10% of the world's population has IBS at any given time in their life, and about 200 people per 100,000 receive an initial diagnosis of IBS each year. Persistent pain is recognized as one of the most pervasive and challenging problems facing the medical community today. Persistent pain is considered more as a complex pathophysiological, diagnostic and therapeutic situation rather than as a persistent symptom. The low efficiency of conventional drug treatments has led many doctors to become interested in the non-drug alternative treatment of IBS, especially for more severe cases. Patients and providers are often dissatisfied with the available drug remedies and often seek complementary and alternative medicine (CAM), a unique and holistic approach to treatment that is not a typical component of conventional medicine. Osteopathic treatment may be of specific interest in patients with IBS. Osteopathy is a complementary health approach that emphasizes the role of the musculoskeletal system in health and promotes optimal function of the body's tissues using a variety of manual techniques to improve body function. Osteopathy has been defined as a patient-centered health discipline based on the principles of interrelation between body structure and function, the body's innate capacity for self-healing and the adoption of a whole person health approach. mainly by practicing manual processing. Studies reported that osteopathic manual treatment (OMT) reduced IBS symptoms, such as abdominal pain, constipation, diarrhea, and improved general well-being. The focus in the treatment of IBS with osteopathy has gone beyond simple spinal alignment, to directly address the abnormal physiology of the body using a series of direct and indirect techniques. The topic of this study was chosen for different reasons: due to the large number of people involved who suffer from this disorder and for the dysfunction itself, since nowadays there is still little clarity about the best type of treatment and, above all, to its origin. The visceral component in the osteopathic field is still a world to be discovered, although it is related to a large part of patient series, it has contents that affect numerous disciplines and this makes it an enigma yet to be solved. The study originated in the didactic practice where the curiosity of a topic is marked that, even today, no one is able to explain and, above all, cure definitively. The main purpose of this study is to try to create a good basis on the osteopathic discipline for subsequent studies that can be exhaustive in the best possible way, resolving some doubts about which treatment modality can be used with more relevance. The path was decided to structure it in such a way that 3 types of osteopathic treatment are used on 3 groups of people who will be selected after completing a questionnaire, which will deem them suitable for the study. They will, in fact, be divided into three groups where: - the first group was given a visceral osteopathic treatment. - The second group was given a manual osteopathic treatment of neurological stimulation. - The third group received a placebo treatment. At the end of the treatment, questionnaires will be re-proposed respectively one week after the session and one month after the treatment from which any data will be collected that will demonstrate the effectiveness or otherwise of the treatment received. The sample of 50 patients examined underwent an oral interview to evaluate the inclusion and exclusion criteria to participate in the study. Of the 50 patients questioned, 17 people who underwent different osteopathic techniques were eligible for the study. Comparing the data related to the first assessment of tenderness and frequency of symptoms with the data related to the first follow-up shows a significant improvement in the score assigned to the different questions, especially in the neurogenic and visceral groups. We are aware of the fact that it is a study performed on a small sample of patients, and this is a penalizing factor. We remain, however, convinced that having obtained good results in terms of subjective improvement in the quality of life of the subjects, it would be very interesting to re-propose the study on a larger sample and fill the gaps.

Keywords: IBS, osteopathy, colon, intestinal inflammation

Procedia PDF Downloads 101
471 The Efficacy of Government Strategies to Control COVID 19: Evidence from 22 High Covid Fatality Rated Countries

Authors: Imalka Wasana Rathnayaka, Rasheda Khanam, Mohammad Mafizur Rahman

Abstract:

TheCOVID-19 pandemic has created unprecedented challenges to both the health and economic states in countries around the world. This study aims to evaluate the effectiveness of governments' decisions to mitigate the risks of COVID-19 through proposing policy directions to reduce its magnitude. The study is motivated by the ongoing coronavirus outbreaks and comprehensive policy responses taken by countries to mitigate the spread of COVID-19 and reduce death rates. This study contributes to filling the knowledge by exploiting the long-term efficacy of extensive plans of governments. This study employs a Panel autoregressive distributed lag (ARDL) framework. The panels incorporate both a significant number of variables and fortnightly observations from22 countries. The dependent variables adopted in this study are the fortnightly death rates and the rates of the spread of COVID-19. Mortality rate and the rate of infection data were computed based on the number of deaths and the number of new cases per 10000 people.The explanatory variables are fortnightly values of indexes taken to investigate the efficacy of government interventions to control COVID-19. Overall government response index, Stringency index, Containment and health index, and Economic support index were selected as explanatory variables. The study relies on the Oxford COVID-19 Government Measure Tracker (OxCGRT). According to the procedures of ARDL, the study employs (i) the unit root test to check stationarity, (ii) panel cointegration, and (iii) PMG and ARDL estimation techniques. The study shows that the COVID-19 pandemic forced immediate responses from policymakers across the world to mitigate the risks of COVID-19. Of the four types of government policy interventions: (i) Stringency and (ii) Economic Support have been most effective and reveal that facilitating Stringency and financial measures has resulted in a reduction in infection and fatality rates, while (iii) Government responses are positively associated with deaths but negatively with infected cases. Even though this positive relationship is unexpected to some extent in the long run, social distancing norms of the governments have been broken by the public in some countries, and population age demographics would be a possible reason for that result. (iv) Containment and healthcare improvements reduce death rates but increase the infection rates, although the effect has been lower (in absolute value). The model implies that implementation of containment health practices without association with tracing and individual-level quarantine does not work well. The policy implication based on containment health measures must be applied together with targeted, aggressive, and rapid containment to extensively reduce the number of people infected with COVID 19. Furthermore, the results demonstrate that economic support for income and debt relief has been the key to suppressing the rate of COVID-19 infections and fatality rates.

Keywords: COVID-19, infection rate, deaths rate, government response, panel data

Procedia PDF Downloads 76
470 Electrochemical Properties of Li-Ion Batteries Anode Material: Li₃.₈Cu₀.₁Ni₀.₁Ti₅O₁₂

Authors: D. Olszewska, J. Niewiedzial

Abstract:

In some types of Li-ion batteries carbon in the form of graphite is used. Unfortunately, carbon materials, in particular graphite, have very good electrochemical properties, but increase their volume during charge/discharge cycles, which may even lead to an explosion of the cell. The cell element may be replaced by a composite material consisting of lithium-titanium oxide Li4Ti5O12 (LTO) modified with copper and nickel ions and carbon derived from sucrose. This way you can improve the conductivity of the material. LTO is appropriate only for applications which do not require high energy density because of its high operating voltage (ca. 1.5 V vs. Li/Li+). Specific capacity of Li4Ti5O12 is high enough for utilization in Li-ion batteries (theoretical capacity 175 mAh·g-1) but it is lower than capacity of graphite anodes. Materials based on Li4Ti5O12 do not change their volume during charging/discharging cycles, however, LTO has low conductivity. Another positive aspect of the use of sucrose in the carbon composite material is to eliminate the addition of carbon black from the anode of the battery. Therefore, the proposed materials contribute significantly to environmental protection and safety of selected lithium cells. New anode materials in order to obtain Li3.8Cu0.1Ni0.1Ti5O12 have been prepared by solid state synthesis using three-way: i) stoichiometric composition of Li2CO3, TiO2, CuO, NiO (A- Li3.8Cu0.1Ni0.1Ti5O12); ii) stoichiometric composition of Li2CO3, TiO2, Cu(NO3)2, Ni(NO3)2 (B-Li3.8Cu0.1Ni0.1Ti5O12); and iii) stoichiometric composition of Li2CO3, TiO2, CuO, NiO calcined with 10% of saccharose (Li3.8Cu0.1Ni0.1Ti5O12-C). Structure of materials was studied by X-ray diffraction (XRD). The electrochemical properties were performed using appropriately prepared cell Li|Li+|Li3.8Cu0.1Ni0.1Ti5O12 for cyclic voltammetry and discharge/charge measurements. The cells were periodically charged and discharged in the voltage range from 1.3 to 2.0 V applying constant charge/discharge current in order to determine the specific capacity of each electrode. Measurements at various values of the charge/discharge current (from C/10 to 5C) were carried out. Cyclic voltammetry investigation was carried out by applying to the cells a voltage linearly changing over time at a rate of 0.1 mV·s-1 (in the range from 2.0 to 1.3 V and from 1.3 to 2.0 V). The XRD method analyzes show that composite powders were obtained containing, in addition to the main phase, 4.78% and 4% TiO2 in A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12, respectively. However, Li3.8Cu0.1Ni0.1O12-C material is three-phase: 63.84% of the main phase, 17.49 TiO2 and 18.67 Li2TiO3. Voltammograms of electrodes containing materials A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12 are correct and repeatable. Peak cathode occurs for both samples at a potential approx. 1.52±0.01 V relative to a lithium electrode, while the anodic peak at potential approx. 1.65±0.05 V relative to a lithium electrode. Voltammogram of Li3.8Cu0.1Ni0.1Ti5O12-C (especially for the first measurement cycle) is not correct. There are large variations in values of specific current, which are not characteristic for materials LTO. From the point of view of safety and environmentally friendly production of Li-ion cells eliminating soot and applying Li3.8Cu0.1Ni0.1Ti5O12-C as an active material of an anode in lithium-ion batteries seems to be a good alternative to currently used materials.

Keywords: anode, Li-ion batteries, Li₄O₅O₁₂, spinel

Procedia PDF Downloads 150
469 Insulin Resistance in Early Postmenopausal Women Can Be Attenuated by Regular Practice of 12 Weeks of Yoga Therapy

Authors: Praveena Sinha

Abstract:

Context: Diabetes is a global public health burden, particularly affecting postmenopausal women. Insulin resistance (IR) is prevalent in this population, and it is associated with an increased risk of developing type 2 diabetes. Yoga therapy is gaining attention as a complementary intervention for diabetes due to its potential to address stress psychophysiology. This study focuses on the efficacy of a 12-week yoga practice in attenuating insulin resistance in early postmenopausal women. Research Aim: The aim of this research is to investigate the effect of a 3-month long yoga practice on insulin resistance in early postmenopausal women. Methodology: The study conducted a prospective longitudinal design with 67 women within five years of menopause. Participants were divided into two groups based on their willingness to join yoga. The Yoga group (n = 37) received routine gynecological management along with an integrated yoga module, while the Non-Yoga group (n = 30) received only routine management. Insulin resistance was measured using the homeostasis model assessment of insulin resistance (HOMA-IR) method before and after the intervention. Statistical analysis was performed using GraphPad Prism Version 5 software, with statistical significance set at P < 0.05. Findings: The results indicate a significant decrease in serum fasting insulin levels and HOMA-IR measurements in the Yoga group, although the decrease did not reach statistical significance. In contrast, the Non-Yoga group showed a significant rise in serum fasting insulin levels and HOMA-IR measurements after 3 months, suggesting a detrimental effect on insulin resistance in these postmenopausal women. Theoretical Importance: This study provides evidence that a 12-week yoga practice can attenuate the increase in insulin resistance in early postmenopausal women. It highlights the potential of yoga as a preventive measure against the early onset of insulin resistance and the development of type 2 diabetes mellitus. Regular yoga practice can be a valuable tool in addressing hormonal imbalances associated with early postmenopause, leading to a decrease in morbidity and mortality related to insulin resistance and type 2 diabetes mellitus in this population. Data Collection and Analysis Procedures: Data collection involved measuring serum fasting insulin levels and calculating HOMA-IR. Statistical analysis was performed using GraphPad Prism Version 5 software, and mean values with standard error of the mean were reported. The significance level was set at P < 0.05. Question Addressed: The study aimed to address whether a 3-month long yoga practice could attenuate insulin resistance in early postmenopausal women. Conclusion: The research findings support the efficacy of a 12-week yoga practice in attenuating insulin resistance in early postmenopausal women. Regular yoga practice has the potential to prevent the early onset of insulin resistance and the development of type 2 diabetes mellitus in this population. By addressing the hormonal imbalances associated with early post menopause, yoga could significantly decrease morbidity and mortality related to insulin resistance and type 2 diabetes mellitus in these subjects.

Keywords: post menopause, insulin resistance, HOMA-IR, yoga, type 2 diabetes mellitus

Procedia PDF Downloads 68
468 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 67
467 Life-Saving Design Strategies for Nursing Homes and Long-Term Care Facilities

Authors: Jason M. Hegenauer, Nicholas Fucci

Abstract:

In the late 1990s, a major deinstitutionalization movement of elderly patients took place, since which, the design of long-term care facilities has not been adequately analyzed in the United States. Over the course of the last 25 years, major innovations in construction methods, technology, and medicine have been developed, drastically changing the landscape of healthcare architecture. In light of recent events, and the expected increase in elderly populations with the aging of the baby-boomer generation, it is evident that reconsideration of these facilities is essential for the proper care of aging populations. The global response has been effective in stifling this pandemic; however, widespread disease still poses an imminent threat to the human race. Having witnessed the devastation Covid-19 has reaped throughout nursing homes and long-term care facilities, it is evident that the current strategies for protecting our most vulnerable populations are not enough. Light renovation of existing facilities and previously overlooked considerations for new construction projects can drastically lower the risk at nursing homes and long-term care facilities. A reconfigured entry sequence supplements several of the features which have been long-standing essentials of the design of these facilities. This research focuses on several aspects identified as needing improvement, including indoor environment quality, security measures incorporated into healthcare architecture and design, and architectural mitigation strategies for sick building syndrome. The results of this study have been compiled as 'best practices' for the design of future healthcare construction projects focused on the health, safety, and quality of life of the residents of these facilities. These design strategies, which can easily be implemented through renovation of existing facilities and new construction projects, minimize risk of infection and spread of disease while allowing routine functions to continue with minimal impact, should the need for future lockdowns arise. Through the current lockdown procedures, which were implemented during the Covid-19 pandemic, isolation of residents has caused great unrest and worry for family members and friends as they are cut off from their loved ones. At this time, data is still being reported, leaving infection and death rates inconclusive; however, recent projections in some states list long-term care facility deaths as high as 60% of all deaths in the state. The population of these facilities consists of residents who are elderly, immunocompromised, and have underlying chronic medical conditions. According to the Centers for Disease Control, these populations are particularly susceptible to infection and serious illness. The obligation to protect our most vulnerable population cannot be overlooked, and the harsh measures recently taken as a response to the Covid-19 pandemic prove that the design strategies currently utilized for doing so are inadequate.

Keywords: building security, healthcare architecture and design, indoor environment quality, new construction, sick building syndrome, renovation

Procedia PDF Downloads 98
466 Attitudes, Knowledge and Perceptions towards Cervical Cancer Messages among Female University Students

Authors: Anne Nattembo

Abstract:

Cervical cancer remains a major public health problem in developing countries, especially in Africa. Effective cervical cancer prevention communication requires identification of behaviors, attitudes and increasing awareness of a given population; thus this study focused on investigating awareness, attitudes, and behavior among female university students towards cervical cancer messages. The study objectives sought to investigate the communication behavior of young adults towards cervical cancer, to understand female students recognition of cervical cancer as a problem, to identify the frames related to cervical cancer and their impact towards audience communication and participation behaviors, to identify the factors that influence behavioral intentions and level of involvement towards cervical cancer services and to make recommendations on how to improve cervical cancer communication towards female university students. The researcher obtained data using semi-structured interviews and focus group discussions targeting 90 respondents. The semi-structured in-depth interviews were carried out through one-on-one discussions basis using a set of prepared questions among 53 respondents. All interviews were audio-tape recorded. Each interview was directly typed into Microsoft Word. 4 focus group discussions were conducted with a total of 37 respondents; 2 female only groups with 10 respondents in one and 9 respondents in another, 1 mixed with 12 participants 5 of whom were male, and 1 male only group with 6 participants. The key findings show that the participants preferred to receive and access cervical cancer information from doctors although they were mainly receiving information from the radio. In regards to the type of public the respondents represent, majority of the respondents were non-publics in the sense that they did not have knowledge about cervical cancer, had low levels of involvement and had high constraint recognition their cervical cancer knowledge levels. The researcher identified the most salient audience frames among female university students towards cervical cancer and these included; death, loss, and fear. These frames did not necessarily make cervical cancer an issue of concern among the female university students but rather an issue they distanced themselves from as they did not perceive it as a risk. The study also identified the constraints respondents face in responding to cervical cancer campaign calls-to-action which included; stigma, lack of knowledge and access to services as well as lack of recommendation from doctors. In regards to sex differences, females had more knowledge about cervical cancer than the males. In conclusion the study highlights the importance of interpersonal communication in risk or health communication with a focus on health providers proactively sharing cervical cancer prevention information with their patients. Health provider’s involvement in cervical cancer is very important in influencing behavior and compliance of cervical cancer calls-to-action. The study also provides recommendations for designing effective cervical cancer campaigns that will positively impact on the audience such as packaging cervical cancer messages that also target the males as a way of increasing their involvement and more campaigns to increase awareness of cervical cancer as well as designing positive framed messages to counter the negative audience frames towards cervical cancer.

Keywords: cervical cancer communication, health communication, university students, risk communication

Procedia PDF Downloads 230
465 Numerical Analysis of NOₓ Emission in Staged Combustion for the Optimization of Once-Through-Steam-Generators

Authors: Adrien Chatel, Ehsan Askari Mahvelati, Laurent Fitschy

Abstract:

Once-Through-Steam-Generators are commonly used in the oil-sand industry in the heavy fuel oil extraction process. They are composed of three main parts: the burner, the radiant and convective sections. Natural gas is burned through staged diffusive flames stabilized by the burner. The heat generated by the combustion is transferred to the water flowing through the piping system in the radiant and convective sections. The steam produced within the pipes is then directed to the ground to reduce the oil viscosity and allow its pumping. With the rapid development of the oil-sand industry, the number of OTSG in operation has increased as well as the associated emissions of environmental pollutants, especially the Nitrous Oxides (NOₓ). To limit the environmental degradation, various international environmental agencies have established regulations on the pollutant discharge and pushed to reduce the NOₓ release. To meet these constraints, OTSG constructors have to rely on more and more advanced tools to study and predict the NOₓ emission. With the increase of the computational resources, Computational Fluid Dynamics (CFD) has emerged as a flexible tool to analyze the combustion and pollutant formation process. Moreover, to optimize the burner operating condition regarding the NOx emission, field characterization and measurements are usually accomplished. However, these kinds of experimental campaigns are particularly time-consuming and sometimes even impossible for industrial plants with strict operation schedule constraints. Therefore, the application of CFD seems to be more adequate in order to provide guidelines on the NOₓ emission and reduction problem. In the present work, two different software are employed to simulate the combustion process in an OTSG, namely the commercial software ANSYS Fluent and the open source software OpenFOAM. RANS (Reynolds-Averaged Navier–Stokes) equations combined with the Eddy Dissipation Concept to model the combustion and closed by the k-epsilon model are solved. A mesh sensitivity analysis is performed to assess the independence of the solution on the mesh. In the first part, the results given by the two software are compared and confronted with experimental data as a mean to assess the numerical modelling. Flame temperatures and chemical composition are used as reference fields to perform this validation. Results show a fair agreement between experimental and numerical data. In the last part, OpenFOAM is employed to simulate several operating conditions, and an Emission Characteristic Map of the combustion system is generated. The sources of high NOₓ production inside the OTSG are pointed and correlated to the physics of the flow. CFD is, therefore, a useful tool for providing an insight into the NOₓ emission phenomena in OTSG. Sources of high NOₓ production can be identified, and operating conditions can be adjusted accordingly. With the help of RANS simulations, an Emission Characteristics Map can be produced and then be used as a guide for a field tune-up.

Keywords: combustion, computational fluid dynamics, nitrous oxides emission, once-through-steam-generators

Procedia PDF Downloads 113
464 Evolution of Antimicrobial Resistance in Shigella since the Turn of 21st Century, India

Authors: Neelam Taneja, Abhishek Mewara, Ajay Kumar

Abstract:

Multidrug resistant shigellae have emerged as a therapeutic challenge in India. At our 2000 bed tertiary care referral centre in Chandigarh, North India, which caters to a large population of 7 neighboring states, antibiotic resistance in Shigella is being constantly monitored. Shigellae are isolated from 3 to 5% of all stool samples. In 1990 nalidixic acid was the drug of choice as 82%, and 63% of shigellae were resistant to ampicillin and cotrimoxazole respectively. Nalidixic acid resistance emerged in 1992 and rapidly increased from 6% during 1994-98 to 86% by the turn of 21st century. In the 1990s, the WHO recommended ciprofloxacin as the drug of choice for empiric treatment of shigellosis in view of the existing high level resistance to agents like chloramphenicol, ampicillin, cotrimoxazole and nalidixic acid. First resistance to ciprofloxacin in S. flexneri at our centre appeared in 2000 and rapidly rose to 46% in 2007 (MIC>4mg/L). In between we had an outbreak of ciprofloxacin resistant S.dysenteriae serotype 1 in 2003. Therapeutic failures with ciprofloxacin occurred with both ciprofloxacin-resistant S. dysenteriae and ciprofloxacin-resistant S. flexneri. The severity of illness was more with ciprofloxacin-resistant strains. Till 2000, elsewhere in the world ciprofloxacin resistance in S. flexneri was sporadic and uncommon, though resistance to co-trimoxazole and ampicillin was common and in some areas resistance to nalidixic acid had also emerged. Fluoroquinolones due to extensive use and misuse for many other illnesses in our region are thus no longer the preferred group of drugs for managing shigellosis in India. WHO presently recommends ceftriaxone and azithromycin as alternative drugs to fluoroquinolone-resistant shigellae, however, overreliance on this group of drugs also seems to soon become questionable considering the emerging cephalosporin-resistant shigellae. We found 15.1% of S. flexneri isolates collected over a period of 9 years (2000-2009) resistant to at least one of the third-generation cephalosporins (ceftriaxone/cefotaxime). The first isolate showing ceftriaxone resistance was obtained in 2001, and we have observed an increase in number of isolates resistant to third generation cephalosporins in S. flexneri 2005 onwards. This situation has now become a therapeutic challenge in our region. The MIC values for Shigella isolates revealed a worrisome rise for ceftriaxone (MIC90:12 mg/L) and cefepime (MIC90:8 mg/L). MIC values for S. dysenteriae remained below 1 mg/L for ceftriaxone, however for cefepime, the MIC90 has raised to 4 mg/L. These infections caused by ceftriaxone-resistant S. flexneri isolates were successfully treated by azithromycin at our center. Most worrisome development in the present has been the emergence of DSA(Decreased susceptibility to azithromycin) which surfaced in 2001 and has increased from 4.3% till 2011 to 34% thereafter. We suspect plasmid-mediated resistance as we detected qnrS1-positive Shigella for the first time from the Indian subcontinent in 2 strains from 2010, indicating a relatively new appearance of this PMQR determinant among Shigella in India. This calls for a continuous and strong surveillance of antibiotic resistance across the country. The prevention of shigellosis by developing cost-effective vaccines is desirable as it will substantially reduce the morbidity associated with diarrhoea in the country

Keywords: Shigella, antimicrobial, resistance, India

Procedia PDF Downloads 229
463 Revolutionizing Product Packaging: The Impact of Transparent Graded Lanes on Ketchup and Edible Oils Containers on Consumer Behavior

Authors: Saeid Asghari

Abstract:

The growing interest in sustainability and healthy lifestyles has stimulated the development of solutions that promote mindful consumption and healthier choices. One such solution is the use of transparent graded lanes in product packaging, which enables consumers to visually track their product consumption and encourages portion control. However, the extent to which this packaging affects consumer behavior, trust, and loyalty towards a product or brand, as well as the effectiveness of messaging on the graded lanes, remains unclear. The research aims to examine the impact of transparent graded lanes on consumer behavior, trust, and loyalty towards products or brands in the context of the Janbo chain supermarket in Tehran, Iran, focusing on Ketchup and edible oils containers. A representative sample of 720 respondents is selected using quota sampling based on sex, age, and financial status. The study assesses the effect of messaging on the graded lanes in enhancing consumer recall and recognition of the product at the time of purchase, increasing repeat purchases, and fostering long-term relationships with customers. Furthermore, the potential outcomes of using transparent graded lanes, including the promotion of healthy consumption habits and the reduction of food waste, are also considered. The findings and results can inform the development of effective messaging strategies for graded lanes and suggest ways to enhance consumer engagement with product packaging. Moreover, the study's outcomes can contribute to the broader discourse on sustainable consumption and healthy lifestyles, highlighting the potential role of packaging innovations in promoting these values. We used four theories (social cognitive theory, self-perception theory, nudge theory, and marketing and consumer behavior) to examine the effect of these transparent graded lanes on consumer behavior. The conceptual model integrates the use of transparent graded lanes, consumer behavior, trust and loyalty, messaging, and promotion of healthy consumption habits. The study aims to provide insights into how transparent graded lanes can promote mindful consumption, increase consumer recognition and recall of the product, and foster long-term relationships with customers. Findings suggest that the use of transparent graded lanes on Ketchup and edible oils containers can have a positive impact on consumer behavior, trust, and loyalty towards a product or brand, as well as promote mindful consumption and healthier choices. The messaging on the graded lanes is also found to be effective in promoting recall and recognition of the product at the time of purchase and encouraging repeat purchases. However, the impact of transparent graded lanes may be limited by factors such as cultural norms, personal values, and financial status. Broadly speaking, the investigation provides valuable insights into the potential benefits and challenges of using transparent graded lanes in product packaging, as well as effective strategies for promoting healthy consumption habits and building long-term relationships with customers.

Keywords: packaging customer behavior, purchase, brand loyalty, healthy consumption

Procedia PDF Downloads 252
462 Knowledge, Attitude and Beliefs Towards Polypharmacy Amongst Older People Attending Family Medicine Clinic at the Aga Khan University Hospital, Nairobi, Kenya (AKUHN) Sub-Saharan Africa-Qualitative Study

Authors: Maureen Kamau, Gulnaz Mohamoud, Adelaide Lusambili, Njeri Nyanja

Abstract:

Life expectancy has increased over the last century amongst older individuals, and in particular, those 60 years and over. The World Health Organization estimates that the world's population of persons over 60 years will rise to 22 per cent by the year 2050. Ageing is associated with increasing disability, multiple chronic conditions, and an increase in the use of health services. These multiple chronic conditions are managed with polypharmacy. Polypharmacy has numerous adverse effects including non-adherence, poor compliance to the various medications, reduced appetite, and risk of fall. Studies on polypharmacy and ageing are few and poorly understood especially in low and middle - income countries. The aim of this study was to explore the knowledge, attitudes and beliefs of older people towards polypharmacy. A qualitative study of 15 patients aged 60 years and above, taking more than five medications per day were conducted at the Aga Khan University using Semi-structured in-depth interviews. Three interviews were pilot interviews, and data analysis was performed on 12 interviews. Data were analyzed using NVIVO 12 software. A thematic qualitative analysis was carried out guided by Braun and Clarke (2006) framework. Themes identified; - knowledge of their co-morbidities and of the medication that older persons take, sources of information about medicines, and storage of the medication, experiences and attitudes of older patients towards polypharmacy both positive and negative, older peoples beliefs and their coping mechanisms with polypharmacy. The study participants had good knowledge on their multiple co-morbidities, and on the medication they took. The patients had positive attitudes towards medication as it enhanced their health and well-being, and enabled them to perform their activities of daily living. There was a strong belief among older patients that the medications were necessary for their health. All these factors enhanced compliance to the multiple medication. However, some older patients had negative attitudes due to the pill burden, side effects of the medication, and stigma associated with being ill. Cost of healthcare was a concern, with most of the patients interviewed relying on insurance to cover the cost of their medication. Older patients had accepted that the medication they were prescribed were necessary for their health, as it enabled them to complete their activities of daily living. Some concerns about the side effects of the medication arose, and brought about the need for patient education that would ensure that the patients are aware of the medications they take, and potential side effects. The effect that the COVID 19 pandemic had in the healthcare of the older patients was evident by the number of the older patients avoided coming to the hospital during the period of the pandemic. The relationship with the primary care physician and the older patients is an important one, especially in LMICs such as Kenya, as many of the older patients trusted the doctors wholeheartedly to make the best decision about their health and about their medication. Prescription review is important to avoid the use of potentially inappropriate medication.

Keywords: polypharmacy, older patients, multiple chronic conditions, Kenya, Africa, qualitative study, indepth interviews, primary care

Procedia PDF Downloads 98
461 Metagenomic analysis of Irish cattle faecal samples using Oxford Nanopore MinION Next Generation Sequencing

Authors: Niamh Higgins, Dawn Howard

Abstract:

The Irish agri-food sector is of major importance to Ireland’s manufacturing sector and to the Irish economy through employment and the exporting of animal products worldwide. Infectious diseases and parasites have an impact on farm animal health causing profitability and productivity to be affected. For the sustainability of Irish dairy farming, there must be the highest standard of animal health. There can be a lack of information in accounting for > 1% of complete microbial diversity in an environment. There is the tendency of culture-based methods of microbial identification to overestimate the prevalence of species which grow easily on an agar surface. There is a need for new technologies to address these issues to assist with animal health. Metagenomic approaches provide information on both the whole genome and transcriptome present through DNA sequencing of total DNA from environmental samples producing high determination of functional and taxonomic information. Nanopore Next Generation Technologies have the ability to be powerful sequencing technologies. They provide high throughput, low material requirements and produce ultra-long reads, simplifying the experimental process. The aim of this study is to use a metagenomics approach to analyze dairy cattle faecal samples using the Oxford Nanopore MinION Next Generation Sequencer and to establish an in-house pipeline for metagenomic characterization of complex samples. Faecal samples will be obtained from Irish dairy farms, DNA extracted and the MinION will be used for sequencing, followed by bioinformatics analysis. Of particular interest, will be the parasite Buxtonella sulcata, which there has been little research on and which there is no research on its presence on Irish dairy farms. Preliminary results have shown the ability of the MinION to produce hundreds of reads in a relatively short time frame of eight hours. The faecal samples were obtained from 90 dairy cows on a Galway farm. The results from Oxford Nanopore ‘What’s in my pot’ (WIMP) using the Epi2me workflow, show that from a total of 926 classified reads, 87% were from the Kingdom Bacteria, 10% were from the Kingdom Eukaryota, 3% were from the Kingdom Archaea and < 1% were from the Kingdom Viruses. The most prevalent bacteria were those from the Genus Acholeplasma (71 reads), Bacteroides (35 reads), Clostridium (33 reads), Acinetobacter (20 reads). The most prevalent species present were those from the Genus Acholeplasma and included Acholeplasma laidlawii (39 reads) and Acholeplasma brassicae (26 reads). The preliminary results show the ability of the MinION for the identification of microorganisms to species level coming from a complex sample. With ongoing optimization of the pipe-line, the number of classified reads are likely to increase. Metagenomics has the potential in animal health for diagnostics of microorganisms present on farms. This would support wprevention rather than a cure approach as is outlined in the DAFMs National Farmed Animal Health Strategy 2017-2022.

Keywords: animal health, buxtonella sulcata, infectious disease, irish dairy cattle, metagenomics, minION, next generation sequencing

Procedia PDF Downloads 150
460 A Practical Methodology for Evaluating Water, Sanitation and Hygiene Education and Training Programs

Authors: Brittany E. Coff, Tommy K. K. Ngai, Laura A. S. MacDonald

Abstract:

Many organizations in the Water, Sanitation and Hygiene (WASH) sector provide education and training in order to increase the effectiveness of their WASH interventions. A key challenge for these organizations is measuring how well their education and training activities contribute to WASH improvements. It is crucial for implementers to understand the returns of their education and training activities so that they can improve and make better progress toward the desired outcomes. This paper presents information on CAWST’s development and piloting of the evaluation methodology. The Centre for Affordable Water and Sanitation Technology (CAWST) has developed a methodology for evaluating education and training activities, so that organizations can understand the effectiveness of their WASH activities and improve accordingly. CAWST developed this methodology through a series of research partnerships, followed by staged field pilots in Nepal, Peru, Ethiopia and Haiti. During the research partnerships, CAWST collaborated with universities in the UK and Canada to: review a range of available evaluation frameworks, investigate existing practices for evaluating education activities, and develop a draft methodology for evaluating education programs. The draft methodology was then piloted in three separate studies to evaluate CAWST’s, and CAWST’s partner’s, WASH education programs. Each of the pilot studies evaluated education programs in different locations, with different objectives, and at different times within the project cycles. The evaluations in Nepal and Peru were conducted in 2013 and investigated the outcomes and impacts of CAWST’s WASH education services in those countries over the past 5-10 years. In 2014, the methodology was applied to complete a rigorous evaluation of a 3-day WASH Awareness training program in Ethiopia, one year after the training had occurred. In 2015, the methodology was applied in Haiti to complete a rapid assessment of a Community Health Promotion program, which informed the development of an improved training program. After each pilot evaluation, the methodology was reviewed and improvements were made. A key concept within the methodology is that in order for training activities to lead to improved WASH practices at the community level, it is not enough for participants to acquire new knowledge and skills; they must also apply the new skills and influence the behavior of others following the training. The steps of the methodology include: development of a Theory of Change for the education program, application of the Kirkpatrick model to develop indicators, development of data collection tools, data collection, data analysis and interpretation, and use of the findings for improvement. The methodology was applied in different ways for each pilot and was found to be practical to apply and adapt to meet the needs of each case. It was useful in gathering specific information on the outcomes of the education and training activities, and in developing recommendations for program improvement. Based on the results of the pilot studies, CAWST is developing a set of support materials to enable other WASH implementers to apply the methodology. By using this methodology, more WASH organizations will be able to understand the outcomes and impacts of their training activities, leading to higher quality education programs and improved WASH outcomes.

Keywords: education and training, capacity building, evaluation, water and sanitation

Procedia PDF Downloads 310
459 Persistent Organic Pollutant Level in Challawa River Basin of Kano State, Nigeria

Authors: Abdulkadir Sarauta

Abstract:

Almost every type of industrial process involves the release of trace quantity of toxic organic and inorganic compound that up in receiving water bodies, this study was aimed at assessing the Persistent Organic Pollutant Level in Challawa River Basin of Kano State, Nigeria. And the research formed the basis of identifying the presence of PCBs and PAHs in receiving water bodies in the study area, assessing the PCBs and PAHs concentration in receiving water body of Challawa system, evaluate the concentration level of PCBs and PAHs in fishes in the study area, determine the concentration level of PCBs and PAHs in crops irrigated in the study area as well as compare the concentration of PCBs and PAHs with the acceptable limit set by Nigerian, EU, U.S and WHO standard. Data were collected using reconnaissance survey, site inspection, field survey, laboratory experiment as well as secondary data source. A total of 78 samples were collected through stratified systematic random sampling (i.e., 26 samples for each of water, crops and fish) three sampling points were chosen and designated A, B and C along the stretch of the river (i.e. up, middle, and downstream) from Yan Danko Bridge to Tambirawa bridge. The result shows that the Polychlorinated biphenyls (PCBs) was not detected while, polycyclic aromatic hydrocarbons (PAHs) was detected in the whole samples analysed at the trench of Challawa River basin in order to assess the contribution of human activities to global environmental pollution. The total concentrations of ΣPAH and ΣPCB ranges between 0.001 to 0.087mg/l and 0.00 to 0.00mg/l of water samples While, crops samples ranges between 2.0ppb to 8.1ppb and fish samples ranges from 2.0 to 6.7ppb.The whole samples are polluted because most of the parameters analyzed exceed the threshold limits set by WHO, Nigerian, U.S and EU standard. The analytical results revealed that some chemicals are present in water, crops and fishes are significantly very high at Zamawa village which is very close to Challawa industrial estate and also is main effluent discharge point and drinking water around study area is not potable for consumption. Analysis of Variance was obtained by Bartlett’s test performance. There is only significant difference in water because the P < 0.05 level of significant, But there is no difference in crops concentration they have the same performance, likes wise in the fishes. It is said to be of concern to health hazard which will increase incidence of tumor related diseases such as skin, lungs, bladder, gastrointestinal cancer, this show there is high failure of pollution abatement measures in the area. In conclusion, it can be said that industrial activities and effluent has impact on Challawa River basin and its environs especially those that are living in the immediate surroundings. Arising from the findings of this research some recommendations were made the industries should treat their liquid properly by installing modern treatment plants.

Keywords: Challawa River Basin, organic, persistent, pollutant

Procedia PDF Downloads 575
458 Morphotropic Phase Boundary in Ferromagnets: Unusual Magnetoelastic Behavior In Tb₁₋ₓNdₓCo₂

Authors: Adil Murtaza, Muhammad Tahir Khan, Awais Ghani, Chao Zhou, Sen Yang, Xiaoping Song

Abstract:

The morphotropic phase boundary (MPB); a boundary between two different crystallographic symmetries in the composition–temperature phase diagram has been widely studied in ferroelectrics and recently has drawn interest in ferromagnets for obtaining enhanced large field-induced strain. At MPB, the system gets a compressed free energy state, which allows the polarization to freely rotate and hence results in a high magnetoelastic response (e.g., high magnetization, low coercivity, and large magnetostriction). Based on the same mechanism, we designed MPB in a ferromagnetic Tb₁₋ₓNdₓCo₂ system. The temperature-dependent magnetization curves showed spin reorientation (SR); which can be explained by a two-sublattice model. Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb₀.₃₅Nd₀.₆₅Co₂ exhibits a low saturation magnetization (MS), indicating a compensation of the Tb and Nd magnetic moments at MPB. The coercive field (HC) under a low magnetic field and first anisotropy constant (K₁) shows a minimum value at MPB composition of x=0.65. A detailed spin configuration diagram is provided for the Tb₁₋ₓNdₓCo₂ around the composition for the anisotropy compensation; this can guide the development of novel magnetostrictive materials. The anisotropic magnetostriction (λS) first decreased until x=0.8 and then continuously increased in the negative direction with further increase of Nd concentration. In addition, the large ratio between magnetostriction and the absolute values of the first anisotropy constant (λS/K₁) appears at MPB, indicating that Tb₀.₃₅Nd₀.₆₅Co₂ has good magnetostrictive properties. Present work shows an anomalous type of MPB in ferromagnetic materials, revealing that MPB can also lead to a weakening of magnetoelastic behavior as shown in the ferromagnetic Tb₁₋ₓNdₓCo₂ system. Our work shows the universal presence of MPB in ferromagnetic materials and suggests the differences between different ferromagnetic MPB systems that are important for substantial improvement of magnetic and magnetostrictive properties. Based on the results of this study, similar MPB effects might be achieved in other ferroic systems that can be used for technological applications. The finding of magnetic MPB in the ferromagnetic system leads to some important significances. First, it provides a better understanding of the fundamental concept of spin reorientation transitions (SRT) like ferro-ferro transitions are not only reorientation of magnetization but also crystal symmetry change upon magnetic ordering. Second, the flattened free energy corresponding to a low energy barrier for magnetization rotation and enhanced magnetoelastic response near MPB. Third, to attain large magnetostriction with MPB approach two terminal compounds have different easy magnetization directions below Curie temperature Tc in order to accomplish the weakening of magnetization anisotropy at MPB (as in ferroelectrics), thus easing the magnetic domain switching and the lattice distortion difference between two terminal compounds should be large enough, e.g., lattice distortion of R symmetry ˃˃ lattice distortion of T symmetry). So that the MPB composition agrees to a nearly isotropic state along with large ‘net’ lattice distortion, which is revealed in a higher value of magnetostriction.

Keywords: magnetization, magnetostriction, morphotropic phase boundary (MPB), phase transition

Procedia PDF Downloads 146
457 Plasmonic Biosensor for Early Detection of Environmental DNA (eDNA) Combined with Enzyme Amplification

Authors: Monisha Elumalai, Joana Guerreiro, Joana Carvalho, Marta Prado

Abstract:

DNA biosensors popularity has been increasing over the past few years. Traditional analytical techniques tend to require complex steps and expensive equipment however DNA biosensors have the advantage of getting simple, fast and economic. Additionally, the combination of DNA biosensors with nanomaterials offers the opportunity to improve the selectivity, sensitivity and the overall performance of the devices. DNA biosensors are based on oligonucleotides as sensing elements. These oligonucleotides are highly specific to complementary DNA sequences resulting in the hybridization of the strands. DNA biosensors are not only an advantage in the clinical field but also applicable in numerous research areas such as food analysis or environmental control. Zebra Mussels (ZM), Dreissena polymorpha are invasive species responsible for enormous negative impacts on the environment and ecosystems. Generally, the detection of ZM is made when the observation of adult or macroscopic larvae's is made however at this stage is too late to avoid the harmful effects. Therefore, there is a need to develop an analytical tool for the early detection of ZM. Here, we present a portable plasmonic biosensor for the detection of environmental DNA (eDNA) released to the environment from this invasive species. The plasmonic DNA biosensor combines gold nanoparticles, as transducer elements, due to their great optical properties and high sensitivity. The detection strategy is based on the immobilization of a short base pair DNA sequence on the nanoparticles surface followed by specific hybridization in the presence of a complementary target DNA. The hybridization events are tracked by the optical response provided by the nanospheres and their surrounding environment. The identification of the DNA sequences (synthetic target and probes) to detect Zebra mussel were designed by using Geneious software in order to maximize the specificity. Moreover, to increase the optical response enzyme amplification of DNA might be used. The gold nanospheres were synthesized and characterized by UV-visible spectrophotometry and transmission electron microscopy (TEM). The obtained nanospheres present the maximum localized surface plasmon resonance (LSPR) peak position are found to be around 519 nm and a diameter of 17nm. The DNA probes modified with a sulfur group at one end of the sequence were then loaded on the gold nanospheres at different ionic strengths and DNA probe concentrations. The optimal DNA probe loading will be selected based on the stability of the optical signal followed by the hybridization study. Hybridization process leads to either nanoparticle dispersion or aggregation based on the presence or absence of the target DNA. Finally, this detection system will be integrated into an optical sensing platform. Considering that the developed device will be used in the field, it should fulfill the inexpensive and portability requirements. The sensing devices based on specific DNA detection holds great potential and can be exploited for sensing applications in-loco.

Keywords: ZM DNA, DNA probes, nicking enzyme, gold nanoparticles

Procedia PDF Downloads 245
456 Monsoon Controlled Mercury Transportation in Ganga Alluvial Plain, Northern India and Its Implication on Global Mercury Cycle

Authors: Anjali Singh, Ashwani Raju, Vandana Devi, Mohmad Mohsin Atique, Satyendra Singh, Munendra Singh

Abstract:

India is the biggest consumer of mercury and, consequently, a major emitter too. The increasing mercury contamination in India’s water resources has gained widespread attention and, therefore, atmospheric deposition is of critical concern. However, little emphasis was placed on the role of precipitation in the aquatic mercury cycle of the Ganga Alluvial Plain which provides drinking water to nearly 7% of the world’s human population. A majority of the precipitation here occurs primarily in 10% duration of the year in the monsoon season. To evaluate the sources and transportation of mercury, water sample analysis has been conducted from two selected sites near Lucknow, which have a strong hydraulic gradient towards the river. 31 groundwater samples from Jehta village (26°55’15’’N; 80°50’21’’E; 119 m above mean sea level) and 31 river water samples from the Behta Nadi (a tributary of the Gomati River draining into the Ganga River) were collected during the monsoon season on every alternate day between 01 July to 30 August 2019. The total mercury analysis was performed by using Flow Injection Atomic Absorption Spectroscopy (AAS)-Mercury Hybride System, and daily rainfall data was collected from the India Meteorological Department, Amausi, Lucknow. The ambient groundwater and river-water concentrations were both 2-4 ng/L as there is no known geogenic source of mercury found in the area. Before the onset of the monsoon season, the groundwater and the river-water recorded mercury concentrations two orders of magnitude higher than the ambient concentrations, indicating the regional transportation of the mercury from the non-point source into the aquatic environment. Maximum mercury concentrations in groundwater and river-water were three orders of magnitude higher than the ambient concentrations after the onset of the monsoon season characterizing the considerable mobilization and redistribution of mercury by monsoonal precipitation. About 50% of both of the water samples were reported mercury below the detection limit, which can be mostly linked to the low intensity of precipitation in August and also with the dilution factor by precipitation. The highest concentration ( > 1200 ng/L) of mercury in groundwater was reported after 6-days lag from the first precipitation peak. Two high concentration peaks (>1000 ng/L) in river-water were separately correlated with the surface flow and groundwater outflow of mercury. We attribute the elevated mercury concentration in both of the water samples before the precipitation event to mercury originating from the extensive use of agrochemicals in mango farming in the plain. However, the elevated mercury concentration during the onset of monsoon appears to increase in area wetted with atmospherically deposited mercury, which migrated down from surface water to groundwater as downslope migration is a fundamental mechanism seen in rivers of the alluvial plain. The present study underscores the significance of monsoonal precipitation in the transportation of mercury to drinking water resources of the Ganga Alluvial Plain. This study also suggests that future research must be pursued for a better understand of the human health impact of mercury contamination and for quantification of the role of Ganga Alluvial Plain in the Global Mercury Cycle.

Keywords: drinking water resources, Ganga alluvial plain, india, mercury

Procedia PDF Downloads 145
455 The Use of Vasopressin in the Management of Severe Traumatic Brain Injury: A Narrative Review

Authors: Nicole Selvi Hill, Archchana Radhakrishnan

Abstract:

Introduction: Traumatic brain injury (TBI) is a leading cause of mortality among trauma patients. In the management of TBI, the main principle is avoiding cerebral ischemia, as this is a strong determiner of neurological outcomes. The use of vasoactive drugs, such as vasopressin, has an important role in maintaining cerebral perfusion pressure to prevent secondary brain injury. Current guidelines do not suggest a preferred vasoactive drug to administer in the management of TBI, and there is a paucity of information on the therapeutic potential of vasopressin following TBI. Vasopressin is also an endogenous anti-diuretic hormone (AVP), and pathways mediated by AVP play a large role in the underlying pathological processes of TBI. This creates an overlap of discussion regarding the therapeutic potential of vasopressin following TBI. Currently, its popularity lies in vasodilatory and cardiogenic shock in the intensive care setting, with increasing support for its use in haemorrhagic and septic shock. Methodology: This is a review article based on a literature review. An electronic search was conducted via PubMed, Cochrane, EMBASE, and Google Scholar. The aim was to identify clinical studies looking at the therapeutic administration of vasopressin in severe traumatic brain injury. The primary aim was to look at the neurological outcome of patients. The secondary aim was to look at surrogate markers of cerebral perfusion measurements, such as cerebral perfusion pressure, cerebral oxygenation, and cerebral blood flow. Results: Eight papers were included in the final number. Three were animal studies; five were human studies, comprised of three case reports, one retrospective review of data, and one randomised control trial. All animal studies demonstrated the benefits of vasopressors in TBI management. One animal study showed the superiority of vasopressin in reducing intracranial pressure and increasing cerebral oxygenation over a catecholaminergic vasopressor, phenylephrine. All three human case reports were supportive of vasopressin as a rescue therapy in catecholaminergic-resistant hypotension. The retrospective review found vasopressin did not increase cerebral oedema in TBI patients compared to catecholaminergic vasopressors; and demonstrated a significant reduction in the requirements of hyperosmolar therapy in patients that received vasopressin. The randomised control trial results showed no significant differences in primary and secondary outcomes between TBI patients receiving vasopressin versus those receiving catecholaminergic vasopressors. Apart from the randomised control trial, the studies included are of low-level evidence. Conclusion: Studies favour vasopressin within certain parameters of cerebral function compared to control groups. However, the neurological outcomes of patient groups are not known, and animal study results are difficult to extrapolate to humans. It cannot be said with certainty whether vasopressin’s benefits stand above usage of other vasoactive drugs due to the weaknesses of the evidence. Further randomised control trials, which are larger, standardised, and rigorous, are required to improve knowledge in this field.

Keywords: catecholamines, cerebral perfusion pressure, traumatic brain injury, vasopressin, vasopressors

Procedia PDF Downloads 67
454 COVID-19: Potential Effects of Nutritional Factors on Inflammation Relief

Authors: Maryam Nazari

Abstract:

COVID-19 is a respiratory disease triggered by the novel coronavirus, SARS-CoV-2, that has reached pandemic status today. Acute inflammation and immune cells infiltration into lung injuries result in multi-organ failure. The presence of other non-communicable diseases (NCDs) with systemic inflammation derived from COVID-19 may exacerbate the patient's situation and increase the risk for adverse effects and mortality. This pandemic is a novel situation and the scientific community at this time is looking for vaccines or drugs to treat the pathology. One of the biggest challenges is focused on reducing inflammation without compromising the correct immune response of the patient. In this regard, addressing the nutritional factors should not be overlooked not only as a matter of avoiding the presence of NCDs with severe infections but also as an adjunctive way to modulate the inflammatory status of the patients. Despite the pivotal role of nutrition in modifying immune response, due to the novelty of the COVID-19 disease, information about the effects of specific dietary agents is limited in this area. From the macronutrients point of view, protein deficiency (quantity or quality) has negative effects on the number of functional immunoglobulins and gut-associated lymphoid tissue (GALT). High biological value proteins or some amino acids like arginine and glutamine are well known for their ability to augment the immune system. Among lipids, fish oil has the ability to inactivate enveloped viruses, suppress pro-inflammatory prostaglandin production and block platelet-activating factors and their receptors. In addition, protectin D1, which is an Omega-3 PUFAs derivation, is a novel antiviral drug. So it seems that these fatty acids can reduce the severity and/or improve recovery of patients with COVID-19. Carbohydrates with lower glycemic index and fibers are associated with lower levels of inflammatory cytokines (CRP, TNF-α, and IL-6). Short-Chain Fatty acids not only exert a direct anti-inflammatory effect but also provide appropriate gut microbial, which is important in gastrointestinal issues related to COVID-19. From the micronutrients point of view, Vitamins A, C, D, E, iron, magnesium, zinc, selenium and copper play a vital role in the maintenance of immune function. Inadequate status in these nutrients may result in decreased resistance against COVID-19 infection. There are specific bioactive compounds in the diet that interact with the ACE2 receptor, which is the gateway for SARS and SARS-CoV-2, and thus controls the viral infection. Regarding this, the potential benefits of probiotics, resveratrol (a polyphenol found in grape), oleoylethanolamide (derived from oleic acid), and natural peroxisome proliferator-activated receptor γ agonists in foodstuffs (like curcumin, pomegranate, hot pepper) are suggested. Yet, it should be pointed out that most of these results have been reported in animal models and further human studies are needed to be verified.

Keywords: Covid-19, inflammation, nutrition, dietary agents

Procedia PDF Downloads 174
453 Gene Expression Profiling of Iron-Related Genes of Pasteurella multocida Serotype A Strain PMTB2.1

Authors: Shagufta Jabeen, Faez Jesse Firdaus Abdullah, Zunita Zakaria, Nurulfiza Mat Isa, Yung Chie Tan, Wai Yan Yee, Abdul Rahman Omar

Abstract:

Pasteurella multocida is associated with acute, as well as, chronic infections in avian and bovine such as pasteurellosis and hemorrhagic septicemia (HS) in cattle and buffaloes. Iron is one of the most important nutrients for pathogenic bacteria including Pasteurella and acts as a cofactor or prosthetic group in several essential enzymes and is needed for amino acid, pyrimidine, and DNA biosynthesis. In our recent study, we showed that 2% of Pasteurella multocida serotype A strain PMTB2.1 encode for iron regulating genes (Accession number CP007205.1). Genome sequencing of other Pasteurella multocida serotypes namely PM70 and HB01 also indicated up to 2.5% of the respective genome encode for iron regulating genes, suggesting that Pasteurella multocida genome comprises of multiple systems for iron uptake. Since P. multocida PMTB2.1 has more than 40 CDs out of 2097 CDs (approximately 2%), encode for iron-regulated. The gene expression profiling of four iron-regulating genes namely fbpb, yfea, fece and fur were characterized under iron-restricted environment. The P. multocida strain PMTB2.1 was grown in broth with and without iron chelating agent and samples were collected at different time points. Relative mRNA expression profile of these genes was determined using Taqman probe based real-time PCR assay. The data analysis, normalization with two house-keeping genes and the quantification of fold changes were carried out using Bio-Rad CFX manager software version 3.1. Results of this study reflect that iron reduced environment has significant effect on expression profile of iron regulating genes (p < 0.05) when compared to control (normal broth) and all evaluated genes act differently with response to iron reduction in media. The highest relative fold change of fece gene was observed at early stage of treatment indicating that PMTB2.1 may utilize its periplasmic protein at early stage to acquire iron. Furthermore, down-regulation expression of fece with the elevated expression of other genes at later time points suggests that PMTB2.1 control their iron requirements in response to iron availability by down-regulating the expression of iron proteins. Moreover, significantly high relative fold change (p ≤ 0.05) of fbpb gene is probably associated with the ability of P. multocida to directly use host iron complex such as hem, hemoglobin. In addition, the significant increase (p ≤ 0.05) in fbpb and yfea expressions also reflects the utilization of multiple iron systems in P. multocida strain PMTB2.1. The findings of this study are very much important as relative scarcity of free iron within hosts creates a major barrier to microbial growth inside host and utilization of outer-membrane proteins system in iron acquisition probably occurred at early stage of infection with P. multocida. In conclusion, the presence and utilization of multiple iron system in P. multocida strain PMTB2.1 revealed the importance of iron in the survival of P. multocida.

Keywords: iron-related genes, real-time PCR, gene expression profiling, fold changes

Procedia PDF Downloads 460
452 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents

Authors: Rajesh Kumar Gautam, Debabrata Seth

Abstract:

Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.

Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant

Procedia PDF Downloads 162
451 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management

Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li

Abstract:

Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.

Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification

Procedia PDF Downloads 250
450 Globalization of Pesticide Technology and Sustainable Agriculture

Authors: Gagandeep Kaur

Abstract:

The pesticide industry is a big supplier of agricultural inputs. The uses of pesticides control weeds, fungal diseases, etc., which causes of yield losses in agricultural production. In agribusiness and agrichemical industry, Globalization of markets, competition and innovation are the dominant trends. By the tradition of increasing the productivity of agro-systems through generic, universally applicable technologies, innovation in the agrichemical industry is limited. The marketing of technology of agriculture needs to deal with some various trends such as locally-organized forces that envision regionalized sustainable agriculture in the future. Agricultural production has changed dramatically over the past century. Before World War second agricultural production was featured as a low input of money, high labor, mixed farming and low yields. Although mineral fertilizers were applied already in the second half of the 19th century, most f the crops were restricted by local climatic, geological and ecological conditions. After World War second, in the period of reconstruction, political and socioeconomic pressure changed the nature of agricultural production. For a growing population, food security at low prices and securing farmer income at acceptable levels became political priorities. Current agricultural policy the new European common agricultural policy is aimed to reduce overproduction, liberalization of world trade and the protection of landscape and natural habitats. Farmers have to increase the quality of their productivity and they have to control costs because of increased competition from the world market. Pesticides should be more effective at lower application doses, less toxic and not pose a threat to groundwater. There is a big debate taking place about how and whether to mitigate the intensive use of pesticides. This debate is about the future of agriculture which is sustainable agriculture. This is possible by moving away from conventional agriculture. Conventional agriculture is featured as high inputs and high yields. The use of pesticides in conventional agriculture implies crop production in a wide range. To move away from conventional agriculture is possible through the gradual adoption of less disturbing and polluting agricultural practices at the level of the cropping system. For a healthy environment for crop production in the future there is a need for the maintenance of chemical, physical or biological properties. There is also required to minimize the emission of volatile compounds in the atmosphere. Companies are limiting themselves to a particular interpretation of sustainable development, characterized by technological optimism and production-maximizing. So the main objective of the paper will present the trends in the pesticide industry and in agricultural production in the era of Globalization. The second objective is to analyze sustainable agriculture. Companies of pesticides seem to have identified biotechnology as a promising alternative and supplement to the conventional business of selling pesticides. The agricultural sector is in the process of transforming its conventional mode of operation. Some experts give suggestions to farmers to move towards precision farming and some suggest engaging in organic farming. The methodology of the paper will be historical and analytical. Both primary and secondary sources will be used.

Keywords: globalization, pesticides, sustainable development, organic farming

Procedia PDF Downloads 98
449 Climate Change and Rural-Urban Migration in Brazilian Semiarid Region

Authors: Linda Márcia Mendes Delazeri, Dênis Antônio Da Cunha

Abstract:

Over the past few years, the evidence that human activities have altered the concentration of greenhouse gases in the atmosphere have become stronger, indicating that this accumulation is the most likely cause of climate change observed so far. The risks associated with climate change, although uncertain, have the potential to increase social vulnerability, exacerbating existing socioeconomic challenges. Developing countries are potentially the most affected by climate change, since they have less potential to adapt and are those most dependent on agricultural activities, one of the sectors in which the major negative impacts are expected. In Brazil, specifically, it is expected that the localities which form the semiarid region are among the most affected, due to existing irregularity in rainfall and high temperatures, in addition to economic and social factors endemic to the region. Given the strategic limitations to handle the environmental shocks caused by climate change, an alternative adopted in response to these shocks is migration. Understanding the specific features of migration flows, such as duration, destination and composition is essential to understand the impacts of migration on origin and destination locations and to develop appropriate policies. Thus, this study aims to examine whether climatic factors have contributed to rural-urban migration in semiarid municipalities in the recent past and how these migration flows will be affected by future scenarios of climate change. The study was based on microeconomic theory of utility maximization, in which, to decide to leave the countryside and move on to the urban area, the individual seeks to maximize its utility. Analytically, we estimated an econometric model using the modeling of Fixed Effects and the results confirmed the expectation that climate drivers are crucial for the occurrence of the rural-urban migration. Also, other drivers of the migration process, as economic, social and demographic factors were also important. Additionally, predictions about the rural-urban migration motivated by variations in temperature and precipitation in the climate change scenarios RCP 4.5 and 8.5 were made for the periods 2016-2035 and 2046-2065, defined by the Intergovernmental Panel on Climate Change (IPCC). The results indicate that there will be increased rural-urban migration in the semiarid region in both scenarios and in both periods. In general, the results of this study reinforce the need for formulations of public policies to avoid migration for climatic reasons, such as policies that give support to the productive activities generating income in rural areas. By providing greater incentives for family agriculture and expanding sources of credit for the farmer, it will have a better position to face climate adversities and to settle in rural areas. Ultimately, if migration becomes necessary, there must be the adoption of policies that seek an organized and planned development of urban areas, considering migration as an adaptation strategy to adverse climate effects. Thus, policies that act to absorb migrants in urban areas and ensure that they have access to basic services offered to the urban population would contribute to the social costs reduction of climate variability.

Keywords: climate change, migration, rural productivity, semiarid region

Procedia PDF Downloads 350
448 Impact of Transportation on Access to Reproductive and Maternal Health Services in Northeast Cambodia: A Policy Brief

Authors: Zaman Jawahar, Anne Rouve-Khiev, Elizabeth Hoban, Joanne Williams

Abstract:

Ensuring access to timely obstetric care is essential to prevent maternal deaths. Geographical barriers pose significant challenges for women accessing quality reproductive and maternal health services in rural Cambodia. This policy brief affirms the need to address the issue of transportation and cost (direct and indirect) as critical barriers to accessing reproductive and maternal health (RMH) services in four provinces in Northeast Cambodia (Kratie, Ratanak Kiri, Mondul Kiri, Stung Treng). A systemic search of the literature identified 1,116 articles, and only ten articles from low-and-middle-income countries met the inclusion criteria. The ten articles reported on transportation and cost related to accessing RMH services. In addition, research findings from Partnering to Save Lives (PSL) studies in the four provinces were included in the analysis. Thematic data analysis using the information in the ten articles and PSL research findings was conducted, and the findings are presented in this paper. The key findings are the critical barriers to accessing RMH services in the four provinces because women experience: 1) difficulties finding affordable transportation; 2) lack of available and accessible transportation; 3) greater distance and traveling time to services; 4) poor geographical terrain and; 5) higher opportunity costs. Distance and poverty pose a double burden for the women accessing RMH services making a facility-based delivery less feasible compared to home delivery. Furthermore, indirect and hidden costs associated with institutional delivery may have an impact on women’s decision to seek RMH care. Existing health financing schemes in Cambodia such as the Health Equity Fund (HEF) and the Voucher Scheme contributed to the solution but have also shown some limitations. These schemes contribute to improving access to RMH services for the poorest group, but the barrier of transportation costs remains. In conclusion, initiatives that are proven to be effective in the Cambodian context should continue or be expanded in conjunction with the HEF, and special consideration should be given to communities living in geographically remote regions and difficult to access areas. The following strategies are recommended: 1) maintain and further strengthen transportation support in the HEF scheme; 2) expand community-based initiatives such as Community Managed Health Equity Funds and Village Saving Loans Associations; 3) establish maternity waiting homes; and 4) include antenatal and postnatal care in the provision of integrated outreach services. This policy brief can be used to inform key policymakers and provide evidence that can assist them to develop strategies to increase poor women’s access to RMH services in low-income settings, taking into consideration the geographic distance and other indirect costs associated with a facility-based delivery.

Keywords: access, barriers, northeast Cambodia, reproductive and maternal health service, transportation and cost

Procedia PDF Downloads 141