Search results for: interactive models
6106 Large Language Model Powered Chatbots Need End-to-End Benchmarks
Authors: Debarag Banerjee, Pooja Singh, Arjun Avadhanam, Saksham Srivastava
Abstract:
Autonomous conversational agents, i.e., chatbots, are becoming an increasingly common mechanism for enterprises to provide support to customers and partners. In order to rate chatbots, especially ones powered by Generative AI tools like Large Language Models (LLMs), we need to be able to accurately assess their performance. This is where chatbot benchmarking becomes important. In this paper, authors propose the use of a benchmark that they call the E2E (End to End) benchmark and show how the E2E benchmark can be used to evaluate the accuracy and usefulness of the answers provided by chatbots, especially ones powered by LLMs. The authors evaluate an example chatbot at different levels of sophistication based on both our E2E benchmark as well as other available metrics commonly used in the state of the art and observe that the proposed benchmark shows better results compared to others. In addition, while some metrics proved to be unpredictable, the metric associated with the E2E benchmark, which uses cosine similarity, performed well in evaluating chatbots. The performance of our best models shows that there are several benefits of using the cosine similarity score as a metric in the E2E benchmark.Keywords: chatbot benchmarking, end-to-end (E2E) benchmarking, large language model, user centric evaluation.
Procedia PDF Downloads 686105 The Effectiveness of Multiphase Flow in Well- Control Operations
Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia
Abstract:
Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic
Procedia PDF Downloads 1206104 The Impact of Steel Connections on the Fire Resistance of Composite Buildings
Authors: Shuyuan Lin, Zhaohui Huang, Mizi Fan
Abstract:
In the majority of previous research into modelling large scale composite floor subjected to fire, the beam-to-column and beam-to-beam connections were assumed to behave either as pinned or rigid for simplicity, and the vertical shear and axial tension failures of the connection were not taken into account. We have recently developed robust two-noded connection models for modeling endplate and partial endplate steel connections under fire conditions. The main objective of this research is to systematically investigate the impact of the connections of protected beams, on the tensile membrane actions of supported floor slabs in which the failures of the connections, such as, axial tension, vertical shear and bending are accounted for. The models developed have very good numerical stability under a static solver condition, and can be used for large scale modelling of composite buildings in fire.Keywords: fire, steel structure, component-based model, beam-to-column connections
Procedia PDF Downloads 4506103 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 1326102 A Meta-Analysis of School-Based Suicide Prevention for Adolescents and Meta-Regressions of Contextual and Intervention Factors
Authors: E. H. Walsh, J. McMahon, M. P. Herring
Abstract:
Post-primary school-based suicide prevention (PSSP) is a valuable avenue to reduce suicidal behaviours in adolescents. The aims of this meta-analysis and meta-regression were 1) to quantify the effect of PSSP interventions on adolescent suicide ideation (SI) and suicide attempts (SA), and 2) to explore how intervention effects may vary based on important contextual and intervention factors. This study provides further support to the benefits of PSSP by demonstrating lower suicide outcomes in over 30,000 adolescents following PSSP and mental health interventions and tentatively suggests that intervention effectiveness may potentially vary based on intervention factors. The protocol for this study is registered on PROSPERO (ID=CRD42020168883). Population, intervention, comparison, outcomes, and study design (PICOs) defined eligible studies as cluster randomised studies (n=12) containing PSSP and measuring suicide outcomes. Aggregate electronic database EBSCO host, Web of Science, and Cochrane Central Register of Controlled Trials databases were searched. Cochrane bias tools for cluster randomised studies demonstrated that half of the studies were rated as low risk of bias. The Egger’s Regression Test adapted for multi-level modelling indicated that publication bias was not an issue (all ps > .05). Crude and corresponding adjusted pooled log odds ratios (OR) were computed using the Metafor package in R, yielding 12 SA and 19 SI effects. Multi-level random-effects models accounting for dependencies of effects from the same study revealed that in crude models, compared to controls, interventions were significantly associated with 13% (OR=0.87, 95% confidence interval (CI), [0.78,0.96], Q18 =15.41, p=0.63) and 34% (OR=0.66, 95%CI [0.47,0.91], Q10=16.31, p=0.13) lower odds of SI and SA, respectively. Adjusted models showed similar odds reductions of 15% (OR=0.85, 95%CI[0.75,0.95], Q18=10.04, p=0.93) and 28% (OR=0.72, 95%CI[0.59,0.87], Q10=10.46, p=0.49) for SI and SA, respectively. Within-cluster heterogeneity ranged from no heterogeneity to low heterogeneity for SA across crude and adjusted models (0-9%). No heterogeneity was identified for SI across crude and adjusted models (0%). Pre-specified univariate moderator analyses were not significant for SA (all ps < 0.05). Variations in average pooled SA odds reductions across categories of various intervention characteristics were observed (all ps < 0.05), which preliminarily suggests that the effectiveness of interventions may potentially vary across intervention factors. These findings have practical implications for researchers, clinicians, educators, and decision-makers. Further investigation of important logical, theoretical, and empirical moderators on PSSP intervention effectiveness is recommended to establish how and when PSSP interventions best reduce adolescent suicidal behaviour.Keywords: adolescents, contextual factors, post-primary school-based suicide prevention, suicide ideation, suicide attempts
Procedia PDF Downloads 1046101 Finding DEA Targets Using Multi-Objective Programming
Authors: Farzad Sharifi, Raziyeh Shamsi
Abstract:
In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose molti-objective DEA-R model, because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduces the efficiency score), an efficient DMU is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other case, only the ratio of stochastic data may be available (e.g; the ratio of stochastic inputs to stochastic outputs). Thus, we provide multi objective DEA model without explicit outputs and prove that in-put oriented MOP DEA-R model in the invariable return to scale case can be replacing by MOP- DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model, yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.Keywords: DEA, MOLP, STOCHASTIC, DEA-R
Procedia PDF Downloads 3986100 Implementation of a Distant Learning Physician Assistant Program in Northern Michigan to Address Health Care Provider Shortage: Importance of Evaluation
Authors: Theresa Bacon-Baguley, Martina Reinhold
Abstract:
Introduction: The purpose of this paper is to discuss the importance of both formative and summative evaluation of a Physician Assistant (PA) program with a distant campus delivered through Interactive Television (ITV) to assure equity of educational experiences. Methodology: A needs assessment utilizing a case-control design determined the need and interest in expanding the existing PA program to northern Michigan. A federal grant was written and funded, which supported the hiring of two full-time faculty members and support staff at the distant site. The strengths and weaknesses of delivering a program through ITV were evaluated using weekly formative evaluation, and bi-semester summative evaluation. Formative evaluation involved discussion of lecture content to be delivered, special ITV needs, orientation of new lecturers to the system, student concerns, support staff updates, and scheduling of student/faculty traveling between the two campuses. The summative evaluation, designed from a literature review of barriers to ITV, included 19 statements designed to evaluate the following items: quality of technology (audio, video, etc.), confidence in the ITV system, quality of instruction and instructor interaction between the two locations, and availability of resources at each location. In addition, students were given the opportunity to write qualitative remarks for each course delivered between the two locations. This summative evaluation was given to all students at mid-semester and at the end of the semester. The goal of the summative evaluation was to have 80% or greater of the students respond favorably (‘Very Good’ or ‘Good’) to each of the 19 statements. Results: Prior to the start of the first cohort at the distant campus, the technology was tested. During this time period, the formative evaluations identified key components needing modification, which were rapidly addressed: ability to record lectures, lighting, sound, and content delivery. When the mid-semester summative survey was given to the first cohort of students, 18 of the 19 statements in the summative evaluation met the goal of 80% or greater in the favorable category. When the summative evaluation statements were stratified by the two cohorts, the summative evaluation identified that students at the home location responded that they did not have adequate access to printers, and students at the expansion location responded that they did not have adequate access to library resources. These results allowed the program to address the deficiencies through contacting informational technology for additional printers, and to provide students with knowledge on how to access library resources. Conclusion: Successful expansion of programs to a distant site utilizing ITV technology requires extensive monitoring using both formative and summative evaluation. The formative evaluation allowed for quick identification of issues that could immediately be addressed, both at the planning and developing stage, as well as during implementation. Through use of the summative evaluation the program is able to monitor the success/ effectiveness of the expansion and identify specific needs of students at each location.Keywords: assessment, distance learning, formative feedback, interactive television (ITV), student experience, summative feedback, support
Procedia PDF Downloads 2476099 Line Heating Forming: Methodology and Application Using Kriging and Fifth Order Spline Formulations
Authors: Henri Champliaud, Zhengkun Feng, Ngan Van Lê, Javad Gholipour
Abstract:
In this article, a method is presented to effectively estimate the deformed shape of a thick plate due to line heating. The method uses a fifth order spline interpolation, with up to C3 continuity at specific points to compute the shape of the deformed geometry. First and second order derivatives over a surface are the resulting parameters of a given heating line on a plate. These parameters are determined through experiments and/or finite element simulations. Very accurate kriging models are fitted to real or virtual surfaces to build-up a database of maps. Maps of first and second order derivatives are then applied on numerical plate models to evaluate their evolving shapes through a sequence of heating lines. Adding an optimization process to this approach would allow determining the trajectories of heating lines needed to shape complex geometries, such as Francis turbine blades.Keywords: deformation, kriging, fifth order spline interpolation, first, second and third order derivatives, C3 continuity, line heating, plate forming, thermal forming
Procedia PDF Downloads 4566098 Hydraulic Analysis of Irrigation Approach Channel Using HEC-RAS Model
Authors: Muluegziabher Semagne Mekonnen
Abstract:
This study was intended to show the irrigation water requirements and evaluation of canal hydraulics steady state conditions to improve on scheme performance of the Meki-Ziway irrigation project. The methodology used was the CROPWAT 8.0 model to estimate the irrigation water requirements of five major crops irrigated in the study area. The results showed that for the whole existing and potential irrigation development area of 2000 ha and 2599 ha, crop water requirements were 3,339,200 and 4,339,090.4 m³, respectively. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. In this study Hydraulic Analysis of Irrigation Canals Using HEC-RAS Model was conducted in Meki-Ziway Irrigation Scheme. The HEC-RAS model was tested in terms of error estimation and used to determine canal capacity potential.Keywords: HEC-RAS, irrigation, hydraulic. canal reach, capacity
Procedia PDF Downloads 616097 Prospects of Acellular Organ Scaffolds for Drug Discovery
Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen
Abstract:
Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering
Procedia PDF Downloads 3016096 A New Approach to Interval Matrices and Applications
Authors: Obaid Algahtani
Abstract:
An interval may be defined as a convex combination as follows: I=[a,b]={x_α=(1-α)a+αb: α∈[0,1]}. Consequently, we may adopt interval operations by applying the scalar operation point-wise to the corresponding interval points: I ∙J={x_α∙y_α ∶ αϵ[0,1],x_α ϵI ,y_α ϵJ}, With the usual restriction 0∉J if ∙ = ÷. These operations are associative: I+( J+K)=(I+J)+ K, I*( J*K)=( I*J )* K. These two properties, which are missing in the usual interval operations, will enable the extension of the usual linear system concepts to the interval setting in a seamless manner. The arithmetic introduced here avoids such vague terms as ”interval extension”, ”inclusion function”, determinants which we encounter in the engineering literature that deal with interval linear systems. On the other hand, these definitions were motivated by our attempt to arrive at a definition of interval random variables and investigate the corresponding statistical properties. We feel that they are the natural ones to handle interval systems. We will enable the extension of many results from usual state space models to interval state space models. The interval state space model we will consider here is one of the form X_((t+1) )=AX_t+ W_t, Y_t=HX_t+ V_t, t≥0, where A∈ 〖IR〗^(k×k), H ∈ 〖IR〗^(p×k) are interval matrices and 〖W 〗_t ∈ 〖IR〗^k,V_t ∈〖IR〗^p are zero – mean Gaussian white-noise interval processes. This feeling is reassured by the numerical results we obtained in a simulation examples.Keywords: interval analysis, interval matrices, state space model, Kalman Filter
Procedia PDF Downloads 4256095 Intellectual Property and SMEs in the Baltic Sea Region: A Comparative Study on the Use of the Utility Model Protection
Authors: Christina Wainikka, Besrat Tesfaye
Abstract:
Several of the countries in the Baltic Sea region are ranked high in international innovations rankings, such as the Global Innovation Index and European Innovation Scoreboard. There are however some concerns in the performance of different countries. For example, there is a widely spread notion about “The Swedish Paradox”. Sweden is ranked high due to investments in R&D and patent activity, but the outcome is not as high as could be expected. SMEs in Sweden are also below EU average when it comes to registering intellectual property rights such as patents and trademarks. This study is concentrating on the protection of utility model. This intellectual property right does not exist in Sweden, but in for example Finland and Germany. The utility model protection is sometimes referred to as a “patent light” since it is easier to obtain than the patent protection but at the same time does cover technical solutions. In examining statistics on patent activities and activities in registering utility models it is clear that utility model protection is scarcely used in the countries that have the protection. In Germany 10 577 applications were made in 2021. In Finland there were 259 applications made in 2021. This can be compared with patent applications that were 58 568 in Germany in 2021 and 1 662 in Finland in 2021. In Sweden there has never been a protection for utility models. The only protection for technical solutions is patents and business secrets. The threshold for obtaining a patent is high, due to the legal requirements and the costs. The patent protection is there for often not chosen by SMEs in Sweden. This study examines whether the protection of utility models in other countries in the Baltic region provide SMEs in these countries with better options to protect their innovations. The legal methodology is comparative law. In order to study the effects of the legal differences statistics are examined and interviews done with SMEs from different industries.Keywords: baltic sea region, comparative law, SME, utility model
Procedia PDF Downloads 1156094 [Keynote Talk]: Software Reliability Assessment and Fault Tolerance: Issues and Challenges
Authors: T. Gayen
Abstract:
Although, there are several software reliability models existing today there does not exist any versatile model even today which can be used for the reliability assessment of software. Complex software has a large number of states (unlike the hardware) so it becomes practically difficult to completely test the software. Irrespective of the amount of testing one does, sometimes it becomes extremely difficult to assure that the final software product is fault free. The Black Box Software Reliability models are found be quite uncertain for the reliability assessment of various systems. As mission critical applications need to be highly reliable and since it is not always possible to ensure the development of highly reliable system. Hence, in order to achieve fault-free operation of software one develops some mechanism to handle faults remaining in the system even after the development. Although, several such techniques are currently in use to achieve fault tolerance, yet these mechanisms may not always be very suitable for various systems. Hence, this discussion is focused on analyzing the issues and challenges faced with the existing techniques for reliability assessment and fault tolerance of various software systems.Keywords: black box, fault tolerance, failure, software reliability
Procedia PDF Downloads 4266093 Learning through Gaming with Mobile Devices
Authors: Luis Rodrigo Valencia Pérez, Juan Manuel Peña Aguilar, Adelina Morita Alexander, Alberto Lamadrid Alvarez, Héctor Fernando Valencia Pérez
Abstract:
Financial education is among the areas of opportunity in the Spanish-speaking from an early age to high school, through mobile devices such as cell phones and tablets using ludic and fun applications like interactive games, children can learn money management and investment through time, thereby fostering the habit of saving and/or sound management of cash and family business resources, having interaction with an uncontrolled environment such as the involvement of other players in the external decisions of the environment in which the game is play. The application proposed in Phase 1 (design and development) was designed in multi-user environments, under methodologies of hybrid programming for any platform on the market and designed under CMMI standards that allow for quality production over time, following up on these improvements counting with continuous user feedback and usage statistics.Keywords: mobile educational games, ludic games, children, multiuser, design and software development
Procedia PDF Downloads 3836092 Leadership's Controlling via Complexity Investigation in Crisis Scenarios
Authors: Jiří Barta, Oldřich Svoboda, Jiří F. Urbánek
Abstract:
In this paper will be discussed two coin´s sides of crisis scenarios dynamics. On the one's side is negative role of subsidiary scenario branches in its compactness weakening by means unduly chaotic atomizing, having many interactive feedbacks cases, increasing a value of a complexity here. This negative role reflects the complexity of use cases, weakening leader compliancy, which brings something as a ´readiness for controlling capabilities provision´. Leader´s dissatisfaction has zero compliancy, but factual it is a ´crossbar´ (interface in fact) between planning and executing use cases. On the other side of this coin, an advantage of rich scenarios embranchment is possible to see in a support of response awareness, readiness, preparedness, adaptability, creativity and flexibility. Here rich scenarios embranchment contributes to the steadiness and resistance of scenario mission actors. These all will be presented in live power-points ´Blazons´, modelled via DYVELOP (Dynamic Vector Logistics of Processes) on the Conference.Keywords: leadership, controlling, complexity, DYVELOP, scenarios
Procedia PDF Downloads 4056091 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic
Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova
Abstract:
Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification
Procedia PDF Downloads 1106090 Russian Spatial Impersonal Sentence Models in Translation Perspective
Authors: Marina Fomina
Abstract:
The paper focuses on the category of semantic subject within the framework of a functional approach to linguistics. The semantic subject is related to similar notions such as the grammatical subject and the bearer of predicative feature. It is the multifaceted nature of the category of subject that 1) triggers a number of issues that, syntax-wise, remain to be dealt with (cf. semantic vs. syntactic functions / sentence parts vs. parts of speech issues, etc.); 2) results in a variety of approaches to the category of subject, such as formal grammatical, semantic/syntactic (functional), communicative approaches, etc. Many linguists consider the prototypical approach to the category of subject to be the most instrumental as it reveals the integrity of denotative and linguistic components of the conceptual category. This approach relates to subject as a source of non-passive predicative feature, an element of subject-predicate-object situation that can take on a variety of semantic roles, cf.: 1) an agent (He carefully surveyed the valley stretching before him), 2) an experiencer (I feel very bitter about this), 3) a recipient (I received this book as a gift), 4) a causee (The plane broke into three pieces), 5) a patient (This stove cleans easily), etc. It is believed that the variety of roles stems from the radial (prototypical) structure of the category with some members more central than others. Translation-wise, the most “treacherous” subject types are the peripheral ones. The paper 1) features a peripheral status of spatial impersonal sentence models such as U menia v ukhe zvenit (lit. I-Gen. in ear buzzes) within the category of semantic subject, 2) makes a structural and semantic analysis of the models, 3) focuses on their Russian-English translation patterns, 4) reveals non-prototypical features of subjects in the English equivalents.Keywords: bearer of predicative feature, grammatical subject, impersonal sentence model, semantic subject
Procedia PDF Downloads 3726089 Deep Learning Strategies for Mapping Complex Vegetation Patterns in Mediterranean Environments Undergoing Climate Change
Authors: Matan Cohen, Maxim Shoshany
Abstract:
Climatic, topographic and geological diversity, together with frequent disturbance and recovery cycles, produce highly complex spatial patterns of trees, shrubs, dwarf shrubs and bare ground patches. Assessment of spatial and temporal variations of these life-forms patterns under climate change is of high ecological priority. Here we report on one of the first attempts to discriminate between images of three Mediterranean life-forms patterns at three densities. The development of an extensive database of orthophoto images representing these 9 pattern categories was instrumental for training and testing pre-trained and newly-trained DL models utilizing DenseNet architecture. Both models demonstrated the advantages of using Deep Learning approaches over existing spectral and spatial (pattern or texture) algorithmic methods in differentiation 9 life-form spatial mixtures categories.Keywords: texture classification, deep learning, desert fringe ecosystems, climate change
Procedia PDF Downloads 896088 Project Management at University: Towards an Evaluation Process around Cooperative Learning
Authors: J. L. Andrade-Pineda, J.M. León-Blanco, M. Calle, P. L. González-R
Abstract:
The enrollment in current Master's degree programs usually pursues gaining the expertise required in real-life workplaces. The experience we present here concerns the learning process of "Project Management Methodology (PMM)", around a cooperative/collaborative mechanism aimed at affording students measurable learning goals and providing the teacher with the ability of focusing on the weaknesses detected. We have designed a mixed summative/formative evaluation, which assures curriculum engage while enriches the comprehension of PMM key concepts. In this experience we converted the students into active actors in the evaluation process itself and we endowed ourselves as teachers with a flexible process in which along with qualifications (score), other attitudinal feedback arises. Despite the high level of self-affirmation on their discussion within the interactive assessment sessions, they ultimately have exhibited a great ability to review and correct the wrong reasoning when that was the case.Keywords: cooperative-collaborative learning, educational management, formative-summative assessment, leadership training
Procedia PDF Downloads 1706087 Quantification of Dispersion Effects in Arterial Spin Labelling Perfusion MRI
Authors: Rutej R. Mehta, Michael A. Chappell
Abstract:
Introduction: Arterial spin labelling (ASL) is an increasingly popular perfusion MRI technique, in which arterial blood water is magnetically labelled in the neck before flowing into the brain, providing a non-invasive measure of cerebral blood flow (CBF). The accuracy of ASL CBF measurements, however, is hampered by dispersion effects; the distortion of the ASL labelled bolus during its transit through the vasculature. In spite of this, the current recommended implementation of ASL – the white paper (Alsop et al., MRM, 73.1 (2015): 102-116) – does not account for dispersion, which leads to the introduction of errors in CBF. Given that the transport time from the labelling region to the tissue – the arterial transit time (ATT) – depends on the region of the brain and the condition of the patient, it is likely that these errors will also vary with the ATT. In this study, various dispersion models are assessed in comparison with the white paper (WP) formula for CBF quantification, enabling the errors introduced by the WP to be quantified. Additionally, this study examines the relationship between the errors associated with the WP and the ATT – and how this is influenced by dispersion. Methods: Data were simulated using the standard model for pseudo-continuous ASL, along with various dispersion models, and then quantified using the formula in the WP. The ATT was varied from 0.5s-1.3s, and the errors associated with noise artefacts were computed in order to define the concept of significant error. The instantaneous slope of the error was also computed as an indicator of the sensitivity of the error with fluctuations in ATT. Finally, a regression analysis was performed to obtain the mean error against ATT. Results: An error of 20.9% was found to be comparable to that introduced by typical measurement noise. The WP formula was shown to introduce errors exceeding 20.9% for ATTs beyond 1.25s even when dispersion effects were ignored. Using a Gaussian dispersion model, a mean error of 16% was introduced by using the WP, and a dispersion threshold of σ=0.6 was determined, beyond which the error was found to increase considerably with ATT. The mean error ranged from 44.5% to 73.5% when other physiologically plausible dispersion models were implemented, and the instantaneous slope varied from 35 to 75 as dispersion levels were varied. Conclusion: It has been shown that the WP quantification formula holds only within an ATT window of 0.5 to 1.25s, and that this window gets narrower as dispersion occurs. Provided that the dispersion levels fall below the threshold evaluated in this study, however, the WP can measure CBF with reasonable accuracy if dispersion is correctly modelled by the Gaussian model. However, substantial errors were observed with other common models for dispersion with dispersion levels similar to those that have been observed in literature.Keywords: arterial spin labelling, dispersion, MRI, perfusion
Procedia PDF Downloads 3726086 Assessment of the Impact of Traffic Safety Policy in Barcelona, 2010-2019
Authors: Lluís Bermúdez, Isabel Morillo
Abstract:
Road safety involves carrying out a determined and explicit policy to reduce accidents. In the city of Barcelona, through the Local Road Safety Plan 2013-2018, in line with the framework that has been established at the European and state level, a series of preventive, corrective and technical measures are specified, with the priority objective of reducing the number of serious injuries and fatalities. In this work, based on the data from the accidents managed by the local police during the period 2010-2019, an analysis is carried out to verify whether the measures established in the Plan to reduce the accident rate have had an effect or not and to what extent. The analysis focuses on the type of accident and the type of vehicles involved. Different count regression models have been fitted, from which it can be deduced that the number of serious and fatal victims of the accidents that have occurred in the city of Barcelona has been reduced as the measures approved by the authorities.Keywords: accident reduction, count regression models, road safety, urban traffic
Procedia PDF Downloads 1336085 Reading and Writing Memories in Artificial and Human Reasoning
Authors: Ian O'Loughlin
Abstract:
Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.Keywords: artificial reasoning, human memory, machine learning, neural networks
Procedia PDF Downloads 2726084 UPPAAL-based Design and Analysis of Intelligent Parking System
Authors: Abobaker Mohammed Qasem Farhan, Olof M. A. Saif
Abstract:
The demand for parking spaces in urban areas, particularly in developing countries, has led to a significant issue in the absence of sufficient parking spaces in crowded areas, which results in daily traffic congestion as drivers search for parking. This not only affects the appearance of the city but also has indirect impacts on the economy, society, and environment. In response to these challenges, researchers from various countries have sought technical and intelligent solutions to mitigate the problem through the development of smart parking systems. This paper aims to analyze and design three models of parking lots, with a focus on parking time and security. The study used computer software and Uppaal tools to simulate the models and determine the best among them. The results and suggestions provided in the paper aim to reduce the parking problems and improve the overall efficiency and safety of the parking process. The conclusion of the study highlights the importance of utilizing advanced technology to address the pressing issue of insufficient parking spaces in urban areas.Keywords: preliminaries, system requirements, timed Au- tomata, Uppaal
Procedia PDF Downloads 1496083 Investigating the Effect of Study Plan and Homework on Student's Performance by Using Web Based Learning MyMathLab
Authors: Mohamed Chabi, Mahmoud I. Syam, Sarah Aw
Abstract:
In Summer 2012, the Foundation Program Unit of Qatar University has started implementing new ways of teaching Math by introducing MML (MyMathLab) as an innovative interactive tool to support standard teaching. In this paper, we focused on the effect of proper use of the Study Plan component of MML on student’s performance. Authors investigated the results of students of pre-calculus course during Fall 2013 in Foundation Program at Qatar University. The results showed that there is a strong correlation between study plan results and final exam results, also a strong relation between homework results and final exam results. In addition, the attendance average affected on the student’s results in general. Multiple regression is determined between passing rate dependent variable and study plan, homework as independent variable.Keywords: MyMathLab, study plan, assessment, homework, attendance, correlation, regression
Procedia PDF Downloads 4196082 Convectory Policing-Reconciling Historic and Contemporary Models of Police Service Delivery
Authors: Mark Jackson
Abstract:
Description: This paper is based on an theoretical analysis of the efficacy of the dominant model of policing in western jurisdictions. Those results are then compared with a similar analysis of a traditional reactive model. It is found that neither model provides for optimal delivery of services. Instead optimal service can be achieved by a synchronous hybrid model, termed the Convectory Policing approach. Methodology and Findings: For over three decades problem oriented policing (PO) has been the dominant model for western police agencies. Initially based on the work of Goldstein during the 1970s the problem oriented framework has spawned endless variants and approaches, most of which embrace a problem solving rather than a reactive approach to policing. This has included the Area Policing Concept (APC) applied in many smaller jurisdictions in the USA, the Scaled Response Policing Model (SRPM) currently under trial in Western Australia and the Proactive Pre-Response Approach (PPRA) which has also seen some success. All of these, in some way or another, are largely based on a model that eschews a traditional reactive model of policing. Convectory Policing (CP) is an alternative model which challenges the underpinning assumptions which have seen proliferation of the PO approach in the last three decades and commences by questioning the economics on which PO is based. It is argued that in essence, the PO relies on an unstated, and often unrecognised assumption that resources will be available to meet demand for policing services, while at the same time maintaining the capacity to deploy staff to develop solutions to the problems which were ultimately manifested in those same calls for service. The CP model relies on the observations from a numerous western jurisdictions to challenge the validity of that underpinning assumption, particularly in fiscally tight environment. In deploying staff to pursue and develop solutions to underpinning problems, there is clearly an opportunity cost. Those same staff cannot be allocated to alternative duties while engaged in a problem solution role. At the same time, resources in use responding to calls for service are unavailable, while committed to that role, to pursue solutions to the problems giving rise to those same calls for service. The two approaches, reactive and PO are therefore dichotomous. One cannot be optimised while the other is being pursued. Convectory Policing is a pragmatic response to the schism between the competing traditional and contemporary models. If it is not possible to serve either model with any real rigour, it becomes necessary to taper an approach to deliver specific outcomes against which success or otherwise might be measured. CP proposes that a structured roster-driven approach to calls for service, combined with the application of what is termed a resource-effect response capacity has the potential to resolve the inherent conflict between traditional and models of policing and the expectations of the community in terms of community policing based problem solving models.Keywords: policing, reactive, proactive, models, efficacy
Procedia PDF Downloads 4846081 Clinical Experience and Perception of Risk affect the Acceptance and Trust of using AI in Medicine
Authors: Schulz Peter, Kee Kalya, Lwin May, Goh Wilson, Chia Kendrikck, Chueng Max, Lam Thomas, Sung Joseph
Abstract:
As Artificial Intelligence (AI) is progressively making inroads into clinical practice, questions have arisen as to whether acceptance of AI is skewed toward certain medical practitioner segments, even within particular specializations. This study examines distinct AI acceptance among gastroenterologists with contrasting levels of seniority/experience when interacting with AI typologies. Data from 319 gastroenterologists show the presence of four distinct clusters of clinicians based on experience levels and perceived risk typologies. Analysis of cluster-based responses further revealed that acceptance of AI was not uniform. Our findings showed that clinician experience and risk perspective have an interactive role in influencing AI acceptance. Senior clinicians with low-risk perceptions were highly accepting of AI, but those with high-risk perceptions of AI were substantially less accepting. In contrast, junior clinicians were more inclined to embrace AI when they perceived high risk, yet they hesitated to adopt AI when the perceived risk was minimal.Keywords: risk perception, acceptance, trust, medicine
Procedia PDF Downloads 216080 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 516079 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data
Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates
Abstract:
Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.
Procedia PDF Downloads 986078 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Authors: Hayriye Anıl, Görkem Kar
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting
Procedia PDF Downloads 1106077 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies
Authors: Monica Lia
Abstract:
This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes
Procedia PDF Downloads 434