Search results for: multi-objective optimization
1752 Multi Objective Near-Optimal Trajectory Planning of Mobile Robot
Authors: Amar Khoukhi, Mohamed Shahab
Abstract:
This paper presents the optimal control problem of mobile robot motion as a nonlinear programming problem (NLP) and solved using a direct method of numerical optimal control. The NLP is initialized with a B-Spline for which node locations are optimized using a genetic search. The system acceleration inputs and sampling periods are considered as optimization variables. Different scenarios with different objectives weights are implemented and investigated. Interesting results are found in terms of complying with the expected behavior of a mobile robot system and time-energy minimization.Keywords: multi-objective control, non-holonomic systems, mobile robots, nonlinear programming, motion planning, B-spline, genetic algorithm
Procedia PDF Downloads 3671751 Job Shop Scheduling: Classification, Constraints and Objective Functions
Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah
Abstract:
The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.Keywords: job-shop scheduling, classification, constraints, objective functions
Procedia PDF Downloads 4421750 Principal Component Analysis Applied to the Electric Power Systems – Practical Guide; Practical Guide for Algorithms
Authors: John Morales, Eduardo Orduña
Abstract:
Currently the Principal Component Analysis (PCA) theory has been used to develop algorithms regarding to Electric Power Systems (EPS). In this context, this paper presents a practical tutorial of this technique detailed their concept, on-line and off-line mathematical foundations, which are necessary and desirables in EPS algorithms. Thus, features of their eigenvectors which are very useful to real-time process are explained, showing how it is possible to select these parameters through a direct optimization. On the other hand, in this work in order to show the application of PCA to off-line and on-line signals, an example step to step using Matlab commands is presented. Finally, a list of different approaches using PCA is presented, and some works which could be analyzed using this tutorial are presented.Keywords: practical guide; on-line; off-line, algorithms, faults
Procedia PDF Downloads 5611749 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 2: Condensation and Solidification Experiments on Liquid Waste
Authors: Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura
Abstract:
As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH4+ ion in the feed solution was successfully concentrated, and NH4+ ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes.Keywords: condensation, radioactive liquid waste, solidification, STRAD project
Procedia PDF Downloads 1561748 Intelligent and Optimized Placement for CPLD Devices
Authors: Abdelkader Hadjoudja, Hajar Bouazza
Abstract:
The PLD/CPLD devices are widely used for logic synthesis since several decades. Based on sum of product terms (PTs) architecture, the PLD/CPLD offer a high degree of flexibility to support various application requirements. They are suitable for large combinational logic, finite state machines as well as intensive I/O designs. CPLDs offer very predictable timing characteristics and are therefore ideal for critical control applications. This paper describes how the logic synthesis techniques, such as 1) XOR detection, 2) logic doubling, 3) complement of a Boolean function are combined, applied and used to optimize the CPLDs devices architecture that is based on PAL-like macrocells. Our goal is to use these techniques for minimizing the number of macrocells required to implement a circuit and minimize the delay of mapped circuit.Keywords: CPLD, doubling, optimization, XOR
Procedia PDF Downloads 2801747 Metabolic Pathway Analysis of Microbes using the Artificial Bee Colony Algorithm
Authors: Serena Gomez, Raeesa Tanseen, Netra Shaligram, Nithin Francis, Sandesh B. J.
Abstract:
The human gut consists of a community of microbes which has a lot of effects on human health disease. Metabolic modeling can help to predict relative populations of stable microbes and their effect on health disease. In order to study and visualize microbes in the human gut, we developed a tool that offers the following modules: Build a tool that can be used to perform Flux Balance Analysis for microbes in the human gut using the Artificial Bee Colony optimization algorithm. Run simulations for an individual microbe in different conditions, such as aerobic and anaerobic and visualize the results of these simulations.Keywords: microbes, metabolic modeling, flux balance analysis, artificial bee colony
Procedia PDF Downloads 1001746 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds
Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang
Abstract:
Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision
Procedia PDF Downloads 1581745 Cognitive SATP for Airborne Radar Based on Slow-Time Coding
Authors: Fanqiang Kong, Jindong Zhang, Daiyin Zhu
Abstract:
Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on cyclic and power-like algorithms is presented. Numerical examples show the effectiveness of the proposed method.Keywords: space-time adaptive processing (STAP), airborne radar, signal-to-clutter ratio, slow-time coding
Procedia PDF Downloads 2721744 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile
Authors: Vahid Rashtchi, Ashkan Pirooz
Abstract:
This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile
Procedia PDF Downloads 6021743 Optimal Capacitor Placement in Distribution Systems
Authors: Sana Ansari, Sirus Mohammadi
Abstract:
In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.Keywords: power losses, voltage stability, radial distribution systems, capacitor
Procedia PDF Downloads 6451742 Video Stabilization Using Feature Point Matching
Authors: Shamsundar Kulkarni
Abstract:
Video capturing by non-professionals will lead to unanticipated effects. Such as image distortion, image blurring etc. Hence, many researchers study such drawbacks to enhance the quality of videos. In this paper, an algorithm is proposed to stabilize jittery videos .A stable output video will be attained without the effect of jitter which is caused due to shaking of handheld camera during video recording. Firstly, salient points from each frame from the input video are identified and processed followed by optimizing and stabilize the video. Optimization includes the quality of the video stabilization. This method has shown good result in terms of stabilization and it discarded distortion from the output videos recorded in different circumstances.Keywords: video stabilization, point feature matching, salient points, image quality measurement
Procedia PDF Downloads 3111741 Fuzzy Vehicle Routing Problem for Extreme Environment
Authors: G. Sirbiladze, B. Ghvaberidze, B. Matsaberidze
Abstract:
A fuzzy vehicle routing problem is considered in the possibilistic environment. A new criterion, maximization of expectation of reliability for movement on closed routes is constructed. The objective of the research is to implement a two-stage scheme for solution of this problem. Based on the algorithm of preferences on the first stage, the sample of so-called “promising” routes will be selected. On the second stage, for the selected promising routes new bi-criteria problem will be solved - minimization of total traveled distance and maximization of reliability of routes. The problem will be stated as a fuzzy-partitioning problem. Two possible solutions of this scheme are considered.Keywords: vehicle routing problem, fuzzy partitioning problem, multiple-criteria optimization, possibility theory
Procedia PDF Downloads 5471740 Intelligent IT Infrastructure in the Gas and Oil Industry
Authors: Ahmad Fahad Alotaibi, Khalid Hamed Hajri, Humoud Hudiban Rashidi
Abstract:
Intelligent information technology infrastructure is considered one of the enablers to enhance digital transformation in the gas and oil fields to optimize IT infrastructure reliability by supporting operations and maintenance in a safe and secure method to optimize resources. Smart IT buildings, communication rooms and shelters with intelligent technologies can strengthen the performance and profitability of gas and oil companies by ensuring business continuity. This paper describes the advantages of deploying intelligent IT infrastructure in the oil and gas industry by illustrating its positive impacts on some development aspects, for instance, operations, maintenance, safety, security and resource optimization. Moreover, it highlights the challenges and difficulties of providing smart IT services in a remote area and proposes solutions to overcome such difficulties.Keywords: intelligent IT infrastructure, remote areas, oil and gas field, digitalization
Procedia PDF Downloads 581739 Control of Proton Exchange Membrane Fuel Cell Power System Using PI and Sliding Mode Controller
Authors: Mohamed Derbeli, Maissa Farhat, Oscar Barambones, Lassaad Sbita
Abstract:
Conventional controller (PI) applied to a DC/DC boost converter for the improvement and optimization of the Proton Exchange Membrane Fuel Cell (PEMFC) system efficiency, cannot attain a good performance effect. Thus, due to its advantages comparatively with the PI controller, this paper interest is focused on the use of the sliding mode controller (SMC), Stability of the closed loop system is analytically proved using Lyapunov approach for the proposed controller. The model and the controllers are implemented in the MATLAB and SIMULINK environment. A comparison of results indicates that the suggested approach has considerable advantages compared to the traditional controller.Keywords: DC/DC boost converter, PEMFC, PI controller, sliding mode controller
Procedia PDF Downloads 2311738 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies
Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov
Abstract:
Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.Keywords: business processes, discrete-event simulation, management, trading industry
Procedia PDF Downloads 3421737 Investigation of Steel Infill Panels under Blast Impulsive Loading
Authors: Seyed M. Zahrai, Saeid Lotfi
Abstract:
If an infill panel does not have enough ductility against the loading, it breaks and gets damaged before depreciation and load transfer. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Concerning enough ductility of out-of-plane behavior the infill panel, the impact force enters the horizontal diaphragm and is distributed among the lateral elements which can be made from steel infill panels. This article investigates the behavior of steel infill panels with different thickness and stiffeners using finite element analysis with geometric and material nonlinearities for optimization of the steel plate thickness and stiffeners arrangement to obtain more efficient design for its out-of-plane behavior.Keywords: blast loading, ductility, maximum displacement, steel infill panel
Procedia PDF Downloads 2741736 Block Mining: Block Chain Enabled Process Mining Database
Authors: James Newman
Abstract:
Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.Keywords: blockchain, process mining, memory optimization, protocol
Procedia PDF Downloads 1011735 Genetic Algorithm for Solving the Flexible Job-Shop Scheduling Problem
Authors: Guilherme Baldo Carlos
Abstract:
The flexible job-shop scheduling problem (FJSP) is an NP-hard combinatorial optimization problem, which can be applied to model several applications in a wide array of industries. This problem will have its importance increase due to the shift in the production mode that modern society is going through. The demands are increasing and for products personalized and customized. This work aims to apply a meta-heuristic called a genetic algorithm (GA) to solve this problem. A GA is a meta-heuristic inspired by the natural selection of Charles Darwin; it produces a population of individuals (solutions) and selects, mutates, and mates the individuals through generations in order to find a good solution for the problem. The results found indicate that the GA is suitable for FJSP solving.Keywords: genetic algorithm, evolutionary algorithm, scheduling, flexible job-shop scheduling
Procedia PDF Downloads 1461734 Dynamic Synthesis of a Flexible Multibody System
Authors: Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui
Abstract:
This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters.Keywords: dynamic response, evolutionary genetic algorithm, flexible bodies, optimization
Procedia PDF Downloads 3181733 Layersomes for Oral Delivery of Amphotericin B
Authors: A. C. Rana, Abhinav Singh Rana
Abstract:
Layer by layer coating of biocompatible polyelectrolytes converts the liposomes into stable version i.e 'layersomes'. This system was further used to deliver the Amphotericin B through the oral route. Extensive optimization of different process variables resulted in the formation of layersomes with the particle size of 238.4±5.1, PDI of 0.24±0.16, the zeta potential of 34.6±1.3, and entrapment efficiency of 71.3±1.2. TEM analysis further confirmed the formation of spherical particles. Trehalose (10% w/w) resulted in the formation of fluffy and easy to redisperse cake in freeze dried layersomes. Controlled release up to 50 % within 24 h was observed in the case of layersomes. The layersomes were found stable in simulated biological fluids and resulted in the 3.59 fold higher bioavailability in comparison to free Amp-B. Furthermore, the developed formulation was found to be safe in comparison to Fungizone as indicated by blood urea nitrogen (BUN) and creatinine level.Keywords: amphotericin B, layersomes, liposomes, toxicity
Procedia PDF Downloads 5251732 Determination of the Minimum Time and the Optimal Trajectory of a Moving Robot Using Picard's Method
Authors: Abbes Lounis, Kahina Louadj, Mohamed Aidene
Abstract:
This paper presents an optimal control problem applied to a robot; the problem is to determine a command which makes it possible to reach a final state from a given initial state in record time. The approach followed to solve this optimization problem with constraints on the control starts by presenting the equations of motion of the dynamic system then by applying Pontryagin's maximum principle (PMP) to determine the optimal control, and Picard's successive approximation method combined with the shooting method to solve the resulting differential system.Keywords: robotics, Pontryagin's Maximum Principle, PMP, Picard's method, shooting method, non-linear differential systems
Procedia PDF Downloads 2531731 Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery
Authors: Smita Krishnan, Krittika Chandran, Chandra Mohan Sinnathambi
Abstract:
Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects.Keywords: advanced oxidation process, photochemical processes, degradation, organic contaminants
Procedia PDF Downloads 5011730 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 2831729 Optimization of Human Hair Concentration for a Natural Rubber Based Composite
Authors: Richu J. Babu, Sony Mathew, Sharon Rony Jacob, Soney C. George, Jibin C. Jacob
Abstract:
Human hair is a non-biodegradable waste available in plenty throughout the world but is rarely explored for applications in engineering fields. Tensile strength of human hair ranges from 170 to 220 MPa. This property of human hair can be made use in the field of making bio-composites[1]. The composite is prepared by commixing the human hair and natural rubber in a two roll mill along with additives followed by vulcanization. Here the concentration of the human hair is varied by fine-tuning the fiber length as 20 mm and sundry tests like tensile, abrasion, tear and hardness were conducted. While incrementing the fiber length up to a certain range the mechanical properties shows superior amendments.Keywords: human hair, natural rubber, composite, vulcanization, fiber loading
Procedia PDF Downloads 3801728 Matrix Completion with Heterogeneous Cost
Authors: Ilqar Ramazanli
Abstract:
The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.Keywords: matroid optimization, matrix completion, linear algebra, algorithms
Procedia PDF Downloads 1071727 Motion Planning and Posture Control of the General 3-Trailer System
Authors: K. Raghuwaiya, B. Sharma, J. Vanualailai
Abstract:
This paper presents a set of artificial potential field functions that improves upon; in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general 3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws.Keywords: artificial potential fields, 3-trailer systems, motion planning, posture
Procedia PDF Downloads 4231726 Parallel Computing: Offloading Matrix Multiplication to GPU
Authors: Bharath R., Tharun Sai N., Bhuvan G.
Abstract:
This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks
Procedia PDF Downloads 551725 The Application of Data Mining Technology in Building Energy Consumption Data Analysis
Authors: Liang Zhao, Jili Zhang, Chongquan Zhong
Abstract:
Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.Keywords: data mining, data analysis, prediction, optimization, building operational performance
Procedia PDF Downloads 8511724 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures
Authors: C. Mayr, J. Periya, A. Kariminezhad
Abstract:
In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.Keywords: machine learning, radar, signal processing, autonomous driving
Procedia PDF Downloads 2411723 Structural Analysis of an Active Morphing Wing for Enhancing UAV Performance
Abstract:
A numerical study of a design concept for actively controlling wing twist is described in this paper. The concept consists of morphing elements which were designed to provide a rigid and seamless skin while maintaining structural rigidity. The wing structure is first modeled in CATIA V5 then imported into ANSYS for structural analysis. Athena Vortex Lattice method (AVL) is used to estimate aerodynamic response as well as aerodynamic loads of morphing wings, afterwards a structural optimization performed via ANSYS Static. Overall, the results presented in this paper show that the concept provides efficient wing twist while preserving an aerodynamically smooth and compliant surface. Sufficient structural rigidity in bending is also obtained. This concept is suggested as a possible alternative for morphing skin applications.Keywords: aircraft, morphing, skin, twist
Procedia PDF Downloads 394