Search results for: task avoidance
884 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator
Procedia PDF Downloads 248883 Case Study; Drilled Shafts Installation in Difficult Site Conditions; Loose Sand and High Water Table
Authors: Anthony El Hachem, Hosam Salman
Abstract:
Selecting the most effective construction method for drilled shafts under the high phreatic surface can be a challenging task that requires effective communication between the design and construction teams. Slurry placement, temporary casing, and permanent casing are the three most commonly used installation techniques to ensure the stability of the drilled hole before casting the concrete. Each one of these methods has its implications on the installation and performance of the drilled piers. Drilled shafts were designed to support a fire wall for an Energy project in Central Texas. The subsurface consisted of interlayers of sands and clays of varying shear strengths. The design recommended that the shafts be installed with temporary casing or slurry displacement due to the anticipated groundwater seepage through granular soils. During the foundation construction, it was very difficult to maintain the stability of the hole, and the contractor requested to install the shafts using permanent casings. Therefore, the foundation design was modified to ensure that the cased shafts achieve the required load capacity. Effective and continuous communications between the owner, contractor and design team during field shaft installations to mitigate the unforeseen challenges helped the team to successfully complete the project.Keywords: construction challenges, deep foundations, drilled shafts, loose sands underwater table, permanent casing
Procedia PDF Downloads 191882 A Transformer-Based Approach for Multi-Human 3D Pose Estimation Using Color and Depth Images
Authors: Qiang Wang, Hongyang Yu
Abstract:
Multi-human 3D pose estimation is a challenging task in computer vision, which aims to recover the 3D joint locations of multiple people from multi-view images. In contrast to traditional methods, which typically only use color (RGB) images as input, our approach utilizes both color and depth (D) information contained in RGB-D images. We also employ a transformer-based model as the backbone of our approach, which is able to capture long-range dependencies and has been shown to perform well on various sequence modeling tasks. Our method is trained and tested on the Carnegie Mellon University (CMU) Panoptic dataset, which contains a diverse set of indoor and outdoor scenes with multiple people in varying poses and clothing. We evaluate the performance of our model on the standard 3D pose estimation metrics of mean per-joint position error (MPJPE). Our results show that the transformer-based approach outperforms traditional methods and achieves competitive results on the CMU Panoptic dataset. We also perform an ablation study to understand the impact of different design choices on the overall performance of the model. In summary, our work demonstrates the effectiveness of using a transformer-based approach with RGB-D images for multi-human 3D pose estimation and has potential applications in real-world scenarios such as human-computer interaction, robotics, and augmented reality.Keywords: multi-human 3D pose estimation, RGB-D images, transformer, 3D joint locations
Procedia PDF Downloads 78881 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data
Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim
Abstract:
Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth
Procedia PDF Downloads 316880 Implementation of Congestion Management Strategies on Arterial Roads: Case Study of Geelong
Authors: A. Das, L. Hitihamillage, S. Moridpour
Abstract:
Natural disasters are inevitable to the biodiversity. Disasters such as flood, tsunami and tornadoes could be brutal, harsh and devastating. In Australia, flooding is a major issue experienced by different parts of the country. In such crisis, delays in evacuation could decide the life and death of the people living in those regions. Congestion management could become a mammoth task if there are no steps taken before such situations. In the past to manage congestion in such circumstances, many strategies were utilised such as converting the road shoulders to extra lanes or changing the road geometry by adding more lanes. However, expansion of road to resolving congestion problems is not considered a viable option nowadays. The authorities avoid this option due to many reasons, such as lack of financial support and land space. They tend to focus their attention on optimising the current resources they possess and use traffic signals to overcome congestion problems. Traffic Signal Management strategy was considered a viable option, to alleviate congestion problems in the City of Geelong, Victoria. Arterial road with signalised intersections considered in this paper and the traffic data required for modelling collected from VicRoads. Traffic signalling software SIDRA used to model the roads, and the information gathered from VicRoads. In this paper, various signal parameters utilised to assess and improve the corridor performance to achieve the best possible Level of Services (LOS) for the arterial road.Keywords: congestion, constraints, management, LOS
Procedia PDF Downloads 395879 Regenerative Agriculture: A Green Economy Tool for a Sustainable Crop Production
Authors: Meisam Zargar, Yurii Pleskachov, Mostafa Abdelkader, Aldaibe Ahmed, Maryam Bayat, Malek H. Walli, Shimendi Okbagabir
Abstract:
The increased need of humankind for foodstuffs highlights the intensification of agricultural production. It is necessary either to increase the size of the sown area or to look for new approaches to improve agricultural land productivity. Developing new areas for cultivation is possible due to the intensification of soil cultivation. Nevertheless, this will decrease the effectiveness of de-carbonization programs since this approach will inevitably increase greenhouse gas emissions. Therefore, searching for new solutions to conserve natural resources while obtaining stable predicted crop yields is a vital scientific and technical task. For a long time, destructive land use methods have been used in crop production. The present stage of civilization's development and implementation of new techniques and methods of tillage and crops require the solution of technological, economic, and environmental problems simultaneously with the possibility of creating conditions for the regeneration of soil resources. Implementing these approaches became possible due to the development of new technology for the cultivation of crops based on the exact selective impact on the object of processing. This technology of particular effects of TIV combines the positive accumulated experience of traditional farming systems and resource-saving approaches. Particularly high-quality indicators and cost savings with introducing TIV can be achieved when used on row crops, including vegetables and melons.Keywords: agricultural machinery, vegetable, irrigation, strip system
Procedia PDF Downloads 28878 Humans Trust Building in Robots with the Help of Explanations
Authors: Misbah Javaid, Vladimir Estivill-Castro, Rene Hexel
Abstract:
The field of robotics is advancing rapidly to the point where robots have become an integral part of the modern society. These robots collaborate and contribute productively with humans and compensate some shortcomings from human abilities and complement them with their skills. Effective teamwork of humans and robots demands to investigate the critical issue of trust. The field of human-computer interaction (HCI) has already examined trust humans place in technical systems mostly on issues like reliability and accuracy of performance. Early work in the area of expert systems suggested that automatic generation of explanations improved trust and acceptability of these systems. In this work, we augmented a robot with the user-invoked explanation generation proficiency. To measure explanations effect on human’s level of trust, we collected subjective survey measures and behavioral data in a human-robot team task into an interactive, adversarial and partial information environment. The results showed that with the explanation capability humans not only understand and recognize robot as an expert team partner. But, it was also observed that human's learning and human-robot team performance also significantly improved because of the meaningful interaction with the robot in the human-robot team. Moreover, by observing distinctive outcomes, we expect our research outcomes will also provide insights into further improvement of human-robot trustworthy relationships.Keywords: explanation interface, adversaries, partial observability, trust building
Procedia PDF Downloads 198877 Classification Framework of Production Planning and Scheduling Solutions from Supply Chain Management Perspective
Authors: Kwan Hee Han
Abstract:
In today’s business environments, frequent change of customer requirements is a tough challenge to manufacturing company. To cope with these challenges, a production planning and scheduling (PP&S) function might be established to provide accountability for both customer service and operational efficiency. Nowadays, many manufacturing firms have utilized PP&S software solutions to generate a realistic production plan and schedule to adapt to external changes efficiently. However, companies which consider the introduction of PP&S software solution, still have difficulties for selecting adequate solution to meet their specific needs. Since the task of PP&S is the one of major building blocks of SCM (Supply Chain Management) architecture, which deals with short term decision making in the production process of SCM, it is needed that the functionalities of PP&S should be analysed within the whole SCM process. The aim of this paper is to analyse the PP&S functionalities and its system architecture from the SCM perspective by using the criteria of level of planning hierarchy, major 4 SCM processes and problem-solving approaches, and finally propose a classification framework of PP&S solutions to facilitate the comparison among various commercial software solutions. By using proposed framework, several major PP&S solutions are classified and positioned according to their functional characteristics in this paper. By using this framework, practitioners who consider the introduction of computerized PP&S solutions in manufacturing firms can prepare evaluation and benchmarking sheets for selecting the most suitable solution with ease and in less time.Keywords: production planning, production scheduling, supply chain management, the advanced planning system
Procedia PDF Downloads 196876 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 401875 The Role of Foreign Investment in Fostering Economic Growth in Post War Countries
Authors: Khadija Amin
Abstract:
The significant contribution of foreign investment in promoting economic recovery, especially in countries recovering from conflict, is generally recognized. This study examines the influence of foreign investment on the economic development of countries that have had long-lasting internal conflicts. The study examines the complex correlation between foreign investment and economic progress using the production function framework based on endogenous growth theory. In addition to foreign investment, the research considers a range of factors that affect economic growth, such as trade dynamics, the spread of information, attempts to promote peace, changes in the labor market, and the accumulation of domestic capital. The study challenges common beliefs by revealing a statistically negligible negative association between GDP growth and foreign investment (FI) inflows in post-war economies. The existing literature highlights the positive impact of trade and foreign investment on economic growth. However, this study emphasizes that these impacts are complex and depend on various contextual factors such as trade policies, infrastructure development, domestic investment levels, human capital development, and macroeconomic stability. The results emphasize the crucial significance of foreign investment in stimulating development while also drawing attention to the intricacies of precisely assessing its economic consequences. Measuring the economic impact of foreign investment is a difficult task that requires detailed analysis considering many contextual elements and changing socioeconomic conditions.Keywords: economic grouths, foreign investment, trade policies, domestic investment
Procedia PDF Downloads 35874 Deep Learning-Based Automated Structure Deterioration Detection for Building Structures: A Technological Advancement for Ensuring Structural Integrity
Authors: Kavita Bodke
Abstract:
Structural health monitoring (SHM) is experiencing growth, necessitating the development of distinct methodologies to address its expanding scope effectively. In this study, we developed automatic structure damage identification, which incorporates three unique types of a building’s structural integrity. The first pertains to the presence of fractures within the structure, the second relates to the issue of dampness within the structure, and the third involves corrosion inside the structure. This study employs image classification techniques to discern between intact and impaired structures within structural data. The aim of this research is to find automatic damage detection with the probability of each damage class being present in one image. Based on this probability, we know which class has a higher probability or is more affected than the other classes. Utilizing photographs captured by a mobile camera serves as the input for an image classification system. Image classification was employed in our study to perform multi-class and multi-label classification. The objective was to categorize structural data based on the presence of cracks, moisture, and corrosion. In the context of multi-class image classification, our study employed three distinct methodologies: Random Forest, Multilayer Perceptron, and CNN. For the task of multi-label image classification, the models employed were Rasnet, Xceptionet, and Inception.Keywords: SHM, CNN, deep learning, multi-class classification, multi-label classification
Procedia PDF Downloads 35873 Motivation and Quality Teaching of Chinese Language: Analysis of Secondary School Studies
Authors: Robyn Moloney, HuiLing Xu
Abstract:
Many countries wish to produce Asia-literate citizens, through language education. International contexts of Chinese language education are seeking pedagogical innovation to meet local contextual factors frequently holding back learner success. In multicultural Australia, innovative pedagogy is urgently needed to support motivation in sustained study, with greater strategic integration of technology. This research took a qualitative approach to identify need and solutions. The paper analyses strategies that three secondary school teachers are adopting to meet specific challenges in the Australian context. The data include teacher interviews, classroom observations and student interviews. We highlight the use of task-based learning and differentiated teaching for multilevel classes, and the role which digital technologies play in facilitating both areas. The strategy examples are analysed in reference both to a research-based framework for describing quality teaching, and to current understandings of motivation in language learning. The analysis of data identifies learning featuring deep knowledge, higher-order thinking, engagement, social support, utilisation of background knowledge, and connectedness, all of which work towards the learners having a sense of autonomy and an imagination of becoming an adult Chinese language user.Keywords: Chinese pedagogy, digital technologies, motivation, secondary school
Procedia PDF Downloads 267872 Executive Function in Youth With ADHD and ASD: A Systematic Review and Meta-analysis
Authors: Parker Townes, Prabdeep Panesar, Chunlin Liu, Soo Youn Lee, Dan Devoe, Paul D. Arnold, Jennifer Crosbie, Russell Schachar
Abstract:
Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are impairing childhood neurodevelopmental disorders with problems in executive functions. Executive functions are higher-level mental processes essential for daily functioning and goal attainment. There is genetic and neural overlap between ADHD and ASD. The aim of this meta-analysis was to evaluate if pediatric ASD and ADHD have distinct executive function profiles. This review was completed following Cochrane guidelines. Fifty-eight articles were identified through database searching, followed by a blinded screening in duplicate. A meta-analysis was performed for all task performance metrics evaluated by at least two articles. Forty-five metrics from 24 individual tasks underwent analysis. No differences were found between youth with ASD and ADHD in any domain under direct comparison. However, individuals with ASD and ADHD exhibited deficient attention, flexibility, visuospatial abilities, working memory, processing speed, and response inhibition compared to controls. No deficits in planning were noted in either disorder. Only 11 studies included a group with comorbid ASD+ADHD, making it difficult to determine whether common executive function deficits are a function of comorbidity. Further research is needed to determine if comorbidity accounts for the apparent commonality in executive function between ASD and ADHD.Keywords: autism spectrum disorder, ADHD, neurocognition, executive function, youth
Procedia PDF Downloads 72871 Overcoming Usability Challenges of Educational Math Apps: Designing and Testing a Mobile Graphing Calculator
Authors: M. Tomaschko
Abstract:
The integration of technology in educational settings has gained a lot of interest. Especially the use of mobile devices and accompanying mobile applications can offer great potentials to complement traditional education with new technologies and enrich students’ learning in various ways. Nevertheless, the usability of the deployed mathematics application is an indicative factor to exploit the full potential of technology enhanced learning because directing cognitive load toward using an application will likely inhibit effective learning. For this reason, the purpose of this research study is the identification of possible usability issues of the mobile GeoGebra Graphing Calculator application. Therefore, eye tracking in combination with task scenarios, think aloud method, and a SUS questionnaire were used. Based on the revealed usability issues, the mobile application was iteratively redesigned and assessed in order to verify the success of the usability improvements. In this paper, the identified usability issues are presented, and recommendations on how to overcome these concerns are provided. The main findings relate to the conception of a mathematics keyboard and the interaction design in relation to an equation editor, as well as the representation of geometrical construction tools. In total, 12 recommendations were formed to improve the usability of a mobile graphing calculator application. The benefit to be gained from this research study is not only the improvement of the usability of the existing GeoGebra Graphing Calculator application but also to provide helpful hints that could be considered from designers and developers of mobile math applications.Keywords: GeoGebra, graphing calculator, math education, smartphone, usability
Procedia PDF Downloads 133870 High Motivational Salient Face Distractors Slowed Target Detection: Evidence from Behavioral Studies
Authors: Rashmi Gupta
Abstract:
Rewarding stimuli capture attention involuntarily as a result of an association process that develops quickly during value learning, referred to as the reward or value-driven attentional capture. It is essential to compare reward with punishment processing to get a full picture of value-based modulation in visual attention processing. Hence, the present study manipulated both valence/value (reward as well as punishment) and motivational salience (probability of an outcome: high vs. low) together. Series of experiments were conducted, and there were two phases in each experiment. In phase 1, participants were required to learn to associate specific face stimuli with a high or low probability of winning or losing points. In the second phase, these conditioned stimuli then served as a distractor or prime in a speeded letter search task. Faces with high versus low outcome probability, regardless of valence, slowed the search for targets (specifically the left visual field target) and suggesting that the costs to performance on non-emotional cognitive tasks were only driven by motivational salience (high vs. loss) associated with the stimuli rather than the valence (gain vs. loss). It also suggests that the processing of motivationally salient stimuli is right-hemisphere biased. Together, results of these studies strengthen the notion that our visual attention system is more sensitive to affected by motivational saliency rather than valence, which termed here as motivational-driven attentional capture.Keywords: attention, distractors, motivational salience, valence
Procedia PDF Downloads 219869 An Efficient Subcarrier Scheduling Algorithm for Downlink OFDMA-Based Wireless Broadband Networks
Authors: Hassen Hamouda, Mohamed Ouwais Kabaou, Med Salim Bouhlel
Abstract:
The growth of wireless technology made opportunistic scheduling a widespread theme in recent research. Providing high system throughput without reducing fairness allocation is becoming a very challenging task. A suitable policy for resource allocation among users is of crucial importance. This study focuses on scheduling multiple streaming flows on the downlink of a WiMAX system based on orthogonal frequency division multiple access (OFDMA). In this paper, we take the first step in formulating and analyzing this problem scrupulously. As a result, we proposed a new scheduling scheme based on Round Robin (RR) Algorithm. Because of its non-opportunistic process, RR does not take in account radio conditions and consequently it affect both system throughput and multi-users diversity. Our contribution called MORRA (Modified Round Robin Opportunistic Algorithm) consists to propose a solution to this issue. MORRA not only exploits the concept of opportunistic scheduler but also takes into account other parameters in the allocation process. The first parameter is called courtesy coefficient (CC) and the second is called Buffer Occupancy (BO). Performance evaluation shows that this well-balanced scheme outperforms both RR and MaxSNR schedulers and demonstrate that choosing between system throughput and fairness is not required.Keywords: OFDMA, opportunistic scheduling, fairness hierarchy, courtesy coefficient, buffer occupancy
Procedia PDF Downloads 299868 Exploring Heidegger’s Fourfold through Architecture-Dwelling for Imaginary Fictional Characters in Drawings
Authors: Hassan Wajid
Abstract:
Architecture design studio with all its accouterments, especially pedagogies, has been committed to awakening the students to the true meaning of the concept of Dwelling. The real task is how to make them unlearn the associations of “dwelling as a rented or owned accommodation by the road with a car parked in front of a garage door and replace it by the fundamental experiential-phenomenological manifestations of Light, Space, Gravity and Time through assigned readings and small theoretical challenges resulting in drawings and models. The primary challenge for teachers remained the introduction of the act or desire of ‘Dwelling’ philosophically. The academic link had been offered by Albert Hofstadter's Poetry, Language, through which Martin Heidegger’s fourfold concept of ‘Building Dwelling, Thinking’ primarily served to guide us through this trajectory in helping to build an intellectual framework as justification of the term “dwelling” in its various meanings. Gaston Bachelard’s Poetics of Space and Merleau-Ponti’s Phenomenology of Perception also got assigned as reading. Four fictional characters created by two master short story writers G Maupassant, and O Henry were introduced as DwellersClients in search of their respective dwellings as drawn imaginations in the studio four-fold of Light, Space, Gravity, and Time and at the same time aspire to understand thoroughly Heidegger’s Four-Fold of Earth, Sky, Divinities and Mortals. asserting its place in the corresponding story and its unique character as the Dweller.Keywords: dwelling, imagination, architectural manifestation, phenomenological
Procedia PDF Downloads 69867 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method
Authors: Mohammed T. Hayajneh
Abstract:
Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.Keywords: composite, fuzzy, tool life, wear
Procedia PDF Downloads 295866 Cognitive Benefits of Being Bilingual: The Effect of Language Learning on the Working Memory in Emerging Miao-Mandarin Juveniles in Rural Regions of China
Authors: Peien Ma
Abstract:
Bilingual effect/advantage theorized the positive effect of being bilingual on general cognitive abilities, but it was unknown which factors tend to modulate these bilingualism effects on working memory capacity. This study imposed empirical field research on a group of low-SES emerging bilinguals, Miao people, in the hill tribes of rural China to investigate whether bilingualism affected their verbal working memory performance. 20 Miao-Chinese bilinguals (13 girls and 7 boys with a mean age of 11.45, SD=1.67) and 20 Chinese monolingual peers (13 girls and 7 boys with a mean age of 11.6, SD=0.68) were recruited. These bilingual and monolingual juveniles, matched on age, sex, socioeconomic status, and educational status, completed a language background questionnaire and a standard forward and backward digit span test adapted from Wechsler Adult Intelligence Scale-Revised (WAIS-R). The results showed that bilinguals earned a significantly higher overall mean score of the task, suggesting the superiority of working memory ability over the monolinguals. And bilingual cognitive benefits were independent of proficiency levels in learners’ two languages. The results suggested that bilingualism enhances working memory in sequential bilinguals from low SES backgrounds and shed light on our understanding of the bilingual advantage from a psychological and social perspective.Keywords: bilingual effects, heritage language, Miao/Hmong language Mandarin, working memory
Procedia PDF Downloads 155865 Attention Deficit Disorders (ADD) among Stressed Pre-NCE Students in Federal College of Education, Kano-Nigeria
Authors: A. S. Haruna, M. L. Mayanchi
Abstract:
Pre Nigeria Certificate in Education otherwise called Pre-NCE is an intensive two semester course designed to assist candidates who could not meet the requirements for admission into NCE programme. The task of coping with the stressors in the course can interfere with the students’ ability to regulate attention skills and stay organized. The main objectives of the study were to find out the prevalence of stress; determine the association between stress and ADD and reveal gender difference in the prevalence of ADD among stressed pre-NCE students. Cross–Sectional Correlation Design was employed in which 333 (Male=65%; Female=35%) students were proportionately sampled and administered Stress Assessment Scale [SAS r=0.74) and those identified with stress were thereafter rated with Cognitive Processing Inventory [CPI]. Data collected was used to analyze the three null hypotheses through One-sample Kolmogorov-Smirnov (K-S) Z-score, Pearson Product Moment Correlation Coefficients (PPMCC) and t-test statistics respectively at 0.05 confidence level. Results revealed significant prevalence of stress [Z-calculated =2.24; Z-critical = ±1.96], and a positive relationship between Stress and ADD among Pre-NCE students [r-calculated =0.450; r-critical =0.138]. However, there was no gender difference in the prevalence of ADD among stressed Pre-NCE students in the college [t-calculated =1.49; t-critical =1.645]. The study concludes that while stress and ADD prevail among pre-NCE students, there was no gender difference in the prevalence of ADD. Recommendations offered suggest the use of Learners Assistance Programs (LAP) for stress management, and Teacher-Students ratio of 1:25 be adopted in order to cater for stressed pre-NCE students with ADD.Keywords: attention deficit disorder, pre-NCE students, stress, Pearson Product Moment Correlation Coefficients (PPMCC)
Procedia PDF Downloads 241864 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 188863 Beyond Bindis, Bhajis, Bangles, and Bhangra: Exploring Multiculturalism in Southwest England Primary Schools, Early Research Findings
Authors: Suparna Bagchi
Abstract:
Education as a discipline will probably be shaped by the importance it places on a conceptual, curricular, and pedagogical need to shift the emphasis toward transformative classrooms working for positive change through cultural diversity. Awareness of cultural diversity and race equality has heightened following George Floyd’s killing in the USA in 2020. This increasing awareness is particularly relevant in areas of historically low ethnic diversity which have lately experienced a rise in ethnic minority populations and where inclusive growth is a challenge. This research study aims to explore the perspectives of practitioners, students, and parents towards multiculturalism in four South West England primary schools. A qualitative case study methodology has been adopted framed by sociocultural theory. Data were collected through virtually conducted semi-structured interviews with school practitioners and parents, observation of students’ classroom activities, and documentary analysis of classroom displays. Although one-third of the school population includes ethnically diverse children, BAME (Black, Asian, and Minority Ethnic) characters featured in children's books published in Britain in 2019 were almost invisible, let alone a BAME main character. The Office for Standards in Education, Children's Services and Skills (Ofsted) are vocal about extending the Curriculum beyond the academic and technical arenas for pupils’ broader development and creation of an understanding and appreciation of cultural diversity. However, race equality and community cohesion which could help in the students’ broader development are not Ofsted’s school inspection criteria. The absence of culturally diverse content in the school curriculum highlighted by the 1985 Swann Report and 2007 Ajegbo Report makes England’s National Curriculum look like a Brexit policy three decades before Brexit. A revised National Curriculum may be the starting point with the teachers as curriculum framers playing a significant part. The task design is crucial where teachers can place equal importance on the interwoven elements of “how”, “what” and “why” the task is taught. Teachers need to build confidence in encouraging difficult conversations around racism, fear, indifference, and ignorance breaking the stereotypical barriers, thus helping to create students’ conception of a multicultural Britain. Research showed that trainee teachers in predominantly White areas often exhibit confined perspectives while educating children. Irrespective of the geographical location, school teachers can be equipped with culturally responsive initial and continuous professional development necessary to impart multicultural education. This may aid in the reduction of employees’ unconscious bias. This becomes distinctly pertinent to avoid horrific cases in the future like the recent one in Hackney where a Black teenager was strip-searched during period wrongly suspected of cannabis possession. Early research findings show participants’ eagerness for more ethnic diversity content incorporated in teaching and learning. However, schools are considerably dependent on the knowledge-focused Primary National Curriculum in England. Moreover, they handle issues around the intersectionality of disability, poverty, and gender. Teachers were trained in times when foregrounding ethnicity matters was not happening. Therefore, preoccupied with Curriculum requirements, intersectionality issues, and teacher preparations, schools exhibit an incapacity due to which keeping momentum on ethnic diversity is somewhat endangered.Keywords: case study, curriculum decolonisation, inclusive education, multiculturalism, qualitative research in Covid19 times
Procedia PDF Downloads 114862 Trunk and Gluteus-Medius Muscles’ Fatigability during Occupational Standing in Clinical Instructors with Low Back Pain
Authors: Eman A. Embaby, Amira A. A. Abdallah
Abstract:
Background: Occupational standing is associated with low back pain (LBP) development. Yet, trunk and gluteus-medius muscles’ fatigability has not been extensively studied during occupational standing. This study examined and correlated the rectus abdominus (RA), erector-spinae (ES), external oblique (EO), and gluteus-medius (GM) muscles’ fatigability on both sides while standing in a confined area for 30 min Methods: Median frequency EMG data were collected from 15 female clinical instructors with chronic LBP (group A) and 15 asymptomatic controls (group B) (mean age 29.53±2.4 vs. 29.07±2.4 years, weight 63.6±7 vs. 60±7.8 kg, and height 162.73±4 vs. 162.8±6 cm respectively) using a spectrum analysis program. Data were collected in the first and last 5min of the standing task. Results: Using Mixed three-way ANOVA, group A showed significantly (p<0.05) lower frequencies for the right and left ES, and right GM in the last 5 min and significantly higher frequencies for the left RA in the first and last 5min than group B. In addition, the left ES and right EO, ES and GM in group B showed significantly higher frequencies and the left ES in group A showed significantly lower frequencies in the last 5min compared with the first. Moreover, the right RA showed significantly higher frequencies than the left in the last 5min in group B. Finally, there were significant (p<0.05) correlations among the median frequencies of the tested four muscles on the same side and between both sides in both groups. Discussion/Conclusions: Clinical instructors with LBP are more liable to have higher trunk and gluteus-medius muscle fatigue than asymptomatic individuals. Thus, endurance training for these muscles should be included in the rehabilitation of such patients.Keywords: EMG, fatigability, gluteus-medius, LBP, standing, trunk
Procedia PDF Downloads 243861 The Qualification and Quality of Space Sciences and Space Engineering Education in Turkey
Authors: Hatice Canan Gungor, Ahmet Akdemir
Abstract:
The fields of engineering and technological sciences are increasing in quality and quantity day by day all over the world. Countries have to follow, implement and adapt these developments in order to economical empowerments. In our era, it's possible to follow the rapidly developing technology and to produce new technologies by inquisitive, curious, numerical thinking individuals who can show several approaches to problem solving. In this case, countries should develop te result oriented and need-focused curriculums in university education. As in the whole world, there are more space studies in our country as well. Universities should undertake the task of supply the need for staff of this technological race. In this context, questions about the purpose, content and learning outcomes of the space sciences and space engineering departments in our country will be researched answers to reveal the characteristic of this section. In this study, it was determined in which universities the space engineering and the departments of basic sciences educate with formal education and the contents of this education, and the universities were compared with each other as of 2017. In our country three universities provide Aeronautical and Aerospace Engineering, two universities provide Space Sciences and Technologies, two universities provide Aerospace Engineering, two universities provide Aeronautics and Astronautics Engineering education. In all universities, specialized courses are taught after basic engineering education. But the question that needs to be answered is, do the lessons benefit in practice? The answer of this question will reveal the quality of the education. This paper suggests that surveys be conducted to search for the answer to this question. It's thought to be the base for the next works.Keywords: education, space engineering, space science, quality of systems
Procedia PDF Downloads 281860 An Analysis of Present Supplier Selection Criteria of State Pharmaceutical Corporation (SPC) Sri Lanka: A Case Study
Authors: Gamalath M. B. P. Abeysekara
Abstract:
Primary objective of any organization is to enhance the bottom line profit. Strategic procurement is one of the prominent aspects in view of receiving this ultimate objective. Strategic procurement is an activity used in each and every organization in their operations. Pharmaceutical procurement is an especially significant task for any organizations, particularly state sector concerned. The whole pharmaceutical procurement requirement of the country is procured through the State Pharmaceutical Corporation (SPC) of Sri Lanka. They follow Pharmaceutical Procurement Guideline of 2006 as the procurement principle. The main objective of this project is to identify the importance of State Pharmaceutical Corporation supplier selection criteria and critical analysis of pharmaceutical procurement procedure. State Pharmaceutical Corporations applied net price, product quality, past performance, and delivery of suppliers’ as main criteria for the selection suppliers. Data collection for this study was taken place through a questionnaire, given to fifty doctors within the Colombo district attached to five main state hospitals. Data analysis is carried out with mean and standard deviation functions. The ultimate outcomes indicated product quality, net price, and delivery of suppliers’ are the most important criteria behind the selection of suppliers. Critical analysis proved State Pharmaceutical Corporation should focus on net price reduction, improving laboratory testing facilities and effective communication between up and down stream of supply chain.Keywords: government procurement procedure, pharmaceutical procurement supplier selection criteria, importance of SPC supplier selection criteria
Procedia PDF Downloads 450859 Impact of Mathematical Modeling on Mathematics Achievement, Attitude, and Interest of Pre-Service Teachers in Niger State, Nigeria
Authors: Mohammed Abubakar Ndanusa, A. A. Hassan, R. W. Gimba, A. M. Alfa, M. T. Abari
Abstract:
This study investigated the Impact of Mathematical Modeling on Mathematics Achievement, Attitude and Interest of Pre-Service Teachers in Niger States, Nigeria. It was an attempt to ease students’ difficulties in comprehending mathematics. The study used randomized pretest, posttest control group design. Two Colleges of Education were purposively selected from Niger State with a sample size of eighty-four 84 students. Three research instruments used are Mathematical Modeling Achievement Test (MMAT), Attitudes Towards Mathematical Modeling Questionnaire (ATMMQ) and Mathematical Modeling Students Interest Questionnaire (MMSIQ). Pearson Product Moment Correlation (PPMC) formula was used for MMAT and Alpha Cronbach was used for ATMMQ and MMSIQ to determine their reliability coefficient and the values the following values were obtained respectively 0.76, 0.75 and 0.73. Independent t-test statistics was used to test hypothesis One while Mann Whitney U-test was used to test hypothesis Two and Three. Findings revealed that students taught Mathematics using Mathematical Modeling performed better than their counterparts taught using lecture method. However, there was a significant difference in the attitude and interest of pre-service mathematics teachers after being exposed to mathematical modeling. The strategy, therefore, was recommended to be used by Mathematics teachers with a view to improving students’ attitude and interest towards Mathematics. Also, modeling should be taught at NCE level in order to prepare pre-service teachers towards real task in the field of Mathematics.Keywords: achievement, attitude, interest, mathematical modeling, pre-service teachers
Procedia PDF Downloads 302858 The Correlation between Hypomania, Creative Potential and Type of Major in Undergraduate Students
Authors: Dhea Kothari
Abstract:
There is an extensive amount of research that has examined the positive relationship between creativity and hypomania in terms of creative accomplishments, eminence, behaviors, occupations. Previous research had recruited participants based on creative occupations or stages of hypomania or bipolar disorder. This thesis focused on the relationship between hypomania and creative cognitive potential, such as divergent thinking and insight problem-solving. This was examined at an undergraduate educational level by recruiting students majoring in art, majoring in natural sciences (NSCI) and those double majoring in arts and NSCI. Participants were given a modified Alternate Uses Task (AUT) to measure divergent thinking and a set of rebus puzzles to measure insight problem-solving. Both tasks involved a level of overcoming functional fixedness. A negative association was observed between hypomania and originality of responses on the AUT when an object with low functional fixedness was given to all participants. On the other hand, a positive association was found between hypomania and originality of responses on the AUT when an object with high functional fixedness was given to the participants majoring in NSCI. Therefore, the research suggests that an increased ability to overcome functional fixedness might be central to individuals with hypomania and individuals with higher creative cognitive potential.Keywords: creative cognition, convergent thinking, creativity, divergent thinking, insight, major type, problem-solving
Procedia PDF Downloads 93857 Increasing of Gain in Unstable Thin Disk Resonator
Authors: M. Asl. Dehghan, M. H. Daemi, S. Radmard, S. H. Nabavi
Abstract:
Thin disk lasers are engineered for efficient thermal cooling and exhibit superior performance for this task. However the disk thickness and large pumped area make the use of this gain format in a resonator difficult when constructing a single-mode laser. Choosing an unstable resonator design is beneficial for this purpose. On the other hand, the low gain medium restricts the application of unstable resonators to low magnifications and therefore to a poor beam quality. A promising idea to enable the application of unstable resonators to wide aperture, low gain lasers is to couple a fraction of the out coupled radiation back into the resonator. The output coupling gets dependent on the ratio of the back reflection and can be adjusted independently from the magnification. The excitation of the converging wave can be done by the use of an external reflector. The resonator performance is numerically predicted. First of all the threshold condition of linear, V and 2V shape resonator is investigated. Results show that the maximum magnification is 1.066 that is very low for high quality purposes. Inserting an additional reflector covers the low gain. The reflectivity and the related magnification of a 350 micron Yb:YAG disk are calculated. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically by the Fox and Li algorithm. Results show that with back reflection mechanism in combination with increasing the number of beam incidents on disk, high gain and high magnification can occur.Keywords: unstable resonators, thin disk lasers, gain, external reflector
Procedia PDF Downloads 410856 Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading
Authors: Qassun S. Mohammed Shafiqu, Murtadha A. Abdulrasool
Abstract:
The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.Keywords: shallow foundation, seismic behavior, raft thickness, damping ratio
Procedia PDF Downloads 147855 A BERT-Based Model for Financial Social Media Sentiment Analysis
Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe
Abstract:
The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural language processing in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.Keywords: BERT, financial markets, Twitter, sentiment analysis
Procedia PDF Downloads 152