Search results for: nuclear magnetic resonance
1028 Semi-automatic Design and Fabrication of Ring-Bell Control by IoT
Authors: Samart Rungjarean, Benchalak Muangmeesri, Dechrit Maneetham
Abstract:
Monks' and Novices' chimes may have some restrictions, such as during the rain when a structure or location chimes or at a certain period. Alternately, certain temple bells may be found atop a tall, difficult-to-reach bell tower. As a result, the concept of designing a brass bell for use with a mobile phone over great distances was proposed. The Internet of Things (IoT) system will be used to regulate the bell by testing each of the three beatings with a wooden head. A stone-beating head and a steel beater. The sound resonates nicely, with the distance and rhythm of the hit contributing to this. An ESP8266 microcontroller is used by the control system to manage its operations and will communicate with the pneumatic system to convey a signal. Additionally, a mobile phone will be used to operate the entire system. In order to precisely direct and regulate the rhythm, There is a resonance of roughly 50 dB for this test, and the operating distance can be adjusted. Timing and accuracy were both good.Keywords: automatic ring-bell, microcontroller, ring-bell, iot
Procedia PDF Downloads 1111027 Atomistic Study of Structural and Phases Transition of TmAs Semiconductor, Using the FPLMTO Method
Authors: Rekab Djabri Hamza, Daoud Salah
Abstract:
We report first-principles calculations of structural and magnetic properties of TmAs compound in zinc blende(B3) and CsCl(B2), structures employing the density functional theory (DFT) within the local density approximation (LDA). We use the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the LMTART-MINDLAB code (Calculation). Results are given for lattice parameters (a), bulk modulus (B), and its first derivatives(B’) in the different structures NaCl (B1) and CsCl (B2). The most important result in this work is the prediction of the possibility of transition; from cubic rocksalt (NaCl)→ CsCl (B2) (32.96GPa) for TmAs. These results use the LDA approximation.Keywords: LDA, phase transition, properties, DFT
Procedia PDF Downloads 1201026 Synthesis of Iron Oxide Nanoparticles Using Different Stabilizers and Study of Their Size and Properties
Authors: Mohammad Hassan Ramezan zadeh 1 , Majid Seifi 2 , Hoda Hekmat ara 2 1Biomedical Engineering Department, Near East University, Nicosia, Cyprus 2Physics Department, Guilan University , P.O. Box 41335-1914, Rasht, Iran.
Abstract:
Magnetic nano particles of ferric chloride were synthesised using a co-precipitation technique. For the optimal results, ferric chloride at room temperature was added to different surfactant with different ratio of metal ions/surfactant. The samples were characterised using transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrum to show the presence of nanoparticles, structure and morphology. Magnetic measurements were also carried out on samples using a Vibrating Sample Magnetometer. To show the effect of surfactant on size distribution and crystalline structure of produced nanoparticles, surfactants with various charge such as anionic cetyl trimethyl ammonium bromide (CTAB), cationic sodium dodecyl sulphate (SDS) and neutral TritonX-100 was employed. By changing the surfactant and ratio of metal ions/surfactant the size and crystalline structure of these nanoparticles were controlled. We also show that using anionic stabilizer leads to smallest size and narrowest size distribution and the most crystalline (polycrystalline) structure. In developing our production technique, many parameters were varied. Efforts at reproducing good yields indicated which of the experimental parameters were the most critical and how carefully they had to be controlled. The conditions reported here were the best that we encountered but the range of possible parameter choice is so large that these probably only represent a local optimum. The samples for our chemical process were prepared by adding 0.675 gr ferric chloride (FeCl3, 6H2O) to three different surfactant in water solution. The solution was sonicated for about 30 min until a transparent solution was achieved. Then 0.5 gr sodium hydroxide (NaOH) as a reduction agent was poured to the reaction drop by drop which resulted to participate reddish brown Fe2O3 nanoparticles. After washing with ethanol the obtained powder was calcinated in 600°C for 2h. Here, the sample 1 contained CTAB as a surfactant with ratio of metal ions/surfactant 1/2, sample 2 with CTAB and ratio 1/1, sample 3 with SDS and ratio 1/2, sample 4 SDS 1/1, sample 5 is triton-X-100 with 1/2 and sample 6 triton-X-100 with 1/1.Keywords: iron oxide nanoparticles, stabilizer, co-precipitation, surfactant
Procedia PDF Downloads 2521025 A Dual-Mode Infinite Horizon Predictive Control Algorithm for Load Tracking in PUSPATI TRIGA Reactor
Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha
Abstract:
The PUSPATI TRIGA Reactor (RTP), Malaysia reached its first criticality on June 28, 1982, with power capacity 1MW thermal. The Feedback Control Algorithm (FCA) which is conventional Proportional-Integral (PI) controller, was used for present power control method to control fission process in RTP. It is important to ensure the core power always stable and follows load tracking within acceptable steady-state error and minimum settling time to reach steady-state power. At this time, the system could be considered not well-posed with power tracking performance. However, there is still potential to improve current performance by developing next generation of a novel design nuclear core power control. In this paper, the dual-mode predictions which are proposed in modelling Optimal Model Predictive Control (OMPC), is presented in a state-space model to control the core power. The model for core power control was based on mathematical models of the reactor core, OMPC, and control rods selection algorithm. The mathematical models of the reactor core were based on neutronic models, thermal hydraulic models, and reactivity models. The dual-mode prediction in OMPC for transient and terminal modes was based on the implementation of a Linear Quadratic Regulator (LQR) in designing the core power control. The combination of dual-mode prediction and Lyapunov which deal with summations in cost function over an infinite horizon is intended to eliminate some of the fundamental weaknesses related to MPC. This paper shows the behaviour of OMPC to deal with tracking, regulation problem, disturbance rejection and caters for parameter uncertainty. The comparison of both tracking and regulating performance is analysed between the conventional controller and OMPC by numerical simulations. In conclusion, the proposed OMPC has shown significant performance in load tracking and regulating core power for nuclear reactor with guarantee stabilising in the closed-loop.Keywords: core power control, dual-mode prediction, load tracking, optimal model predictive control
Procedia PDF Downloads 1621024 Synthesis and Characterisation of Bi-Substituted Magnetite Nanoparticles by Mechanochemical Processing (MCP)
Authors: Morteza Mohri Esfahani, Amir S. H. Rozatian, Morteza Mozaffari
Abstract:
Single phase magnetite nanoparticles and Bi-substituted ones were prepared by mechanochemical processing (MCP). The effects of Bi-substitution on the structural and magnetic properties of the nanoparticles were studied by X-ray Diffraction (XRD) and magnetometry techniques, respectively. The XRD results showed that all samples have spinel phase and by increasing Bi content, the main diffraction peaks were shifted to higher angles, which means the lattice parameter decreases from 0.843 to 0.838 nm and then increases to 0.841 nm. Also, the results revealed that increasing Bi content lead to a decrease in saturation magnetization (Ms) from 74.9 to 48.8 emu/g and an increase in coercivity (Hc) from 96.8 to 137.1 Oe.Keywords: bi-substituted magnetite nanoparticles, mechanochemical processing, X-ray diffraction, magnetism
Procedia PDF Downloads 5351023 Immiscible Polymer Blends with Controlled Nanoparticle Location for Excellent Microwave Absorption: A Compartmentalized Approach
Authors: Sourav Biswas, Goutam Prasanna Kar, Suryasarathi Bose
Abstract:
In order to obtain better materials, control in the precise location of nanoparticles is indispensable. It was shown here that ordered arrangement of nanoparticles, possessing different characteristics (electrical/magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiations, the key parameters i.e. high electrical conductivity and large dielectric/magnetic loss are targeted here using a conducting inclusion [multiwall carbon nanotubes, MWNTs]; ferroelectric nanostructured material with associated relaxations in the GHz frequency [barium titanate, BT]; and a loss ferromagnetic nanoparticles [nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs was modified using an electron acceptor molecule; a derivative of perylenediimide, which facilitates π-π stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, ordered arrangement can be tailored. To accomplish this, both BT and NF was first hydroxylated followed by introducing amine-terminal groups on the surface. The latter facilitated in nucleophilic substitution reaction with PC and resulted in their precise location. In this study, we have shown for the first time that by compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection loss was ca. -18 dB (for MWNT/BT mixture) and -29 dB (for MWNT/NF mixture), and the shielding was primarily through reflection. Interestingly, by adopting the compartmentalized approach where in, the lossy materials were in the PC phase and the conducting inclusion (MWNT) in PVDF, an outstanding reflection loss of ca. -57 dB (for BT and MWNT combination) and -67 dB (for NF and MWNT combination) was noted and the shielding was primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.Keywords: barium titanate, EMI shielding, MWNTs, nickel ferrite
Procedia PDF Downloads 4481022 Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors
Authors: Ji-Seok Hong, Hee-Jang Moon, Hong-Gye Sung
Abstract:
The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque.Keywords: large eddy simulation, proper orthogonal decomposition, SRM instability, flow-acoustic coupling
Procedia PDF Downloads 5691021 Computed Tomography Myocardial Perfusion on a Patient with Hypertrophic Cardiomyopathy
Authors: Jitendra Pratap, Daphne Prybyszcuk, Luke Elliott, Arnold Ng
Abstract:
Introduction: Coronary CT angiography is a non-invasive imaging technique for the assessment of coronary artery disease and has high sensitivity and negative predictive value. However, the correlation between the degree of CT coronary stenosis and the significance of hemodynamic obstruction is poor. The assessment of myocardial perfusion has mostly been undertaken by Nuclear Medicine (SPECT), but it is now possible to perform stress myocardial CT perfusion (CTP) scans quickly and effectively using CT scanners with high temporal resolution. Myocardial CTP is in many ways similar to neuro perfusion imaging technique, where radiopaque iodinated contrast is injected intravenously, transits the pulmonary and cardiac structures, and then perfuses through the coronary arteries into the myocardium. On the Siemens Force CT scanner, a myocardial perfusion scan is performed using a dynamic axial acquisition, where the scanner shuffles in and out every 1-3 seconds (heart rate dependent) to be able to cover the heart in the z plane. This is usually performed over 38 seconds. Report: A CT myocardial perfusion scan can be utilised to complement the findings of a CT Coronary Angiogram. Implementing a CT Myocardial Perfusion study as part of a routine CT Coronary Angiogram procedure provides a ‘One Stop Shop’ for diagnosis of coronary artery disease. This case study demonstrates that although the CT Coronary Angiogram was within normal limits, the perfusion scan provided additional, clinically significant information in regards to the haemodynamics within the myocardium of a patient with Hypertrophic Obstructive Cardio Myopathy (HOCM). This negated the need for further diagnostics studies such as cardiac ECHO or Nuclear Medicine Stress tests. Conclusion: CT coronary angiography with adenosine stress myocardial CTP was utilised in this case to specifically exclude coronary artery disease in conjunction with accessing perfusion within the hypertrophic myocardium. Adenosine stress myocardial CTP demonstrated the reduced myocardial blood flow within the hypertrophic myocardium, but the coronary arteries did not show any obstructive disease. A CT coronary angiogram scan protocol that incorporates myocardial perfusion can provide diagnostic information on the haemodynamic significance of any coronary artery stenosis and has the potential to be a “One Stop Shop” for cardiac imaging.Keywords: CT, cardiac, myocardium, perfusion
Procedia PDF Downloads 1341020 Bi-Functional Natural Carboxylic Acid Catalysts for the Synthesis of Diethyl α-Aminophosphonates in Aqueous Media
Authors: Hellal Abdelkader, Chafaa Salah, Boudjemaa Fouzia
Abstract:
A new, convenient, and high yielding procedure for the preparation of diethyl α-aminophosphonates in water via Kabachnik-Fields reaction by one-pot reaction of aromatic aldehydes, ortho-aminophenols, and dialkylphosphites in the presence of a low catalytic amount of citric, malic, tartaric, and oxalic acids as a natural, bi-functional, and highly stable catalyst is described, the obtained products were characterized by elemental analyses, molar conductance, magnetic susceptibility, FTIR, Uv-Vis spectral data, NMR-C, NMR-H, and NMR-P analyses.Keywords: α-aminophosphonates, aminophenols, natural acids, aqueous media, Kabachnik-Fields reaction
Procedia PDF Downloads 3361019 Health Risk Assessment from Potable Water Containing Tritium and Heavy Metals
Authors: Olga A. Momot, Boris I. Synzynys, Alla A. Oudalova
Abstract:
Obninsk is situated in the Kaluga region 100 km southwest of Moscow on the left bank of the Protva River. Several enterprises utilizing nuclear energy are operating in the town. A special attention in the region where radiation-hazardous facilities are located has traditionally been paid to radioactive gas and aerosol releases into the atmosphere; liquid waste discharges into the Protva river and groundwater pollution. Municipal intakes involve 34 wells arranged 15 km apart in a sequence north-south along the foot of the left slope of the Protva river valley. Northern and southern water intakes are upstream and downstream of the town, respectively. They belong to river valley intakes with mixed feeding, i.e. precipitation infiltration is responsible for a smaller part of groundwater, and a greater amount is being formed by overflowing from Protva. Water intakes are maintained by the Protva river runoff, the volume of which depends on the precipitation fallen out and watershed area. Groundwater contamination with tritium was first detected in a sanitary-protective zone of the Institute of Physics and Power Engineering (SRC-IPPE) by Roshydromet researchers when realizing the “Program of radiological monitoring in the territory of nuclear industry enterprises”. A comprehensive survey of the SRC-IPPE’s industrial site and adjacent territories has revealed that research nuclear reactors and accelerators where tritium targets are applied as well as radioactive waste storages could be considered as potential sources of technogenic tritium. All the above sources are located within the sanitary controlled area of intakes. Tritium activity in water of springs and wells near the SRC-IPPE is about 17.4 – 3200 Bq/l. The observed values of tritium activity are below the intervention levels (7600 Bq/l for inorganic compounds and 3300 Bq/l for organically bound tritium). The risk has being assessed to estimate possible effect of considered tritium concentrations on human health. Data on tritium concentrations in pipe-line drinking water were used for calculations. The activity of 3H amounted to 10.6 Bq/l and corresponded to the risk of such water consumption of ~ 3·10-7 year-1. The risk value given in magnitude is close to the individual annual death risk for population living near a NPP – 1.6·10-8 year-1 and at the same time corresponds to the level of tolerable risk (10-6) and falls within “risk optimization”, i.e. in the sphere for planning the economically sound measures on exposure risk reduction. To estimate the chemical risk, physical and chemical analysis was made of waters from all springs and wells near the SRC-IPPE. Chemical risk from groundwater contamination was estimated according to the EPA US guidance. The risk of carcinogenic diseases at a drinking water consumption amounts to 5·10-5. According to the classification accepted the health risk in case of spring water consumption is inadmissible. The compared assessments of risk associated with tritium exposure, on the one hand, and the dangerous chemical (e.g. heavy metals) contamination of Obninsk drinking water, on the other hand, have confirmed that just these chemical pollutants are responsible for health risk.Keywords: radiation-hazardous facilities, water intakes, tritium, heavy metal, health risk
Procedia PDF Downloads 2401018 Modeling Competition Between Subpopulations with Variable DNA Content in Resource-Limited Microenvironments
Authors: Parag Katira, Frederika Rentzeperis, Zuzanna Nowicka, Giada Fiandaca, Thomas Veith, Jack Farinhas, Noemi Andor
Abstract:
Resource limitations shape the outcome of competitions between genetically heterogeneous pre-malignant cells. One example of such heterogeneity is in the ploidy (DNA content) of pre-malignant cells. A whole-genome duplication (WGD) transforms a diploid cell into a tetraploid one and has been detected in 28-56% of human cancers. If a tetraploid subclone expands, it consistently does so early in tumor evolution, when cell density is still low, and competition for nutrients is comparatively weak – an observation confirmed for several tumor types. WGD+ cells need more resources to synthesize increasing amounts of DNA, RNA, and proteins. To quantify resource limitations and how they relate to ploidy, we performed a PAN cancer analysis of WGD, PET/CT, and MRI scans. Segmentation of >20 different organs from >900 PET/CT scans were performed with MOOSE. We observed a strong correlation between organ-wide population-average estimates of Oxygen and the average ploidy of cancers growing in the respective organ (Pearson R = 0.66; P= 0.001). In-vitro experiments using near-diploid and near-tetraploid lineages derived from a breast cancer cell line supported the hypothesis that DNA content influences Glucose- and Oxygen-dependent proliferation-, death- and migration rates. To model how subpopulations with variable DNA content compete in the resource-limited environment of the human brain, we developed a stochastic state-space model of the brain (S3MB). The model discretizes the brain into voxels, whereby the state of each voxel is defined by 8+ variables that are updated over time: stiffness, Oxygen, phosphate, glucose, vasculature, dead cells, migrating cells and proliferating cells of various DNA content, and treat conditions such as radiotherapy and chemotherapy. Well-established Fokker-Planck partial differential equations govern the distribution of resources and cells across voxels. We applied S3MB on sequencing and imaging data obtained from a primary GBM patient. We performed whole genome sequencing (WGS) of four surgical specimens collected during the 1ˢᵗ and 2ⁿᵈ surgeries of the GBM and used HATCHET to quantify its clonal composition and how it changes between the two surgeries. HATCHET identified two aneuploid subpopulations of ploidy 1.98 and 2.29, respectively. The low-ploidy clone was dominant at the time of the first surgery and became even more dominant upon recurrence. MRI images were available before and after each surgery and registered to MNI space. The S3MB domain was initiated from 4mm³ voxels of the MNI space. T1 post and T2 flair scan acquired after the 1ˢᵗ surgery informed tumor cell densities per voxel. Magnetic Resonance Elastography scans and PET/CT scans informed stiffness and Glucose access per voxel. We performed a parameter search to recapitulate the GBM’s tumor cell density and ploidy composition before the 2ⁿᵈ surgery. Results suggest that the high-ploidy subpopulation had a higher Glucose-dependent proliferation rate (0.70 vs. 0.49), but a lower Glucose-dependent death rate (0.47 vs. 1.42). These differences resulted in spatial differences in the distribution of the two subpopulations. Our results contribute to a better understanding of how genomics and microenvironments interact to shape cell fate decisions and could help pave the way to therapeutic strategies that mimic prognostically favorable environments.Keywords: tumor evolution, intra-tumor heterogeneity, whole-genome doubling, mathematical modeling
Procedia PDF Downloads 751017 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets
Authors: Rabindranath Bag, Surjeet Singh
Abstract:
Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique
Procedia PDF Downloads 2751016 A Study of Interleukin-1β Genetic Polymorphisms in Gastric Carcinoma and Colorectal Carcinoma in Egyptian Patients
Authors: Mariam Khaled, Noha Farag, Ghada Mohamed Abdel Salam, Khaled Abu-Aisha, Mohamed El-Azizi
Abstract:
Gastric and colorectal cancers are among the most frequent causes of cancer-associated mortalities in Africa. They have been considered as a global public health concern, as nearly one million new cases are reported per year. IL-1β is a pro-inflammatory cytokine-produced by activated macrophages and monocytes- and a member of the IL-1 family. The inactive IL-1β precursor is cleaved and activated by caspase-1 enzyme, which itself is activated by the assembly of intracellular structures defined as NLRP3 (Nod Like receptor P3) inflammasomes. Activated IL-1β stimulates the Interleukin-1 receptor type-1 (IL-1R1), which is responsible for the initiation of a signal transduction pathway leading to cell proliferation. It has been proven that the IL-1β gene is a highly polymorphic gene in which single nucleotide polymorphisms (SNPs) may affect its expression. It has been previously reported that SNPs including base transitions between C and T at positions, -511 (C-T; dbSNP: rs16944) and -31 (C-T; dbSNP: rs1143627), from the transcriptional start site, contribute to the pathogenesis of gastric and colorectal cancers by affecting IL-1β levels. Altered production of IL-1β due to such polymorphisms is suspected to stimulate an amplified inflammatory response and promote Epithelial Mesenchymal Transition leading to malignancy. Allele frequency distribution of the IL-1β-31 and -511 SNPs, in different populations, and their correlation to the incidence of gastric and colorectal cancers, has been intriguing to researchers worldwide. The current study aims to investigate allele distributions of the IL-1β SNPs among gastric and colorectal cancers Egyptian patients. In order to achieve to that, 89 Biopsy and surgical specimens from the antrum and corpus mucosa of chronic gastritis subjects and gastric and colorectal carcinoma patients was collected for DNA extraction followed by restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR). The amplified PCR products of IL-1β-31C > T and IL-1β-511T > C were digested by incubation with the restriction endonuclease enzymes ALu1 and Ava1. Statistical analysis was carried out to determine the allele frequency distribution in the three studied groups. Also, the effect of the IL-1β -31 and -511 SNPs on nuclear factor binding was analyzed using Fluorescence Electrophoretic Mobility Shift Assay (EMSA), preceded by nuclear factor extraction from gastric and colorectal tissue samples and LPS stimulated monocytes. The results of this study showed that a significantly higher percentage of Egyptian gastric cancer patients have a homozygous CC genotype at the IL-1β-31 position and a heterozygous TC genotype at the IL-1β-511 position. Moreover, a significantly higher percentage of the colorectal cancer patients have a homozygous CC genotype at the IL-1β-31 and -511 positions as compared to the control group. In addition, the EMSA results showed that IL-1β-31C/T and IL-1β-511T/C SNPs do not affect nuclear factor binding. Results of this study suggest that the IL-1β-31 C/T and IL-1β-511 T/C may be correlated to the incidence of gastric cancer in Egyptian patients; however, similar findings couldn’t be proven in the colorectal cancer patients group for the IL-1β-511 T/C SNP. This is the first study to investigate IL-1β -31 and -511 SNPs in the Egyptian population.Keywords: colorectal cancer, Egyptian patients, gastric cancer, interleukin-1β, single nucleotide polymorphisms
Procedia PDF Downloads 1431015 Elaboration of Ceramic Metal Accident Tolerant Fuels by Additive Manufacturing
Authors: O. Fiquet, P. Lemarignier
Abstract:
Additive manufacturing may find numerous applications in the nuclear industry, for the same reason as for other industries, to enlarge design possibilities and performances and develop fabrication methods as a flexible route for future innovation. Additive Manufacturing applications in the design of structural metallic components for reactors are already developed at a high Technology Readiness Level (TRL). In the case of a Pressured Water Reactor using uranium oxide fuel pellets, which are ceramics, the transposition of already optimized Additive Manufacturing (AM) processes to UO₂ remains a challenge, and the progress remains slow because, to our best knowledge, only a few laboratories have the capability of developing processes applicable to UO₂. After the Fukushima accident, numerous research fields emerged with the study of ATF (Accident tolerant Fuel) fuel concepts, which aimed to improve fuel behaviour. One item concerns the increase of the pellet thermal performance by, for example, the addition of high thermal conductivity material into fissile UO₂. This additive phase may be metallic, and the end product will constitute a CERMET composite. Innovative designs of an internal metallic framework are proposed based on predictive calculations. However, because the well-known reference pellet manufacturing methods impose many limitations, manufacturing such a composite remains an arduous task. Therefore, the AM process appears as a means of broadening the design possibilities of CERMET manufacturing. If the external form remains a standard cylindrical fuel pellet, the internal metallic design remains to be optimized based on process capabilities. This project also considers the limitation to a maximum of 10% volume of metal, which is a constraint neutron physics considerations impose. The AM technique chosen for this development is robocasting because of its simplicity and low-cost equipment. It remains, however, a challenge to adapt a ceramic 3D printing process for the fabrication of UO₂ fuel. The investigation starts with surrogate material, and the optimization of slurry feedstock is based on alumina. The paper will present the first printing of Al2O3-Mo CERMET and the expected transition from ceramic-based alumina to UO₂ CERMET.Keywords: nuclear, fuel, CERMET, robocasting
Procedia PDF Downloads 681014 Enhancement Effect of Electromagnetic Field on Separation of Edible Oil from Oil-Water Emulsion
Authors: Olfat A. Fadali, Mohamed S. Mahmoud, Omnia H. Abdelraheem, Shimaa G. Mohammed
Abstract:
The effect of electromagnetic field (EMF) on the removal of edible oil from oil-in-water emulsion by means of electrocoagulation was investigated in rectangular batch electrochemical cell with DC current. Iron (Fe) plate anodes and stainless steel cathodes were employed as electrodes. The effect of different magnetic field intensities (1.9, 3.9 and 5.2 tesla), three different positions of EMF (below, perpendicular and parallel to the electrocoagulation cell), as well as operating time; had been investigated. The application of electromagnetic field (5.2 tesla) raises percentage of oil removal from 72.4% for traditional electrocoagulation to 90.8% after 20 min.Keywords: electrocoagulation, electromagnetic field, Oil-water emulsion, edible oil
Procedia PDF Downloads 5331013 Droplet Entrainment and Deposition in Horizontal Stratified Two-Phase Flow
Authors: Joshua Kim Schimpf, Kyun Doo Kim, Jaseok Heo
Abstract:
In this study, the droplet behavior of under horizontal stratified flow regime for air and water flow in horizontal pipe experiments from a 0.24 m, 0.095 m, and 0.0486 m size diameter pipe are examined. The effects of gravity, pipe diameter, and turbulent diffusion on droplet deposition are considered. Models for droplet entrainment and deposition are proposed that considers developing length. Validation for experimental data dedicated from the REGARD, CEA and Williams, University of Illinois, experiment were performed using SPACE (Safety and Performance Analysis Code for Nuclear Power Plants).Keywords: droplet, entrainment, deposition, horizontal
Procedia PDF Downloads 3771012 Down Regulation of Smad-2 Transcription and TGF-B1 Signaling in Nano Sized Titanium Dioxide-Induced Liver Injury in Mice by Potent Antioxidants
Authors: Maha Z. Rizk, Sami A. Fattah, Heba M. Darwish, Sanaa A. Ali, Mai O. Kadry
Abstract:
Although it is known that nano-TiO2 and other nanoparticles can induce liver toxicity, the mechanisms and the molecular pathogenesis are still unclear. The present study investigated some biochemical indices of nano-sized Titanium dioxide (TiO2 NPS) toxicity in mice liver and the ameliorative efficacy of individual and combined doses of idebenone, carnosine and vitamin E. Nano-anatase TiO2 (21 nm) was administered as a total oral dose of 2.2 gm/Kg daily for 2 weeks followed by the afore-mentioned antioxidants daily either individually or in combination for 1month. TiO2-NPS induced a significant elevation in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and hepatic oxidative stress biomarkers [lipid peroxides (LP), and nitric oxide levels (NOX), while it significantly reduced glutathione reductase (GR), reduced glutathione (GSH) and glutathione peroxidase(GPX) levels. Moreover the quantitative RT-PCR analysis showed that nano-anatase TiO2 can significantly alter the mRNA and protein expressions of the fibrotic factors TGF-B1, VEGFand Smad-2. Histopathological examination of hepatic tissue reinforced the previous biochemical results. Our results also implied that inflammatory responses and liver injury may be involved in nano-anatase TiO2-induced liver toxicity Tumor necrosis factor-α (TNF-α) and Interleukin -6 (IL-6) and increased the percent of DNA damage which was assessed by COMET assay in addition to the apoptotic marker Caspase-3. Moreover mRNA gene expression observed by RT-PCR showed a significant overexpression in nuclear factor relation -2 (Nrf2), nuclear factor kappa beta (NF-Kβ) and the apoptotic factor (bax), and a significant down regulation in the antiapoptotic factor (bcl2) level. In conclusion idebenone, carnosine and vitamin E ameliorated the deviated previously mentioned parameters with variable degrees with the most pronounced role in alleviating the hazardous effect of TiO2 NPS toxicity following the combination regimen.Keywords: Nano-anatase TiO2, TGF-B1, SMAD-2
Procedia PDF Downloads 4251011 Half-Metallicity in a BiFeO3/La2/3Sr1/3MnO3 Superlattice: A First-Principles Study
Authors: Jiwuer Jilili, Ulrich Eckern, Udo Schwingenschlogl
Abstract:
We present first principles results for the electronic, magnetic, and optical properties of the BiFeO3 /La2/3Sr1/3MnO3 heterostructure as obtained by spin polarized calculations using density functional theory. The electronic states of the heterostructure are compared to those of the bulk compounds. Structural relaxation turns out to have only a minor impact on the chemical bonding, even though the oxygen octahedra in La2/3Sr1/3MnO3 develop some distortions due to the interface strain. While a small charge transfer affects the heterointerfaces, our results demonstrate that the half-metallic character of La2/3Sr1/3MnO3 is fully maintained.Keywords: BiFeO3, La2/3Sr1/3MnO3, superlattice, half-metallicity
Procedia PDF Downloads 2761010 Critical Analysis of Different Actuation Techniques for a Micro Cantilever
Authors: B. G. Sheeparamatti, Prashant Hanasi, Vanita Abbigeri
Abstract:
The objective of this work is to carry out a critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a microcantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, they help in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation are done by considering the microcantilever of same dimensions as an actuator using all the above-mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in the micro domain.Keywords: actuation techniques, microswitch, micro actuator, microsystems
Procedia PDF Downloads 4101009 Assessing Project Performance through Work Sampling and Earned Value Analysis
Authors: Shobha Ramalingam
Abstract:
The majority of the infrastructure projects are affected by time overrun, resulting in project delays and subsequently cost overruns. Time overrun may vary from a few months to as high as five or more years, placing the project viability at risk. One of the probable reasons noted in the literature for this outcome in projects is due to poor productivity. Researchers contend that productivity in construction has only marginally increased over the years. While studies in the literature have extensively focused on time and cost parameters in projects, there are limited studies that integrate time and cost with productivity to assess project performance. To this end, a study was conducted to understand the project delay factors concerning cost, time and productivity. A case-study approach was adopted to collect rich data from a nuclear power plant project site for two months through observation, interviews and document review. The data were analyzed using three different approaches for a comprehensive understanding. Foremost, a root-cause analysis was performed on the data using Ishikawa’s fish-bone diagram technique to identify the various factors impacting the delay concerning time. Based on it, a questionnaire was designed and circulated to concerned executives, including project engineers and contractors to determine the frequency of occurrence of the delay, which was then compiled and presented to the management for a possible solution to mitigate. Second, a productivity analysis was performed on select activities, including rebar bending and concreting through a time-motion study to analyze product performance. Third, data on cost of construction for three years allowed analyzing the cost performance using earned value management technique. All three techniques allowed to systematically and comprehensively identify the key factors that deter project performance and productivity loss in the construction of the nuclear power plant project. The findings showed that improper planning and coordination between multiple trades, concurrent operations, improper workforce and material management, fatigue due to overtime were some of the key factors that led to delays and poor productivity. The findings are expected to act as a stepping stone for further research and have implications for practitioners.Keywords: earned value analysis, time performance, project costs, project delays, construction productivity
Procedia PDF Downloads 971008 The Effect of Physical Exercise to Level of Nuclear Factor Kappa B on Serum, Macrophages and Myocytes
Authors: Eryati Darwin, Eka Fithra Elfi, Indria Hafizah
Abstract:
Background: Physical exercise induces a pattern of hormonal and immunological responses that prevent endothelial dysfunction by maintaining the availability of nitric oxide (NO). Regular and moderate exercise stimulates NO release, that can be considered as protective factor of cardiovascular diseases, while strenuous exercise induces increased levels in a number of pro-inflammatory and anti-inflammatory cytokines. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) triggers endothelial activation which results in an increased vascular permeability. Nuclear gene factor kappa B (NF-κB) activates biological effect of TNF-α. Aim of Study: To determine the effect of physical exercise on the endothelial and skeletal muscle, we measured the level of NF-κB on rats’ serum, macrophages, and myocytes after strenuous physical exercise. Methods: 30 male Rattus norvegicus in the age of eight weeks were randomly divided into five groups (each containing six), and there were treated groups (T) and control group (C). The treated groups obtain strenuous physical exercise by ran on treadmill at 32 m/minutes for 1 hour or until exhaustion. Blood samples, myocytes of gastrocnemius muscle, and intraperitoneal macrophages were collected sequentially. There were investigated immediately, 2 hours, 6 hours, and 24 hours (T1, T2, T3, and T4) after sacrifice. The levels of NF-κB were measured by ELISA methods. Results: From our study, we found that the levels of NF-κB on myocytes in treated group from which its specimen was taken immediately (T1), 2 hours after treadmill (T2), and 6 hours after treadmill (T3) were significantly higher than control group (p<0.05), while the group from which its specimen was taken 24 hours after treadmill, was no significantly different (p>0.05). Also on macrophages, NF-κB in treated groups T1, T2, and T3 was significantly higher than control group (p<0.05), but there was no difference between T4 and control group (p>0.05). The level of serum NF-κB was not significantly different between treatment group as well as compared to control group (p>0.05). Serum NF-κB was significantly higher than the level on macrophages and myocytes (p<0.05). Conclusion: This study demonstrated that strenuous physical exercise stimulates the activation of NF-κB that plays a role in vascular inflammation and muscular damage, and may be recovered after resting period.Keywords: endothelial function, inflammation, NFkB, physical exercise
Procedia PDF Downloads 2611007 Bioinspired Green Synthesis of Magnetite Nanoparticles Using Room-Temperature Co-Precipitation: A Study of the Effect of Amine Additives on Particle Morphology in Fluidic Systems
Authors: Laura Norfolk, Georgina Zimbitas, Jan Sefcik, Sarah Staniland
Abstract:
Magnetite nanoparticles (MNP) have been an area of increasing research interest due to their extensive applications in industry, such as in carbon capture, water purification, and crucially, the biomedical industry. The use of MNP in the biomedical industry is rising, with studies on their effect as Magnetic resonance imaging contrast agents, drug delivery systems, and as hyperthermic cancer treatments becoming prevalent in the nanomaterial research community. Particles used for biomedical purposes must meet stringent criteria; the particles must have consistent shape and size between particles. Variation between particle morphology can drastically alter the effective surface area of the material, making it difficult to correctly dose particles that are not homogeneous. Particles of defined shape such as octahedral and cubic have been shown to outperform irregular shaped particles in some applications, leading to the need to synthesize particles of defined shape. In nature, highly homogeneous MNP are found within magnetotactic bacteria, a unique bacteria capable of producing magnetite nanoparticles internally under ambient conditions. Biomineralisation proteins control the properties of the MNPs, enhancing their homogeneity. One of these proteins, Mms6, has been successfully isolated and used in vitro as an additive in room-temperature co-precipitation reactions (RTCP) to produce particles of defined mono-dispersed size & morphology. When considering future industrial scale-up it is crucial to consider the costs and feasibility of an additive, as an additive that is not readily available or easily synthesized at a competitive price will not be sustainable. As such, additives selected for this research are inspired by the functional groups of biomineralisation proteins, but cost-effective, environmentally friendly, and compatible with scale-up. Diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA) have been successfully used in RTCP to modulate the properties of particles synthesized, leading to the formation of octahedral nanoparticles with no use of organic solvents, heating, or toxic precursors. By extending this principle to a fluidic system, ongoing research will reveal whether the amine additives can also exert morphological control in an environment which is suited toward higher particle yield. Two fluidic systems have been employed; a peristaltic turbulent flow mixing system suitable for the rapid production of MNP, and a macrofluidic system for the synthesis of tailored nanomaterials under a laminar flow regime. The presence of the amine additives in the turbulent flow system in initial results appears to offer similar morphological control as observed under RTCP conditions, with higher proportions of octahedral particles formed. This is a proof of concept which may pave the way to green synthesis of tailored MNP on an industrial scale. Mms6 and amine additives have been used in the macrofluidic system, with Mms6 allowing magnetite to be synthesized at unfavourable ferric ratios, but no longer influencing particle size. This suggests this synthetic technique while still benefiting from the addition of additives, may not allow additives to fully influence the particles formed due to the faster timescale of reaction. The amine additives have been tested at various concentrations, the results of which will be discussed in this paper.Keywords: bioinspired, green synthesis, fluidic, magnetite, morphological control, scale-up
Procedia PDF Downloads 1141006 The Effect of Parathyroid Hormone on Aldosterone Secretion in Patients with Primary Hyperparathyroidism
Authors: Branka Milicic Stanic, Romana Mijovic
Abstract:
In primary hyperparathyroidism, an increased risk of developing cardiovascular disease may exist due to increased activity of the renin-angiotensin-aldosterone system (RAAS). In adenomatous altered tissue of parathyroid gland, compared to normal tissue, there are two to fourfold increase in the expression of type 1 angiotensin II receptors. As there is a clear evidence of the independent role of aldosterone on the cardiovascular system, the aim of this study was to evaluate the existence of an association between aldosterone secretion and parathyroid hormone in patients with primary hyperparathyroidism. This study included 48 patients with elevated parathyroid hormone who had come to the Departement of Nuclear Medicine, Clinical Center of Vojvodina, for Parathyroid Scintigraphy. The control group consisted of 30 healthy subjects who matched age and gender to the study group. All the results were statistically processed by statistical package STATISTICA 14 (Statsoft Inc,Tulsa, OK, USA). The survey was conducted between February 2017 and April 2018 at the Departement of Nuclear Medicine and at the Departement for Endocinology Diagnoistics, in Clinical Center of Vojvodina, Novi Sad. Compared to the control group, the study group had statistically significantly higher values of aldosterone (p=0.028), total calcium (p=0.01), ionized calcium (p=0.003) and parathyroid hormone (N-TACT PTH) (p=0.00), while statistically a significant lower levels in the study group were for phosphorus (p=0.003) and vitamin D (p=0.04). A linear correlation analysis in the study group revealed a statistically significant degree of positive correlation between renin and N-TACT PTH (r=0.688, p<0.05); renin and calcium (r=0.673, p<0.05) and renin and ionized calcium (r=0.641, p<0.05). Serum aldosterone and parathyroid hormone levels (N-TACT) were correlated positively in patients with primary hyperparathyroidism (r=0.509, p<0.05). According to the linear correlation analysis in the control group, aldosterone showed no positive correlation with N-TACT PTH (r=-0.285, p>0.05), as well as total and ionized calcium (r=-0.200, p>0.05; r=-0.313, p>0.05). In multivariate regression analysis of the study group, the strongest predictive variable of aldosterone secretion was N-TACT PTH (p=0.011). Aldosterone correlated positively to PTH levels in patients with primary hyperparathyroidism, and the fact is that in these patients aldosterone might be a key mediator of cardiovascular symptoms. All this knowledge should help to find new treatments to prevent cardiovascular disease.Keywords: aldosterone, hyperparathyroidism, parathyroid hormone, parathyroid gland
Procedia PDF Downloads 1411005 Optical Coherence Tomography in Parkinson’s Disease: A Potential in-vivo Retinal α-Synuclein Biomarker in Parkinson’s Disease
Authors: Jessica Chorostecki, Aashka Shah, Fen Bao, Ginny Bao, Edwin George, Navid Seraji-Bozorgzad, Veronica Gorden, Christina Caon, Elliot Frohman
Abstract:
Background: Parkinson’s Disease (PD) is a neuro degenerative disorder associated with the loss of dopaminergic cells and the presence α-synuclein (AS) aggregation in of Lewy bodies. Both dopaminergic cells and AS are found in the retina. Optical coherence tomography (OCT) allows high-resolution in-vivo examination of retinal structure injury in neuro degenerative disorders including PD. Methods: We performed a cross-section OCT study in patients with definite PD and healthy controls (HC) using Spectral Domain SD-OCT platform to measure the peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular volume (TMV). We performed intra-retinal segmentation with fully automated segmentation software to measure the volume of the RNFL, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), and the outer nuclear layer (ONL). Segmentation was performed blinded to the clinical status of the study participants. Results: 101 eyes from 52 PD patients (mean age 65.8 years) and 46 eyes from 24 HC subjects (mean age 64.1 years) were included in the study. The mean pRNFL thickness was not significantly different (96.95 μm vs 94.42 μm, p=0.07) but the TMV was significantly lower in PD compared to HC (8.33 mm3 vs 8.58 mm3 p=0.0002). Intra-retinal segmentation showed no significant difference in the RNFL volume between the PD and HC groups (0.95 mm3 vs 0.92 mm3 p=0.454). However, GCL, IPL, INL, and ONL volumes were significantly reduced in PD compared to HC. In contrast, the volume of OPL was significantly increased in PD compared to HC. Conclusions: Our finding of the enlarged OPL corresponds with mRNA expression studies showing localization of AS in the OPL across vertebrate species and autopsy studies demonstrating AS aggregation in the deeper layers of retina in PD. We propose that the enlargement of the OPL may represent a potential biomarker of AS aggregation in PD. Longitudinal studies in larger cohorts are warranted to confirm our observations that may have significant implications in disease monitoring and therapeutic development.Keywords: Optical Coherence Tomography, biomarker, Parkinson's disease, alpha-synuclein, retina
Procedia PDF Downloads 4381004 Evaluation of Natural Frequency of Single and Grouped Helical Piles
Authors: Maryam Shahbazi, Amy B. Cerato
Abstract:
The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.Keywords: helical pile, natural frequency, pile group, shake table, stiffness
Procedia PDF Downloads 1331003 X-Ray Photoelectron Spectroscopy Analyses of Candidate Materials for Advanced Nuclear Reactors
Authors: Marie Kudrnová, Jana Rejková
Abstract:
The samples of supplied INCONEL 601, 617, 625, and HASTELLOY C-22 alloys and experimental nickel alloy MoNiCr were examined by XPS (X-ray photoelectron spectroscopy) before and after exposure. The experiment was performed in a mixture of LiCl-KCl salt (58.2-41.8 wt. %). The exposure conditions were 440°C, pressure 0.2 MPa, 500 hours in an inert argon atmosphere. The XPS analysis shows that a thin oxide layer composed of metal oxides such as NiO, Cr₂O₃, and Nb₂O₅ was formed. After sputtering the exposed surface with Ar ions, metals were also detected in the elemental state, indicating a very thin protective oxide layer with a thickness in units of up to tens of nanometers.Keywords: XPS, MSR, nickel alloy, metal oxides
Procedia PDF Downloads 801002 A Lightning Strike Mimic: The Abusive Use of Dog Shock Collar Presents as Encephalopathy, Respiratory Arrest, Cardiogenic Shock, Severe Hypernatremia, Rhabdomyolysis, and Multiorgan Injury
Authors: Merrick Lopez, Aashish Abraham, Melissa Egge, Marissa Hood, Jui Shah
Abstract:
A 3 year old male with unknown medical history presented initially with encephalopathy, intubated for respiratory failure, and admitted to the pediatric intensive care unit (PICU) with refractory shock. During resuscitation in the emergency department, he was found to be in severe metabolic acidosis with a pH of 7.03 and escalated on vasopressor drips for hypotension. His initial sodium was 174. He was noted to have burn injuries to his scalp, forehead, right axilla, bilateral arm creases and lower legs. He had rhabdomyolysis (initial creatinine kinase 5,430 U/L with peak levels of 62,340 normal <335 U/L), cardiac injury (initial troponin 88 ng/L with peak at 145 ng/L, normal <15ng/L), hypernatremia (peak 174, normal 140), hypocalcemia, liver injury, acute kidney injury, and neuronal loss on magnetic resonance imaging (MRI). Soft restraints and a shock collar were found in the home. He was critically ill for 8 days, but was gradually weaned off drips, extubated, and started on feeds. Discussion Electrical injury, specifically lightning injury is an uncommon but devastating cause of injury in pediatric patients. This patient with suspected abusive use of a dog shock collar presented similar to a lightning strike. Common entrance points include the hands and head, similar to our patient with linear wounds on his forehead. When current enters, it passes through tissues with the least resistance. Nerves, blood vessels, and muscles, have high fluid and electrolyte content and are commonly affected. Exit points are extremities: our child who had circumferential burns around his arm creases and ankles. Linear burns preferentially follow areas of high sweat concentration, and are thought to be due to vaporization of water on the skin’s surface. The most common cause of death from a lightning strike is due to cardiopulmonary arrest. The massive depolarization of the myocardium can result in arrhythmias and myocardial necrosis. The patient presented in cardiogenic shock with evident cardiac damage. Electricity going through vessels can lead to vaporization of intravascular water. This can explain his severe hypernatremia. He also sustained other internal organ injuries (adrenal glands, pancreas, liver, and kidney). Electrical discharge also leads to direct skeletal muscle injury in addition to prolonged muscular spasm. Rhabdomyolysis, the acute damage of muscle, leads to release of potentially toxic components into the circulation which could lead to acute renal failure. The patient had severe rhabdomyolysis and renal injury. Early hypocalcemia has been consistently demonstrated in patients with rhabdomyolysis. This was present in the patient and led to increased vasopressor needs. Central nervous system injuries are also common which can include encephalopathy, hypoxic injury, and cerebral infarction. The patient had evidence of brain injury as seen on MRI. Conclusion Electrical injuries due to lightning strikes and abusive use of a dog shock collar are rare, but can both present in similar ways with respiratory failure, shock, hypernatremia, rhabdomyolysis, brain injury, and multiorgan damage. Although rare, it is essential for early identification and prompt management for acute and chronic complications in these children.Keywords: cardiogenic shock, dog shock collar, lightning strike, rhabdomyolysis
Procedia PDF Downloads 891001 Multiple Primary Pulmonary Meningiomas: A Case Report
Authors: Wellemans Isabelle, Remmelink Myriam, Foucart Annick, Rusu Stefan, Compère Christophe
Abstract:
Primary pulmonary meningioma (PPM) is a very rare tumor, and its occurrence has been reported only sporadically. Multiple PPMs are even more exceptional, and herein, we report, to the best of our knowledge, the fourth case, focusing on the clinicopathological features of the tumor. Moreover, the possible relationship between the use of progesterone–only contraceptives and the development of these neoplasms will be discussed. Case Report: We report a case of a 51-year-old female presenting three solid pulmonary nodules, with the following localizations: right upper lobe, middle lobe, and left lower lobe, described as incidental findings on computed tomography (CT) during a pre-bariatric surgery check-up. The patient revealed no drinking or smoking history. The physical exam was unremarkable except for the obesity. The lesions ranged in size between 6 and 24 mm and presented as solid nodules with lobulated contours. The largest lesion situated in the middle lobe had mild fluorodeoxyglucose (FDG) uptake on F-18 FDG positron emission tomography (PET)/CT, highly suggestive of primary lung neoplasm. For pathological assessment, video-assisted thoracoscopic middle lobectomy and wedge resection of the right upper nodule was performed. Histological examination revealed relatively well-circumscribed solid proliferation of bland meningothelial cells growing in whorls and lobular nests, presenting intranuclear pseudo-inclusions and psammoma bodies. No signs of anaplasia were observed. The meningothelial cells expressed diffusely Vimentin, focally Progesterone receptors and were negative for epithelial (cytokeratin (CK) AE1/AE3, CK7, CK20, Epithelial Membrane Antigen (EMA)), neuroendocrine markers (Synaptophysin, Chromogranin, CD56) and Estrogenic receptors. The proliferation labelling index Ki-67 was low (<5%). Metastatic meningioma was ruled out by brain and spine magnetic resonance imaging (MRI) scans. The third lesion localized in the left lower lobe was followed-up and resected three years later because of its slow but significant growth (14 mm to 16 mm), alongside two new infra centimetric lesions. Those three lesions showed a morphological and immunohistochemical profile similar to previously resected lesions. The patient was disease-free one year post-last surgery. Discussion: Although PPMs are mostly benign and slow-growing tumors with an excellent prognosis, they do not present specific radiological characteristics, and it is difficult to differentiate it from other lung tumors, histopathologic examination being essential. Aggressive behavior is associated with atypical or anaplastic features (WHO grades II–III) The etiology is still uncertain and different mechanisms have been proposed. A causal connection between sexual hormones and meningothelial proliferation has long been suspected and few studies examining progesterone only contraception and meningioma risk have all suggested an association. In line with this, our patient was treated with Levonorgestrel, a progesterone agonist, intra-uterine device (IUD). Conclusions: PPM, defined by the typical histological and immunohistochemical features of meningioma in the lungs and the absence of central nervous system lesions, is an extremely rare neoplasm, mainly solitary and associating, and indolent growth. Because of the unspecific radiologic findings, it should always be considered in the differential diagnosis of lung neoplasms. Regarding multiple PPM, only three cases are reported in the literature, and this is the first described in a woman treated by a progesterone-only IUD to the best of our knowledge.Keywords: pulmonary meningioma, multiple meningioma, meningioma, pulmonary nodules
Procedia PDF Downloads 1141000 Comparison between FEM Simulation and Experiment of Temperature Rise in Power Transformer Inner Steel Plate
Authors: Byung hyun Bae
Abstract:
In power transformer, leakage magnetic flux generate temperature rise of inner steel plate. Sometimes, this temperature rise can be serious problem. If temperature of steel plate is over critical point, harmful gas will be generated in the tank. And this gas can be a reason of fire, explosion and life decrease. So, temperature rise forecasting of steel plate is very important at the design stage of power transformer. To improve accuracy of forecasting of temperature rise, comparison between simulation and experiment achieved in this paper.Keywords: power transformer, steel plate, temperature rise, experiment, simulation
Procedia PDF Downloads 495999 [Keynote Speech]: Competitive Evaluation of Power Plants in Energy Policy
Authors: Beril Tuğrul
Abstract:
Electrical energy is the most important form of energy and electrical power plants have highest impact factor in energy policy. This study is in relation with evaluation of various power plants including fossil fuels, nuclear and renewable energy based power plants. The power plants evaluated with regard to their overall impact that considered for establishing of the plants. Both positive and negative impacts of power plant operation are compared view of different arguments. Then calculate the impact factor by using variation linear extrapolation for each argument. With this study, power plants assessed with the different point of view and clarified objectively. Procedia PDF Downloads 524