Search results for: database approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15184

Search results for: database approach

13684 Experimental Investigation on the Effect of Adding CuO Nanoparticles to R-600a Refrigerant on Heat Transfer Enhancement of a Horizontal Flattened Tube

Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi

Abstract:

An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused significant enhancement in heat transfer performance so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%.

Keywords: nano particles, flattend tube, R600a, CuO

Procedia PDF Downloads 325
13683 EU Regulation 868/04: Report of a Unilateral Approach on Unfair Subsidisation and Unfair Pricing Practices and Its Failure

Authors: Andrea Trimarchi

Abstract:

This paper is designed to provide a comprehensive overview on the EU Regulation No. 868/2004 concerning protection against subsidisation and unfair pricing practices regarding non-EU carriers and causing injury to Community air carriers. The analysis will focus, at first, on the exegetical scrutiny of the legal categories encompassed by the Regulation. In addition to that, while considering the peculiarities of such legal instrument, the attention will be addressed on the assessment on its effectiveness. The Regulation, indeed, having received lots of criticism, is in need of a profound revision. In this context, the present work will try to take into account the policy alternatives. In light of the failure of Regulation 868, which is to be seen as the expression of a unilateral and regional approach, there would seem to be the necessity for the aviation sector to reconsider the topic of subsidisation and unfair pricing practices in a more international oriented manner.

Keywords: non-EU airlines, aviation, subisidisation, unfair

Procedia PDF Downloads 344
13682 A Unified Approach to Support the Coordination of Usability Work in Agile Software Development

Authors: Fouad Abdulameer Salman, Aziz Bin Deraman, Masita Binti Abdul Jalil

Abstract:

Usability evaluation is essential for developing usable software systems, yet its integration within agile software development remains a challenging interdisciplinary endeavour. In this paper, the authors present a study to investigate obstacles of such integration from the management perspective. The study incorporates two methods, namely an online questionnaire survey and a series of interviews with participants that answered the questionnaire. Based on the obtained results, a unified approach is proposed for enabling coordinate the efforts of agile developers and usability engineers to produce usable software systems.

Keywords: usability, usability evaluation, software development process, usability management

Procedia PDF Downloads 458
13681 It Is Time to Perform Total Laparoscopic Hysterectomy (TLH) without the Use of Uterine Manipulator: Kamran's TLH

Authors: Ahmed Gendia, Waseem Kamran

Abstract:

Objective: Total Laparoscopic hysterectomy (TLH) remains a common approach among laparoscopic surgeons. However, this approach depends on the use of uterine manipulator to facilitate the surgery. Although many studies reported the effectiveness of TLH with uterine manipulator, only few reported TLH without the use of any uterine or vaginal manipulation. the aim of this report is to demonstrate our Technique (kamran's TLH) in performing TLH without the use of any uterine or vaginal manipulation in benign conditions and report our intra- and post-operative outcomes. Methodology : surgical technique will be demonstrated through a short video highlighting the easy and safe to learn surgical steps. Additionally, the data of 86 patients who underwent KTLH for benign condition were retrospectively analyzed. the data included intra- and postoperative finding and complications. Results : A total of 86 hysterectomies were performed utilizing the Kamran's TLH ( KTHL). Mean age was 52.2 (±11) years old and BMI was 28.2(±7). Mean operative time was 64.7(±27.9) minutes and estimated bloods loss was 46.2(±54.6) ml. No intraoperative complications were recorded and there was no conversion to open surgery. Only one patient required readmission and surgery for vaginal vault dehiscence. Conclusion & Significance: Uterine manipulator is a key component in performing laparoscopic hysterectomy. However, our approach demonstrated that TLH can be safely performed without the use of any uterine or vaginal manipulation.

Keywords: laparoscopic hystrectomy, TLH, uterine manipulator, surgery

Procedia PDF Downloads 155
13680 The Fragility of Sense: The Twofold Temporality of Embodiment and Its Role for Depression

Authors: Laura Bickel

Abstract:

This paper aims to investigate to what extent Merleau-Ponty’s philosophy of body memory serves as a viable resource for the enactive approach to cognitive science and its first-person experience-based research on ‘recurrent depressive disorder’ coded F33 in ICD-10. In pursuit of this goal, the analysis begins by revisiting the neuroreductive paradigm. This paradigm serves biological psychiatry to explain the condition of vital contact in terms of underlying neurophysiological mechanisms. It is demonstrated that the neuroreductive model cannot sufficiently account for the depressed person’s episodical withdrawal in causal terms. The analysis of the irregular loss of vital resonance requires integrating the body as the subject of experience and its phenomenological time. Then, it is shown that the enactive approach to depression as disordered sense-making is a promising alternative. The enactive model of perception implies that living beings do not register pre-existing meaning ‘out there’ but unfold ‘sense’ in their action-oriented response to the world. For the enactive approach, Husserl’s passive synthesis of inner time consciousness is fundamental for what becomes perceptually present for action. It seems intuitive to bring together the enactive approach to depression with the long-standing view in phenomenological psychopathology that explains the loss of vital contact by appealing to the disruption of the temporal structure of consciousness. However, this paper argues that the disruption of the temporal structure is not justified conceptually. Instead, one may integrate Merleau-Ponty’s concept of the past as the unconscious into the enactive approach to depression. From this perspective, the living being’s experiential and biological past inserts itself in the form of habit and bodily skills and ensures action-oriented responses to the environment. Finally, it is concluded that the depressed person’s withdrawal indicates the impairment of this application process. The person suffering from F33 cannot actualize sedimented meaning to respond to the valences and tasks of a given situation.

Keywords: depression, enactivism, neuroreductionsim, phenomenology, temporality

Procedia PDF Downloads 132
13679 Research and Application of the Three-Dimensional Visualization Geological Modeling of Mine

Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three dimensional visualization geological modeling of mine is the digital characterization of mineral deposit, and is one of the key technology of digital mine. The three-dimensional geological modeling is a technology that combines the geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in three-dimensional environment with computer technology, and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provided scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 70
13678 Interpretation and Clustering Framework for Analyzing ECG Survey Data

Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif

Abstract:

As Indo-Pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.

Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix

Procedia PDF Downloads 470
13677 Predicting the Success of Bank Telemarketing Using Artificial Neural Network

Authors: Mokrane Selma

Abstract:

The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.

Keywords: bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network

Procedia PDF Downloads 159
13676 Provision Electronic Management Requirements in Libyan Oil Companies

Authors: Hitham Yami

Abstract:

This study will focus primarily on assessing the availability requirements of the electronic management of oil companies in Libya, and the mean objectives of the research applying electronic management and make recommendations and steps to approach electronic management. There are limited research and statistical analysis to support electronic management in Libyan companies. The groundwork for the proposed approach is to develop independent variables and the dependent variables to be restructured after it Alntra side of the field and the side to get the data to achieve the desired results and solving the problem faced by the Libyan Oil Corporation. All these strategies are proposed to achieve the goal, and solving Libyan oil installations.

Keywords: oil company’s revenue, independent variables, electronic management, Libyan oil corporation

Procedia PDF Downloads 264
13675 The Design of Information Technology System for Traceability of Thailand’s Tubtimjun Roseapple

Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom, Sawanath Treesathon

Abstract:

As there are several countries which import agriculture product from Thailand, those countries demand Thailand to establish the traceability system. The traceability system is the tool to reduce the risk in the supply chain in a very effective way as it will help the stakeholder in the supply chain to identify the defect point which will reduce the cost of operation in the supply chain. This research is aimed to design the traceability system for Tubtimjun roseapple for exporting to China, and it is the qualitative research. The data was collected from the expert in the tuntimjun roseapple and fruit exporting industry, and the data was used to design the traceability system. The design of the tubtimjun roseapple traceability system was followed the theory of supply chain which starts from the upstream of the supply chain to the downstream of the supply chain to support the process and condition of the exporting which included the database designing, system architecture, user interface design and information technology of the traceability system.

Keywords: design information, technology system, traceability, tubtimjun roseapple

Procedia PDF Downloads 170
13674 Predicting Durability of Self Compacting Concrete Using Artificial Neural Network

Authors: R. Boudjelthia

Abstract:

The aim of this study is to determine the influence of mix composition of concrete as the content of water and cement, water–binder ratio, and the replacement of fly ash on the durability of self compacting concrete (SCC) by using artificial neural networks (ANNs). To achieve this, an ANNs model is developed to predict the durability of self compacting concrete which is expressed in terms of chloride ions permeability in accordance with ASTM C1202-97 or AASHTO T277. Database gathered from the literature for the training and testing the model. A sensitivity analysis was also conducted using the trained and tested ANN model to investigate the effect of fly ash on the durability of SCC. The results indicate that the developed model is reliable and accurate. the durability of SCC expressed in terms of total charge passed over a 6-h period can be significantly improved by using at least 25% fly ash as replacement of cement. This study show that artificial neural network have strong potentialas a feasible tool for predicting accurately the durability of SCC containing fly ash.

Keywords: artificial neural networks, durability, chloride ions permeability, self compacting concrete

Procedia PDF Downloads 379
13673 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets.

Keywords: mass transfer, multiple plunging jets, multi-linear regression, earth sciences

Procedia PDF Downloads 462
13672 Beyond the 'Human Rights and Development' Discourse: A Quest for a Right to Sustainable Development in International Human Rights Law

Authors: Roman Girma Teshome

Abstract:

The intersection between development and human rights has been the point of scholarly debate for a long time. Consequently, a number of principles, which extend from the right to development to the human rights-based approach to development, have been adopted to understand the dynamics between the two concepts. Despite these attempts, the exact relationship between development and human rights has not been fully discovered yet. However, the inevitable interdependence between the two notions and the idea that development efforts must be undertaken by giving due regard to human rights guarantees has gained momentum in recent years. On the other hand, the emergence of sustainable development as a widely accepted approach in development goals and policies makes this unsettled convergence even more complicated. The place of sustainable development in human rights law discourse and the role of the latter in ensuring the sustainability of development programs call for a systematic study. Hence, this article seeks to explore the relationship between development and human rights, particularly focusing on the place given to sustainable development principles in international human right law. It will further quest whether there is a right to sustainable development recognized therein. Accordingly, the article asserts that the principles of sustainable development are directly or indirectly recognized in various human rights instruments, which provides an affirmative response to the question raised hereinabove. This work, therefore, will make expeditions through international and regional human rights instruments as well as case laws and interpretative guidelines of human rights bodies to prove this hypothesis.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability

Procedia PDF Downloads 222
13671 Gut Metabolite Profiling of the Ethnic Groups from Assam, India

Authors: Madhusmita Dehingia, Supriyo Sen, Bhuwan Bhaskar, Tulsi Joishy, Mojibur R. Khan

Abstract:

Human gut microbes and their metabolites are important for maintaining homeostasis in the gut and are responsible for many metabolic and immune mediated diseases. In the present study, we determined the profiles of the gut metabolites of five different ethnic groups (Bodo, Tai-Phake, Karbi, Tea tribe and Tai-Aiton) of Assam. Fecal metabolite profiling of the 39 individuals belonging to the ethnic groups was carried out using Gas chromatography – Mass spectrometry (GC-MS), and comparison was performed among the tribes for common and unique metabolites produced within their gut. Partial Least Squares Discriminant Analysis (PLS-DA) of the metabolites suggested that the individuals grouped according to their ethnicity. Among the 66 abundant metabolites, 12 metabolites were found to be common among the five ethnic groups. Additionally, ethnicity wise some unique metabolites were also detected. For example, the tea tribe of Assam contained the tea components, Aniline and Benzoate more in their gut in comparison to others. Metabolites of microbial origin were also correlated with the already published metagenomic data of the same ethnic group and functional analysis were carried out based on human metabolome database.

Keywords: ethnicity, gut microbiota, GC-MS, metabolites

Procedia PDF Downloads 422
13670 Application of the Quantile Regression Approach to the Heterogeneity of the Fine Wine Prices

Authors: Charles-Olivier Amédée-Manesme, Benoit Faye, Eric Le Fur

Abstract:

In this paper, the heterogeneity of the Bordeaux Legends 50 wine market price segment is addressed. For this purpose, quantile regression is applied – with market segmentation based on wine bottle price quantile – and the hedonic price of wine attributes is computed for various price segments of the market. The approach is applied to a major privately held data set which consists of approximately 30,000 transactions over the 2003–2014 period. The findings suggest that the relative hedonic prices of several wine attributes differ significantly among deciles. In particular, the elasticity coefficient of the expert ratings shows strong variation among prices. If - as suggested in the literature - expert ratings have a positive influence on wine price on average, they have a clearly decreasing impact over the quantiles. Finally, the lower the wine price, the higher the potential for price appreciation over time. Other variables such as chateaux or vintage are also shown to vary across the distribution of wine prices. While enhancing our understanding of the complex market dynamics that underlie Bordeaux wines’ price, this research provides empirical evidence that the QR approach adequately captures heterogeneity among wine price ranges, which simultaneously applies to wine stock, vintage and auctions’ house.

Keywords: hedonics, market segmentation, quantile regression, heterogeneity, wine economics

Procedia PDF Downloads 340
13669 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning

Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie

Abstract:

This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.

Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network

Procedia PDF Downloads 143
13668 A Normalized Non-Stationary Wavelet Based Analysis Approach for a Computer Assisted Classification of Laryngoscopic High-Speed Video Recordings

Authors: Mona K. Fehling, Jakob Unger, Dietmar J. Hecker, Bernhard Schick, Joerg Lohscheller

Abstract:

Voice disorders origin from disturbances of the vibration patterns of the two vocal folds located within the human larynx. Consequently, the visual examination of vocal fold vibrations is an integral part within the clinical diagnostic process. For an objective analysis of the vocal fold vibration patterns, the two-dimensional vocal fold dynamics are captured during sustained phonation using an endoscopic high-speed camera. In this work, we present an approach allowing a fully automatic analysis of the high-speed video data including a computerized classification of healthy and pathological voices. The approach bases on a wavelet-based analysis of so-called phonovibrograms (PVG), which are extracted from the high-speed videos and comprise the entire two-dimensional vibration pattern of each vocal fold individually. Using a principal component analysis (PCA) strategy a low-dimensional feature set is computed from each phonovibrogram. From the PCA-space clinically relevant measures can be derived that quantify objectively vibration abnormalities. In the first part of the work it will be shown that, using a machine learning approach, the derived measures are suitable to distinguish automatically between healthy and pathological voices. Within the approach the formation of the PCA-space and consequently the extracted quantitative measures depend on the clinical data, which were used to compute the principle components. Therefore, in the second part of the work we proposed a strategy to achieve a normalization of the PCA-space by registering the PCA-space to a coordinate system using a set of synthetically generated vibration patterns. The results show that owing to the normalization step potential ambiguousness of the parameter space can be eliminated. The normalization further allows a direct comparison of research results, which bases on PCA-spaces obtained from different clinical subjects.

Keywords: Wavelet-based analysis, Multiscale product, normalization, computer assisted classification, high-speed laryngoscopy, vocal fold analysis, phonovibrogram

Procedia PDF Downloads 265
13667 Micro-Hydrokinetic for Remote Rural Electrification

Authors: S. P. Koko, K. Kusakana, H. J. Vermaak

Abstract:

Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).

Keywords: economic analysis, micro-hydrokinetic, rural-electrification, cost of energy (COE), net present cost (NPC)

Procedia PDF Downloads 432
13666 Teacher Trainers’ Motivation in Transformation of Teaching and Learning: The Fun Way Approach

Authors: Malathi Balakrishnan, Gananthan M. Nadarajah, Noraini Abd Rahim, Amy Wong On Mei

Abstract:

The purpose of the study is to investigate the level of intrinsic motivation of trainers after attending a Continuous Professional Development Course (CPD) organized by Institute of Teacher Training Malaysia titled, ‘Transformation of Teaching and Learning the Fun Way’. This study employed a survey whereby 96 teacher trainers were given Situational Intrinsic Motivational Scale (SIMS) Instruments. Confirmatory factor analysis was carried out to get validity of this instrument in local setting. Data were analyzed with SPSS for descriptive statistic. Semi structured interviews were also administrated to collect qualitative data on participants experiences after participating in the two-day fun-filled program. The findings showed that the participants’ level of intrinsic motivation showed higher mean than the amotivation. The results revealed that the intrinsic motivation mean is 19.0 followed by Identified regulation with a mean of 17.4, external regulation 9.7 and amotivation 6.9. The interview data also revealed that the participants were motivated after attending this training program. It can be concluded that this program, which was organized by Institute of Teacher Training Malaysia, was able to enhance participants’ level of motivation. Self-Determination Theory (SDT) as a multidimensional approach to motivation was utilized. Therefore, teacher trainers may have more success using the ‘The fun way approach’ in conducting training program in future.

Keywords: teaching and learning, motivation, teacher trainer, SDT

Procedia PDF Downloads 461
13665 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains

Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.

Keywords: binary vector quantization (BVQ), DCT coefficients, face recognition, local binary patterns (LBP)

Procedia PDF Downloads 349
13664 Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques

Authors: Bum-Soo Kim, Jin-Uk Kim

Abstract:

In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result.

Keywords: boundary image matching, indexing, partial denoising, time-series matching

Procedia PDF Downloads 137
13663 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases

Authors: Sergey Ermolin, Olga Ermolin

Abstract:

A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.

Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking

Procedia PDF Downloads 338
13662 Closest Possible Neighbor of a Different Class: Explaining a Model Using a Neighbor Migrating Generator

Authors: Hassan Eshkiki, Benjamin Mora

Abstract:

The Neighbor Migrating Generator is a simple and efficient approach to finding the closest potential neighbor(s) with a different label for a given instance and so without the need to calibrate any kernel settings at all. This allows determining and explaining the most important features that will influence an AI model. It can be used to either migrate a specific sample to the class decision boundary of the original model within a close neighborhood of that sample or identify global features that can help localising neighbor classes. The proposed technique works by minimizing a loss function that is divided into two components which are independently weighted according to three parameters α, β, and ω, α being self-adjusting. Results show that this approach is superior to past techniques when detecting the smallest changes in the feature space and may also point out issues in models like over-fitting.

Keywords: explainable AI, EX AI, feature importance, counterfactual explanations

Procedia PDF Downloads 192
13661 Analysis of ECGs Survey Data by Applying Clustering Algorithm

Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif

Abstract:

As Indo-pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring the prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.

Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix

Procedia PDF Downloads 351
13660 Reliability Analysis of Computer Centre at Yobe State University Nigeria under Different Repair Policies

Authors: Vijay Vir Singh

Abstract:

In this paper, we focus on the reliability and performance analysis of Computer Centre (CC) at Yobe State University, Damaturu, Nigeria. The CC consists of three servers: one database mail server, one redundant and one for sharing with the client computers in the CC (called as local server). Observing the different possibilities of functioning of the CC, analysis has been done to evaluate the various reliability characteristics of the system. The system can completely fail due to failure of router, redundant server before repairing the mail server, and switch failure. The system can also partially fail when local server fails. The system can also fail completely due to a cooling failure, electricity failure or some natural calamity like earthquake, fire etc. All the failure rates are assumed to be constant while repair follows two types of distributions: general and Gumbel-Hougaard family copula.

Keywords: reliability, availability Gumbel-Hougaard family copula, MTTF, internet data centre

Procedia PDF Downloads 461
13659 Assisting Dating of Greek Papyri Images with Deep Learning

Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou

Abstract:

Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.

Keywords: image classification, papyri images, dating

Procedia PDF Downloads 78
13658 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 73
13657 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study

Authors: Priya Kedia, Kiranmoy Das

Abstract:

There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.

Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution

Procedia PDF Downloads 156
13656 A Digital Health Approach: Using Electronic Health Records to Evaluate the Cost Benefit of Early Diagnosis of Alpha-1 Antitrypsin Deficiency in the UK

Authors: Sneha Shankar, Orlando Buendia, Will Evans

Abstract:

Alpha-1 antitrypsin deficiency (AATD) is a rare, genetic, and multisystemic condition. Underdiagnosis is common, leading to chronic pulmonary and hepatic complications, increased resource utilization, and additional costs to the healthcare system. Currently, there is limited evidence of the direct medical costs of AATD diagnosis in the UK. This study explores the economic impact of AATD patients during the 3 years before diagnosis and to identify the major cost drivers using primary and secondary care electronic health record (EHR) data. The 3 years before diagnosis time period was chosen based on the ability of our tool to identify patients earlier. The AATD algorithm was created using published disease criteria and applied to 148 known AATD patients’ EHR found in a primary care database of 936,148 patients (413,674 Biobank and 501,188 in a single primary care locality). Among 148 patients, 9 patients were flagged earlier by the tool and, on average, could save 3 (1-6) years per patient. We analysed 101 of the 148 AATD patients’ primary care journey and 20 patients’ Hospital Episode Statistics (HES) data, all of whom had at least 3 years of clinical history in their records before diagnosis. The codes related to laboratory tests, clinical visits, referrals, hospitalization days, day case, and inpatient admissions attributable to AATD were examined in this 3-year period before diagnosis. The average cost per patient was calculated, and the direct medical costs were modelled based on the mean prevalence of 100 AATD patients in a 500,000 population. A deterministic sensitivity analysis (DSA) of 20% was performed to determine the major cost drivers. Cost data was obtained from the NHS National tariff 2020/21, National Schedule of NHS Costs 2018/19, PSSRU 2018/19, and private care tariff. The total direct medical cost of one hundred AATD patients three years before diagnosis in primary and secondary care in the UK was £3,556,489, with an average direct cost per patient of £35,565. A vast majority of this total direct cost (95%) was associated with inpatient admissions (£3,378,229). The DSA determined that the costs associated with tier-2 laboratory tests and inpatient admissions were the greatest contributors to direct costs in primary and secondary care, respectively. This retrospective study shows the role of EHRs in calculating direct medical costs and the potential benefit of new technologies for the early identification of patients with AATD to reduce the economic burden in primary and secondary care in the UK.

Keywords: alpha-1 antitrypsin deficiency, costs, digital health, early diagnosis

Procedia PDF Downloads 167
13655 BIM Model and Virtual Prototyping in Construction Management

Authors: Samar Alkindy

Abstract:

Purpose: The BIM model has been used to support the planning of different construction projects in the industry by showing the different stages of the construction process. The model has been instrumental in identifying some of the common errors in the construction process through the spatial arrangement. The continuous use of the BIM model in the construction industry has resulted in various radical changes such as virtual prototyping. Construction virtual prototyping is a highly advanced technology that incorporates a BIM model with realistic graphical simulations, and facilitates the simulation of the project before a product is built in the factory. The paper presents virtual prototyping in the construction industry by examining its application, challenges and benefits to a construction project. Methodology approach: A case study was conducted for this study in four major construction projects, which incorporate virtual construction prototyping in several stages of the construction project. Furthermore, there was the administration of interviews with the project manager and engineer and the planning manager. Findings: Data collected from the methodological approach shows a positive response for virtual construction prototyping in construction, especially concerning communication and visualization. Furthermore, the use of virtual prototyping has increased collaboration and efficiency between construction experts handling a project. During the planning stage, virtual prototyping has increased accuracy, reduced planning time, and reduced the amount of rework during the implementation stage. Irrespective of virtual prototyping being a new concept in the construction industry, the findings outline that the approach will benefit the management of construction projects.

Keywords: construction operations, construction planning, process simulation, virtual prototyping

Procedia PDF Downloads 231