Search results for: coupled inductors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1547

Search results for: coupled inductors

47 Virulence Factors and Drug Resistance of Enterococci Species Isolated from the Intensive Care Units of Assiut University Hospitals, Egypt

Authors: Nahla Elsherbiny, Ahmed Ahmed, Hamada Mohammed, Mohamed Ali

Abstract:

Background: The enterococci may be considered as opportunistic agents particularly in immunocompromised patients. It is one of the top three pathogens causing many healthcare associated infections (HAIs). Resistance to several commonly used antimicrobial agents is a remarkable characteristic of most species which may carry various genes contributing to virulence. Objectives: to determine the prevalence of enterococci species in different intensive care units (ICUs) causing health care-associated infections (HAIs), intestinal carriage and environmental contamination. Also, to study the antimicrobial susceptibility pattern of the isolates with special reference to vancomycin resistance. In addition to phenotypic and genotypic detection of gelatinase, cytolysin and biofilm formation among isolates. Patients and Methods: This study was carried out in the infection control laboratory at Assiut University Hospitals over a period of one year. Clinical samples were collected from 285 patients with various (HAIs) acquired after admission to different ICUs. Rectal swabs were taken from 14 cases for detection of enterococci carriage. In addition, 1377 environmental samples were collected from the surroundings of the patients. Identification was done by conventional bacteriological methods and confirmed by analytical profile index (API). Antimicrobial sensitivity testing was performed by Kirby Bauer disc diffusion method and detection of vancomycin resistance was done by agar screen method. For the isolates, phenotypic detection of cytolysin, gelatinase production and detection of biofilm by tube method, Congo red method and microtiter plate. We performed polymerase chain reaction (PCR) for detection of some virulence genes (gelE, cylA, vanA, vanB and esp). Results: Enterococci caused 10.5% of the HAIs. Respiratory tract infection was the predominant type (86.7%). The commonest species were E.gallinarum (36.7%), E.casseliflavus (30%), E.faecalis (30%), and E.durans (3.4 %). Vancomycin resistance was detected in a total of 40% (12/30) of those isolates. The risk factors associated with acquiring vancomycin resistant enterococci (VRE) were immune suppression (P= 0.031) and artificial feeding (P= 0.008). For the rectal swabs, enterococci species were detected in 71.4% of samples with the predominance of E. casseliflavus (50%). Most of the isolates were vancomycin resistant (70%). Out of a total 1377 environmental samples, 577 (42%) samples were contaminated with different microorganisms. Enterococci were detected in 1.7% (10/577) of total contaminated samples, 50% of which were vancomycin resistant. All isolates were resistant to penicillin, ampicillin, oxacillin, ciprofloxacin, amikacin, erythromycin, clindamycin and trimethoprim-sulfamethaxazole. For the remaining antibiotics, variable percentages of resistance were reported. Cytolysin and gelatinase were detected phenotypically in 16% and 48 % of the isolates respectively. The microtiter plate method showed the highest percentages of detection of biofilm among all isolated species (100%). The studied virulence genes gelE, esp, vanA and vanB were detected in 62%, 12%, 2% and 12% respectively, while cylA gene was not detected in any isolates. Conclusions: A significant percentage of enterococci was isolated from patients and environments in the ICUs. Many virulence factors were detected phenotypically and genotypically among isolates. The high percentage of resistance, coupled with the risk of cross transmission to other patients make enterococci infections a significant infection control issue in hospitals.

Keywords: antimicrobial resistance, enterococci, ICUs, virulence factors

Procedia PDF Downloads 285
46 Overlaps and Intersections: An Alternative Look at Choreography

Authors: Ashlie Latiolais

Abstract:

Architecture, as a discipline, is on a trajectory of extension beyond the boundaries of buildings and, more increasingly, is coupled with research that connects to alternative and typically disjointed disciplines. A “both/and” approach and (expanded) definition of architecture, as depicted here, expands the margins that contain the profession. Figuratively, architecture is a series of edges, events, and occurrences that establishes a choreography or stage by which humanity exists. The way in which architecture controls and suggests the movement through these spaces, being within a landscape, city, or building, can be viewed as a datum by which the “dance” of everyday life occurs. This submission views the realm of architecture through the lens of movement and dance as a cross-fertilizer of collaboration, tectonic, and spatial geometry investigations. “Designing on digital programs puts architects at a distance from the spaces they imagine. While this has obvious advantages, it also means that they lose the lived, embodied experience of feeling what is needed in space—meaning that some design ideas that work in theory ultimately fail in practice.” By studying the body in motion through real-time performance, a more holistic understanding of architectural space surfaces and new prospects for theoretical teaching pedagogies emerge. The atypical intersection rethinks how architecture is considered, created, and tested, similar to how “dance artists often do this by thinking through the body, opening pathways and possibilities that might not otherwise be accessible” –this is the essence of this poster submission as explained through unFOLDED, a creative performance work. A new languageismaterialized through unFOLDED, a dynamic occupiable installation by which architecture is investigated through dance, movement, and body analysis. The entry unfolds a collaboration of an architect, dance choreographer, musicians, video artist, and lighting designers to re-create one of the first documented avant-garde performing arts collaborations (Matisse, Satie, Massine, Picasso) from the Ballet Russes in 1917, entitled Parade. Architecturally, this interdisciplinary project orients and suggests motion through structure, tectonic, lightness, darkness, and shadow as it questions the navigation of the dark space (stage) surrounding the installation. Artificial light via theatrical lighting and video graphics brought the blank canvas to life – where the sensitive mix of musicality coordinated with the structure’s movement sequencing was certainly a challenge. The upstage light from the video projections created both flickered contextual imagery and shadowed figures. When the dancers were either upstage or downstage of the structure, both silhouetted figures and revealed bodies are experienced as dancer-controlled installation manipulations occurred throughout the performance. The experimental performance, through structure, prompted moving (dancing) bodies in space, where the architecture served as a key component to the choreography itself. The tectonic of the delicate steel structure allowed for the dancers to interact with the installation, which created a variety of spatial conditions – the contained box of three-dimensional space, to a wall, and various abstracted geometries in between. The development of this research unveils the new role of an Architect as a Choreographer of the built environment.

Keywords: dance, architecture, choreography, installation, architect, choreographer, space

Procedia PDF Downloads 91
45 Green Building Risks: Limits on Environmental and Health Quality Metrics for Contractors

Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Mounica Guturu

Abstract:

The United Stated (U.S.) populous spends the majority of their time indoors in spaces where building codes and voluntary sustainability standards provide clear Indoor Environmental Quality (IEQ) metrics. The existing sustainable building standards and codes are aimed towards improving IEQ, health of occupants, and reducing the negative impacts of buildings on the environment. While they address the post-occupancy stage of buildings, there are fewer standards on the pre-occupancy stage thereby placing a large labor population in environments much less regulated. Construction personnel are often exposed to a variety of uncomfortable and unhealthy elements while on construction sites, primarily thermal, visual, acoustic, and air quality related. Construction site power generators, equipment, and machinery generate on average 9 decibels (dBA) above the U.S. OSHA regulations, creating uncomfortable noise levels. Research has shown that frequent exposure to high noise levels leads to chronic physiological issues and increases noise induced stress, yet beyond OSHA no other metric focuses directly on the impacts of noise on contractors’ well-being. Research has also associated natural light with higher productivity and attention span, and lower cases of fatigue in construction workers. However, daylight is not always available as construction workers often perform tasks in cramped spaces, dark areas, or at nighttime. In these instances, the use of artificial light is necessary, yet lighting standards for use during lengthy tasks and arduous activities is not specified. Additionally, ambient air, contaminants, and material off-gassing expelled at construction sites are one of the causes of serious health effects in construction workers. Coupled with extreme hot and cold temperatures for different climate zones, health and productivity can be seriously compromised. This research evaluates the impact of existing green building metrics on construction and risk management, by analyzing two codes and nine standards including LEED, WELL, and BREAM. These metrics were chosen based on the relevance to the U.S. construction industry. This research determined that less than 20% of the sustainability context within the standards and codes (texts) are related to the pre-occupancy building sector. The research also investigated the impact of construction personnel’s health and well-being on construction management through two surveys of project managers and on-site contractors’ perception of their work environment on productivity. To fully understand the risks of limited Environmental and Health Quality metrics for contractors (EHQ) this research evaluated the connection between EHQ factors such as inefficient lighting, on construction workers and investigated the correlation between various site coping strategies for comfort and productivity. Outcomes from this research are three-pronged. The first includes fostering a discussion about the existing conditions of EQH elements, i.e. thermal, lighting, ergonomic, acoustic, and air quality on the construction labor force. The second identifies gaps in sustainability standards and codes during the pre-occupancy stage of building construction from ground-breaking to substantial completion. The third identifies opportunities for improvements and mitigation strategies to improve EQH such as increased monitoring of effects on productivity and health of contractors and increased inclusion of the pre-occupancy stage in green building standards.

Keywords: construction contractors, health and well-being, environmental quality, risk management

Procedia PDF Downloads 132
44 (In)Visibility of Afghan Migrants in Turkey's Informal Labour Market

Authors: Rezzan Alagoz, Seda Gonul

Abstract:

This study examines the migration, work, and social life experiences of undocumented Afghan migrants employed as shepherds in Igdır. Despite their high visibility in informal labor markets, their undocumented status renders them invisible in everyday life. Their invisibility in both official status and social life, coupled with their vulnerability to exploitation in the labor market, renders them particularly susceptible to marginalization. This research employs the concept of the subaltern to examine the characteristics of Afghan migrants as unrepresented, unheard, and invisible. It also analyzes their experiences in the labor market based on the concept of biopolitics. Undocumented Afghan migrants are engaged in labor-intensive occupations such as shepherding, thereby addressing an essential gap in the workforce that local workers are reluctant to undertake. The reliance of employers on the labor of these employees is significant; however, the undocumented status of these workers leaves them vulnerable to exploitation. In addition to serving as a critical source of low-cost labor, these individuals are susceptible to exploitation in the form of non-payment for their work, extended and intensive work schedules, and, on some occasions, physical violence. In the event of a conflict between shepherds and their employers, undocumented workers are unable to seek legal recourse, which serves to reinforce their marginalized status further. The predominant practice among Afghan shepherds is to utilize the workplace as a place of residence. In the context of shepherding work, the prevailing conditions at the workplace frequently pose a significant threat to the health and well-being of the individuals engaged in such activities. As a result of their lack of official status, these individuals lack access to basic services such as healthcare, which has the consequence of rendering them invisible in public and institutional spaces. Attempts to engage with public systems carry the risk of deportation, reinforcing the already fragile and precarious nature of their existence. This study examines the socio-political implications of undocumented status and addresses these experiences in the context of national and international migration policies. In line with Agamben's concept of the "state of exception" undocumented migrants exist in a state where fundamental rights are effectively nullified, and they are rendered outside the protection of the law. This exclusion is further exacerbated by the intersection of economic exploitation, political and physical invisibility, and limited access to basic services, which collectively contribute to a cycle of vulnerability. This research is based on in-depth interviews with 18 Afghan shepherds in Igdir province in August 2024. The research contributes to the ongoing critical debates on migration, labor exploitation, and biopolitics by focusing on the experiences of Afghan shepherds. The article examines how undocumented migrants maneuver between visibility and invisibility within the context of a system that relies on exploitation in the labor market and migration policies. The research findings demonstrate the necessity for policy intervention to address the structural exclusion of undocumented Afghan migrants from national and international protection systems, as well as their indispensable role in local economies.

Keywords: Afghan migrants, biopolitics, border economy, informal labour market, migration policy, sheepherding, Subaltern

Procedia PDF Downloads 15
43 In vivo Evaluation of LAB Probiotic Potential with the Zebrafish Animal Model

Authors: Iñaki Iturria, Pasquale Russo, Montserrat Nacher-Vázquez, Giuseppe Spano, Paloma López, Miguel Angel Pardo

Abstract:

Introduction: It is known that some Lactic Acid Bacteria (LAB) present an interesting probiotic effect. Probiotic bacteria stimulate host resistance to microbial pathogens and thereby aid in immune response, and modulate the host's immune responses to antigens with a potential to down-regulate hypersensitivity reactions. Therefore, probiotic therapy is valuable against intestinal infections and may be beneficial in the treatment of Inflammatory Bowel Disease (IBD). Several in vitro tests are available to evaluate the probiotic potential of a LAB strain. However, an in vivo model is required to understand the interaction between the host immune system and the bacteria. During the last few years, zebrafish (Danio rerio) has gained interest as a promising vertebrate model in this field. This organism has been extensively used to study the interaction between the host and the microbiota, as well as the host immune response under several microbial infections. In this work, we report on the use of the zebrafish model to investigate in vivo the colonizing ability and the immunomodulatory effect of probiotic LAB. Methods: Lactobacillus strains belonging to different LAB species were fluorescently tagged and used to colonize germ-free zebrafish larvae gastrointestinal tract (GIT). Some of the strains had a well-documented probiotic effect (L. acidophilus LA5); while others presented an exopolysaccharide (EPS) producing phenotype, thus allowing evaluating the influence of EPS in the colonization and immunomodulatory effect. Bacteria colonization was monitored for 72 h by direct observation in real time using fluorescent microscopy. CFU count per larva was also evaluated at different times. The immunomodulatory effect was assessed analysing the differential expression of several innate immune system genes (MyD88, NF-κB, Tlr4, Il1β and Il10) by qRT- PCR. The anti-inflammatory effect was evaluated using a chemical enterocolitis zebrafish model. The protective effect against a pathogen was also studied. To that end, a challenge test was developed using a fluorescently tagged pathogen (Vibrio anguillarum-GFP+). The progression of the infection was monitored up to 3 days using a fluorescent stereomicroscope. Mortality rates and CFU counts were also registered. Results and conclusions: Larvae exposed to EPS-producing bacteria showed a higher fluorescence and CFU count than those colonized with no-EPS phenotype LAB. In the same way, qRT-PCR results revealed an immunomodulatory effect on the host after the administration of the strains with probiotic activity. A downregulation of proinflammatory cytoquines as well as other cellular mediators of inflammation was observed. The anti-inflammatory effect was found to be particularly marked following exposure to LA% strain, as well as EPS producing strains. Furthermore, the challenge test revealed a protective effect of probiotic administration. As a matter of fact, larvae fed with probiotics showed a decrease in the mortality rate ranging from 20 to 35%. Discussion: In this work, we developed a promising model, based on the use of gnotobiotic zebrafish coupled with a bacterial fluorescent tagging in order to evaluate the probiotic potential of different LAB strains. We have successfully used this system to monitor in real time the colonization and persistence of exogenous LAB within the gut of zebrafish larvae, to evaluate their immunomodulatory effect and for in vivo competition assays. This approach could bring further insights into the complex microbial-host interactions at intestinal level.

Keywords: gnotobiotic, immune system, lactic acid bacteria, probiotics, zebrafish

Procedia PDF Downloads 328
42 Integration of Building Information Modeling Framework for 4D Constructability Review and Clash Detection Management of a Sewage Treatment Plant

Authors: Malla Vijayeta, Y. Vijaya Kumar, N. Ramakrishna Raju, K. Satyanarayana

Abstract:

Global AEC (architecture, engineering, and construction) industry has been coined as one of the most resistive domains in embracing technology. Although this digital era has been inundated with software tools like CAD, STADD, CANDY, Microsoft Project, Primavera etc. the key stakeholders have been working in siloes and processes remain fragmented. Unlike the yesteryears’ simpler project delivery methods, the current projects are of fast-track, complex, risky, multidisciplinary, stakeholder’s influential, statutorily regulative etc. pose extensive bottlenecks in preventing timely completion of projects. At this juncture, a paradigm shift surfaced in construction industry, and Building Information Modeling, aka BIM, has been a panacea to bolster the multidisciplinary teams’ cooperative and collaborative work leading to productive, sustainable and leaner project outcome. Building information modeling has been integrative, stakeholder engaging and centralized approach in providing a common platform of communication. A common misconception that BIM can be used for building/high rise projects in Indian Construction Industry, while this paper discusses of the implementation of BIM processes/methodologies in water and waste water industry. It elucidates about BIM 4D planning and constructability reviews of a Sewage Treatment Plant in India. Conventional construction planning and logistics management involves a blend of experience coupled with imagination. Even though the excerpts or judgments or lessons learnt gained from veterans might be predictive and helpful, but the uncertainty factor persists. This paper shall delve about the case study of real time implementation of BIM 4D planning protocols for one of the Sewage Treatment Plant of Dravyavati River Rejuvenation Project in India and develops a Time Liner to identify logistics planning and clash detection. With this BIM processes, we shall find that there will be significant reduction of duplication of tasks and reworks. Also another benefit achieved will be better visualization and workarounds during conception stage and enables for early involvement of the stakeholders in the Project Life cycle of Sewage Treatment Plant construction. Moreover, we have also taken an opinion poll of the benefits accrued utilizing BIM processes versus traditional paper based communication like 2D and 3D CAD tools. Thus this paper concludes with BIM framework for Sewage Treatment Plant construction which will achieve optimal construction co-ordination advantages like 4D construction sequencing, interference checking, clash detection checking and resolutions by primary engagement of all key stakeholders thereby identifying potential risks and subsequent creation of risk response strategies. However, certain hiccups like hesitancy in adoption of BIM technology by naïve users and availability of proficient BIM trainers in India poses a phenomenal impediment. Hence the nurture of BIM processes from conception, construction and till commissioning, operation and maintenance along with deconstruction of a project’s life cycle is highly essential for Indian Construction Industry in this digital era.

Keywords: integrated BIM workflow, 4D planning with BIM, building information modeling, clash detection and visualization, constructability reviews, project life cycle

Procedia PDF Downloads 122
41 Digitization and Morphometric Characterization of Botanical Collection of Indian Arid Zones as Informatics Initiatives Addressing Conservation Issues in Climate Change Scenario

Authors: Dipankar Saha, J. P. Singh, C. B. Pandey

Abstract:

Indian Thar desert being the seventh largest in the world is the main hot sand desert occupies nearly 385,000km2 and about 9% of the area of the country harbours several species likely the flora of 682 species (63 introduced species) belonging to 352 genera and 87 families. The degree of endemism of plant species in the Thar desert is 6.4 percent, which is relatively higher than the degree of endemism in the Sahara desert which is very significant for the conservationist to envisage. The advent and development of computer technology for digitization and data base management coupled with the rapidly increasing importance of biodiversity conservation resulted in the invention of biodiversity informatics as discipline of basic sciences with multiple applications. Aichi Target 19 as an outcome of Convention of Biological Diversity (CBD) specifically mandates the development of an advanced and shared biodiversity knowledge base. Information on species distributions in space is the crux of effective management of biodiversity in the rapidly changing world. The efficiency of biodiversity management is being increased rapidly by various stakeholders like researchers, policymakers, and funding agencies with the knowledge and application of biodiversity informatics. Herbarium specimens being a vital repository for biodiversity conservation especially in climate change scenario the digitization process usually aims to improve access and to preserve delicate specimens and in doing so creating large sets of images as a part of the existing repository as arid plant information facility for long-term future usage. As the leaf characters are important for describing taxa and distinguishing between them and they can be measured from herbarium specimens as well. As a part of this activity, laminar characterization (leaves being the most important characters in assessing climate change impact) initially resulted in classification of more than thousands collections belonging to ten families like Acanthaceae, Aizoaceae, Amaranthaceae, Asclepiadaceae, Anacardeaceae, Apocynaceae, Asteraceae, Aristolochiaceae, Berseraceae and Bignoniaceae etc. Taxonomic diversity indices has also been worked out being one of the important domain of biodiversity informatics approaches. The digitization process also encompasses workflows which incorporate automated systems to enable us to expand and speed up the digitisation process. The digitisation workflows used to be on a modular system which has the potential to be scaled up. As they are being developed with a geo-referencing tool and additional quality control elements and finally placing specimen images and data into a fully searchable, web-accessible database. Our effort in this paper is to elucidate the role of BIs, present effort of database development of the existing botanical collection of institute repository. This effort is expected to be considered as a part of various global initiatives having an effective biodiversity information facility. This will enable access to plant biodiversity data that are fit-for-use by scientists and decision makers working on biodiversity conservation and sustainable development in the region and iso-climatic situation of the world.

Keywords: biodiversity informatics, climate change, digitization, herbarium, laminar characters, web accessible interface

Procedia PDF Downloads 229
40 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells

Authors: Salvatore Brischetto, Domenico Cesare

Abstract:

Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.

Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach

Procedia PDF Downloads 67
39 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets

Authors: Rabindranath Bag, Surjeet Singh

Abstract:

Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.

Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique

Procedia PDF Downloads 274
38 Preparedness of Health System in Providing Continuous Health Care: A Case Study From Sri Lanka

Authors: Samantha Ramachandra, Avanthi Rupasinghe

Abstract:

Demographic transition from lower to higher percentage of elderly population eventually coupled with epidemiological transition from communicable to non-communicable diseases (NCD). Higher percentage of NCD overload the health system as NCD survivors claims continuous health care. The demands are challenging to a resource constrained setting but reorganizing the system may find solutions. The study focused on the facilities available and their utilization at outpatient department (OPD) setting of the public hospitals of Sri Lanka for continuous medical care. This will help in identifying steps of reorganizing the system to provide better care with the maximum utilization of available facilities. The study was conducted as a situation analysis with secondary data at hospital planning units. Variable were identified according to the world health organization (WHO) recommendation on continuous health care for elders in “age-friendly primary health care toolkit”. Data were collected from secondary and tertiary care hospitals of Sri Lanka where most of the continuous care services are available. Out of 58 secondary and tertiary care hospitals, 16 were included in the study to represent each hospital categories. Average number of patient attending for episodic treatment at OPD and Clinical follow-up of chronic conditions shows vast disparity according to the category of the hospital ranging from 3750 – 800 per day at OPD and 1250 – 200 per clinic session. Average time spent per person at OPD session is low, range from 1.54 - 2.28 minutes, the time was increasing as the hospital category goes down. 93.7% hospitals had special arrangements for providing acute care on chronic conditions such as catheter, feeding tube and wound care. 25% hospitals had special clinics for elders, 81.2% hospitals had healthy lifestyle clinics (HLC), 75% hospitals had physical rehabilitation facilities and 68.8% hospitals had facilities for counselling. Elderly clinics and HLC were mostly available at lower grade hospitals where as rehabilitation and counselling facilities were mostly available at bigger hospitals. HLC are providing health education for both patients and their family members, refer patients for screening of complication but not provide medical examinations, investigations or treatments even though they operate in the hospital setting. Physical rehabilitation is basically offered for patients with rheumatological conditions but utilization of centers for injury rehabilitation and rehabilitation of survivors following major illness such as myocardial infarctions, stroke, cancer is not satisfactory (12.5%). Human Resource distribution within hospital shows vast disparity and there are 103 physiotherapists in the biggest hospital where only 36 physiotherapists available at the next level hospital. Counselling facilities also provided mainly for the patient with psychological conditions (100%) but they were not providing counselling for newly diagnosed patients with major illnesses (0%). According to results, most of the public-sector hospitals in Sri Lanka have basic facilities required in providing continuous care but the utilization of services need more focus. Hospital administration or the government need to have initial steps in proper utilization of them in improving continuous health care incorporating team approach of rehabilitation. The author wishes to acknowledge that this paper was made possible by the support and guidance given by the “Australia Awards Fellowships Program for Sri Lanka – 2017,” which was funded by the Department of Foreign Affairs and Trade, Australia, and co-hosted by Monash University, Australia and the Sri Lanka Institute of Development Administration.

Keywords: continuous care, outpatient department, non communicable diseases, rehabilitation

Procedia PDF Downloads 167
37 Lack of Regulation Leads to Complexity: A Case Study of the Free Range Chicken Meat Sector in the Western Cape, South Africa

Authors: A. Coetzee, C. F. Kelly, E. Even-Zahav

Abstract:

Dominant approaches to livestock production are harmful to the environment, human health and animal welfare, yet global meat consumption is rising. Sustainable alternative production approaches are therefore urgently required, and ‘free range’ is the main alternative for chicken meat offered in South Africa (and globally). Although the South African Poultry Association provides non-binding guidelines, there is a lack of formal definition and regulation of free range chicken production, meaning it is unclear what this alternative entails and if it is consistently practised (a trend observed globally). The objective of this exploratory qualitative case study is therefore to investigate who and what determines free range chicken. The case study, conducted from a social constructivist worldview, uses semi-structured interviews, photographs and document analysis to collect data. Interviews are conducted with those involved with bringing free range chicken to the market - farmers, chefs, retailers, and regulators. Data is analysed using thematic analysis to establish dominant patterns in the data. The five major themes identified (based on prevalence in data and on achieving the research objective) are: 1) free range means a bird reared with good animal welfare in mind, 2) free range means quality meat, 3) free range means a profitable business, 4) free range is determined by decision makers or by access to markets, and 5) free range is coupled with concerns about the lack of regulation. Unpacking the findings in the context of the literature reveals who and what determines free range. The research uncovers wide-ranging interpretations of ‘free range’, driven by the absence of formal regulation for free range chicken practices and the lack of independent private certification. This means that the term ‘free range’ is socially constructed, thus varied and complex. The case study also shows that whether chicken meat is free range is generally determined by those who have access to markets. Large retailers claim adherence to the internationally recognised Five Freedoms, also include in the South African Poultry Association Code of Good Practice, which others in the sector say are too broad to be meaningful. Producers describe animal welfare concerns as the main driver for how they practice/view free range production, yet these interpretations vary. An additional driver is a focus on human health, which participants achieve mainly through the use of antibiotic-free feed, resulting in what participants regard as higher quality meat. The participants are also strongly driven by business imperatives, with most stating that free range chicken should carry a higher price than conventionally-reared chicken due to increased production costs. Recommendations from this study focus on, inter alia, a need to understand consumers’ perspectives on free range chicken, given that those in the sector claim they are responding to consumer demand, and conducting environmental research such as life cycle assessment studies to establish the true (environmental) sustainability of free range production. At present, it seems the sector mostly responds to social sustainability: human health and animal welfare.

Keywords: chicken meat production, free range, socially constructed, sustainability

Procedia PDF Downloads 157
36 Erectile Dysfunction in A Middle Aged Man 6 Years After Bariatric Surgery: A Case Report

Authors: Thaminda Liyanage, Chamila Shamika Kurukulasuriya

Abstract:

Introduction: Morbid obesity has been successfully treated with bariatric surgery for over 60 years. Although operative procedures have improved and associated complications have reduced substantially, surgery still carries the risk of post-operative malabsorption, malnutrition and a range of gastrointestinal disorders. Overweight by itself can impair libido in both sexes and cause erectile dysfunction in males by inducing a state of hypogonadotropic hypogonadism, proportional to the degree of obesity. Impact of weight reduction on libido and sexual activity remains controversial, however it is broadly accepted that weight loss improves sexual drive. Zinc deficiency, subsequent to malabsorption, may lead to impaired testosterone synthesis in men while excessive and/or rapid weight loss in females may result in reversible amenorrhoea leading to sub-fertility. Methods: We describe a 37 year old male, 6 years post Roux-en-Y gastric bypass surgery, who presented with erectile dysfunction, loss of libido, worsening fatigue and generalized weakness for 4 months. He also complained of constipation and frequent muscle cramps but denied having headache, vomiting or visual disturbances. Patient had lost 38 kg of body weight post gastric bypass surgery over four years {135kg (BMI 42.6 kg/m2) to 97 kg (BMI 30.6 kg/m2)} and the weight had been stable for past two years. He had no recognised co-morbidities at the time of the surgery and noted marked improvement in general wellbeing, physical fitness and psychological confident post surgery, up until four months before presentation. Clinical examination revealed dry pale skin with normal body hair distribution, no thyroid nodules or goitre, normal size testicles and normal neurological examination with no visual field defects or diplopia. He had low serum testosterone, follicular stimulating hormone (FSH), luteinizing hormone (LH), T3, T4, thyroid stimulating hormone (TSH), insulin like growth factor 1 (IGF-1) and 24-hour urine cortisol levels. Serum cortisol demonstrated an appropriate rise to ACTH stimulation test but growth hormone (GH) failed increase on insulin tolerance test. Other biochemical and haematological studies were normal, except for low zinc and folate with minimally raised liver enzymes. MRI scan of the head confirmed a solid pituitary mass with no mass effect on optic chiasm. Results: In this patient clinical, biochemical and radiological findings were consistent with anterior pituitary dysfunction. However, there were no features of raised intracranial pressure or neurological compromise. He was commenced on appropriate home replacement therapy and referred for neurosurgical evaluation. Patient reported marked improvement in his symptoms, specially libido and erectile dysfunction, on subsequent follow up visits. Conclusion: Sexual dysfunction coupled with non specific constitutional symptoms has multiple aetiologies. Clinical symptoms out of proportion to nutritional deficiencies post bariatric surgery should be thoroughly investigated. Close long term follow up is crucial for overall success.

Keywords: obesity, bariatric surgery, erectile dysfunction, loss of libido

Procedia PDF Downloads 283
35 Date Palm Wastes Turning into Biochars for Phosphorus Recovery from Aqueous Solutions: Static and Dynamic Investigations

Authors: Salah Jellali, Nusiba Suliman, Yassine Charabi, Jamal Al-Sabahi, Ahmed Al Raeesi, Malik Al-Wardy, Mejdi Jeguirim

Abstract:

Huge amounts of agricultural biomasses are worldwide produced. At the same time, large quantities of phosphorus are annually discharged into water bodies with possible serious effects onto the environment quality. The main objective of this work is to turn a local Omani biomass (date palm fronds wastes: DPFW) into an effective material for phosphorus recovery from aqueous and the reuse of this P-loaded material in agriculture as ecofriendly amendment. For this aim, the raw DPFW were firstly impregnated with 1 M salt separated solutions of CaCl₂, MgCl₂, FeCl₃, AlCl₃, and a mixture of MgCl₂/AlCl₃ for 24 h, and then pyrolyzed under N2 flow at 500 °C for 2 hours by using an adapted tubular furnace (Carbolite, UK). The synthetized biochars were deeply characterized through specific analyses concerning their morphology, structure, texture, and surface chemistry. These analyses included the use of a scanning electron microscope (SEM) coupled with an energy-dispersive X-Ray spectrometer (EDS), X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), sorption micrometrics, and X-ray Fluorescence (XRF) apparatus. Then, their efficiency in recovering phosphorus was investigated in batch mode for various contact times (1 min to 3 h), aqueous pH values (from 3 to 11), initial phosphorus concentrations (10-100 mg/L), presence of anions (nitrates, sulfates, and chlorides). In a second step, dynamic assays, by using laboratory columns (height of 30 cm and diameter of 3 cm), were performed in order to investigate the recovery of phosphorus by the modified biochar with a mixture of Mg/Al. The effect of the initial P concentration (25-100 mg/L), the bed depth height (3 to 8 g), and the flow rate (10-30 mL/min) was assessed. Experimental results showed that the biochars physico-chemical properties were very dependent on the type of the used modifying salt. The main affected parameters concerned the specific surface area, microporosity area, and the surface chemistry (pH of zero-point charge and available functional groups). These characteristics have significantly affected the phosphorus recovery efficiency from aqueous solutions. Indeed, the P removal efficiency in batch mode varies from about 5 mg/g for the Fe-modified biochar to more than 13 mg/g for the biochar functionalized with Mg/Al layered double hydroxides. Moreover, the P recovery seems to be a time dependent process and significantly affected by the pH of the aqueous media and the presence of foreign anions due to competition phenomenon. The laboratory column study of phosphorus recovery by the biochar functionalized with Mg/Al layered double hydroxides showed that this process is affected by the used phosphorus concentration, the flow rate, and especially the column bed depth height. Indeed, the phosphorus recovered amount increased from about 4.9 to more than 9.3 mg/g used biochar mass of 3 and 8 g, respectively. This work proved that salt-modified palm fronds-derived biochars could be considered as attractive and promising materials for phosphorus recovery from aqueous solutions even under dynamic conditions. The valorization of these P-loaded-modified biochars as eco-friendly amendment for agricultural soils is necessary will promote sustainability and circular economy concepts in the management of both liquid and solid wastes.

Keywords: date palm wastes, Mg/Al double-layered hydroxides functionalized biochars, phosphorus, recovery, sustainability, circular economy

Procedia PDF Downloads 81
34 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World

Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber

Abstract:

Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.

Keywords: semantic segmentation, urban environment, deep learning, urban building, classification

Procedia PDF Downloads 191
33 Unpacking the Rise of Social Entrepreneurship over Sustainable Entrepreneurship among Sri Lankan Exporters in SMEs Sector: A Case Study in Sri Lanka

Authors: Amarasinghe Shashikala, Pramudika Hansini, Fernando Tajan, Rathnayake Piyumi

Abstract:

This study investigates the prominence of the social entrepreneurship (SE) model over the sustainable entrepreneurship model among Sri Lankan exporters in the small and medium enterprise (SME) sector. The primary objective of this study is to explore how the unique socio-economic contextual nuances of the country influence this behavior. The study employs a multiple-case study approach, collecting data from thirteen SEs in the SME sector. The findings reveal a significant alignment between SE and the lifestyle of the people in Sri Lanka, attributed largely to its deep-rooted religious setting and cultural norms. A crucial factor driving the prominence of SE is the predominantly labor-intensive nature of production processes within the exporters of the SME sector. These processes inherently lend themselves to SE, providing employment opportunities and fostering community engagement. Further, SE initiatives substantially resonate with community-centric practices, making them more appealing and accessible to the local populace. In contrast, the findings highlight a dilemma between cost-effectiveness and sustainable entrepreneurship. Transitioning to sustainable export products and production processes is demanded by foreign buyers and acknowledged as essential for environmental stewardship, which often requires capital-intensive makeovers. This investment inevitably raises the overall cost of the export product, making it less competitive in the global market. Interestingly, the study notes a disparity between international demand for sustainable products and the willingness of buyers to pay a premium for them. Despite the growing global preference for eco-friendly options, the findings suggest that the additional costs associated with sustainable entrepreneurship are not adequately reflected in the purchasing behavior of international buyers. The abundance of natural resources coupled with a minimal occurrence of natural catastrophes renders exporters less environmentally sensitive. The absence of robust policy support for environmental preservation exacerbates this inclination. Consequently, exporters exhibit a diminished motivation to incorporate environmental sustainability into their business decisions. Instead, attention is redirected towards factors such as the local population's minimum standards of living, prevalent social issues, governmental corruption and inefficiency, and rural poverty. These elements impel exporters to prioritize social well-being when making business decisions. Notably, the emphasis on social impact, rather than environmental impact, appears to be a generational trend, perpetuating a focus on societal aspects in the realm of business. In conclusion, the manifestation of entrepreneurial behavior within developing nations is notably contingent upon contextual nuances. This investigation contributes to a deeper understanding of the dynamics shaping the prevalence of SE over sustainable entrepreneurship among Sri Lankan exporters in the SME sector. The insights generated have implications for policymakers, industry stakeholders, and academics seeking to navigate the delicate balance between socio-cultural values, economic feasibility, and environmental sustainability in the pursuit of responsible business practices within the export sector.

Keywords: small and medium enterprises, social entrepreneurship, Sri Lanka, sustainable entrepreneurship

Procedia PDF Downloads 73
32 Extracellular Polymeric Substances (EPS) Attribute to Biofouling of Anaerobic Membrane Bioreactor: Adhesion and Viscoelastic Properties

Authors: Kbrom Mearg Haile

Abstract:

Introduction: Membrane fouling is the bottleneck for the anaerobic membrane bioreactor (AnMBR) robust continuous operation, primarily caused by the mixed liquor suspended solids (MLSS) characteristics formed by aggregated flocs and a scaffold of microbial self-produced extracellular polymeric substances (EPS), which dictates the flocs integrity. Accordingly, the adhesion of EPS to the membrane surface versus their role in forming firm, elastic, and mechanically stable flocs under the reactor’s hydraulic shear is critical for minimizing interactions between EPS and colloids originating from the MLSS flocs with the membrane. This study aims to gain insight and investigate the effect of MLSS flocs properties, EPS adhesion and viscoelasticity, viscoelastic properties of the sludge, and membrane fouling propensity. Experimental: As a working hypothesis, to alter the aforementioned flocs’ and EPS’s properties, the addition of either coagulant or surfactant was carried out during the AnMBR operation. In the AnMBR, two flat-sheet 300 kDa pore size polyether sulfone (PES) membranes with a total filtration area of 352 cm2 were immersed in the AnMBR system treating municipal wastewater of Midreshet Ben-Gurion village at the Negev highlands, Israel. The system temperature, pH, biogas recirculation, and hydraulic retention time were regulated. TMP fluctuations during a 30-day experiment were recorded under three operating conditions: Baseline (without the addition of coagulating or dispersing agent), coagulant addition (FeCl3), and surfactant addition (sodium dodecyl sulfate). At the end of each experiment, EPS were extracted from the MLSS and from the fouled membrane, characterized for their protein, polysaccharides, and DOC contents, and correlated with the fouling tendency of the submerged UF membrane. The EPS adherence and viscoelastic properties were revealed using QCM-D via the PES-coated gold sensor used as a membrane-mimicking surface providing a detailed real-time EPS adhesion. The associated shifts in the resonance frequency and dissipation at different overtones were further modeled using the Voigt-based viscoelastic model (using Dfind software, Q-Sense Biolin Scientific) in which the thickness, shear modulus, and shear viscosity values of the adsorbed EPS layers on the PES coated sensor were calculated. Results and discussion: The observations obtained from the QCM-D analysis indicate a greater decrease in the frequency shift for the elevated membrane fouling scenarios, likely due to an observed decrease in the calculated shear viscosity and shear modulus of the EPS adsorbed layer, coupled with an increase in EPS layer hydrated thickness and fluidity (ΔD/Δf slopes). Further analysis is being conducted for the three major operating conditions-analyzing their effects on sludge rheology, dewaterability (capillary suction time-CST) and settle ability (SVI). The biofouling layer is further characterized microscopically using a confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM), for analyzing the consistency of the development of the biofouling layer with sludge characteristics, i.e., thicker biofouling layer on the membrane surface when operated with surfactant addition, due to flocs with reduced integrity and availability of EPS/colloids to the membrane. Conversely, a thinner layer when operated with coagulant compared to the baseline experiment, due to elevation in flocs integrity.

Keywords: viscoelasticity, biofouling, viscoelastic, AnMBR, EPS, elocintegrity

Procedia PDF Downloads 22
31 Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium

Authors: Veronique Troch, Wouter Van der Borght, Véronique De Bleeker, Bram Marynissen, Nathan Van der Eecken, Gijs Du Laing

Abstract:

Among the challenges associated with increased urban food production are health risks from food contamination, due to the higher pollution loads in urban areas, compared to rural sites. Therefore, the risks posed by industrial or traffic pollution of locally grown food, was defined as one of five high-priority issues of urban agriculture requiring further investigation. The impact of air pollution on urban horticulture is the subject of this study. More particular, this study focuses on the atmospheric deposition of trace metals on leaf vegetables cultivated in the city of Ghent, Belgium. Ghent is a particularly interesting study site as it actively promotes urban agriculture. Plants accumulate heavy metals by absorption from contaminated soils and through deposition on parts exposed to polluted air. Accumulation of trace metals in vegetation grown near roads has been shown to be significantly higher than those grown in rural areas due to traffic-related contaminants in the air. Studies of vegetables demonstrated, that the uptake and accumulation of trace metals differed among crop type, species, and among plant parts. Studies on vegetables and fruit trees in Berlin, Germany, revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and parameters related to barriers between sampling site and neighboring roads. This study aims to supplement this scarce research on heavy metal accumulation in urban horticulture. Samples from leaf vegetables were collected from different sites, including allotment gardens, in Ghent. Trace metal contents on these leaf vegetables were analyzed by ICP-MS (inductively coupled plasma mass spectrometry). In addition, precipitation on each sampling site was collected by NILU-type bulk collectors and similarly analyzed for trace metals. On one sampling site, different parameters which might influence trace metal content in leaf vegetables were analyzed in detail. These parameters are distance of planting site to the nearest road, barriers between planting site and nearest road, and type of leaf vegetable. For comparison, a rural site, located farther from city traffic and industrial pollution, was included in this study. Preliminary results show that there is a high correlation between trace metal content in the atmospheric deposition and trace metal content in leaf vegetables. Moreover, a significant higher Pb, Cu and Fe concentration was found on spinach collected from Ghent, compared to spinach collected from a rural site. The distance of planting site to the nearest road significantly affected the accumulation of Pb, Cu, Mo and Fe on spinach. Concentrations of those elements on spinach increased with decreasing distance between planting site and the nearest road. Preliminary results did not show a significant effect of barriers between planting site and the nearest road on accumulation of trace metals on leaf vegetables. The overall goal of this study is to complete and refine existing guidelines for urban gardening to exclude potential health risks from food contamination. Accordingly, this information can help city governments and civil society in the professionalization and sustainable development of urban agriculture.

Keywords: atmospheric deposition, leaf vegetables, trace metals, traffic pollution, urban agriculture

Procedia PDF Downloads 239
30 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms

Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli

Abstract:

Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.

Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning

Procedia PDF Downloads 73
29 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 428
28 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials

Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte

Abstract:

Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.

Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance

Procedia PDF Downloads 80
27 An Intelligence-Led Methodologly for Detecting Dark Actors in Human Trafficking Networks

Authors: Andrew D. Henshaw, James M. Austin

Abstract:

Introduction: Human trafficking is an increasingly serious transnational criminal enterprise and social security issue. Despite ongoing efforts to mitigate the phenomenon and a significant expansion of security scrutiny over past decades, it is not receding. This is true for many nations in Southeast Asia, widely recognized as the global hub for trafficked persons, including men, women, and children. Clearly, human trafficking is difficult to address because there are numerous drivers, causes, and motivators for it to persist, such as non-military and non-traditional security challenges, i.e., climate change, global warming displacement, and natural disasters. These make displaced persons and refugees particularly vulnerable. The issue is so large conservative estimates put a dollar value at around $150 billion-plus per year (Niethammer, 2020) spanning sexual slavery and exploitation, forced labor, construction, mining and in conflict roles, and forced marriages of girls and women. Coupled with corruption throughout military, police, and civil authorities around the world, and the active hands of powerful transnational criminal organizations, it is likely that such figures are grossly underestimated as human trafficking is misreported, under-detected, and deliberately obfuscated to protect those profiting from it. For example, the 2022 UN report on human trafficking shows a 56% reduction in convictions in that year alone (UNODC, 2022). Our Approach: To better understand this, our research utilizes a bespoke methodology. Applying a JAM (Juxtaposition Assessment Matrix), which we previously developed to detect flows of dark money around the globe (Henshaw, A & Austin, J, 2021), we now focus on the human trafficking paradigm. Indeed, utilizing a JAM methodology has identified key indicators of human trafficking not previously explored in depth. Being a set of structured analytical techniques that provide panoramic interpretations of the subject matter, this iteration of the JAM further incorporates behavioral and driver indicators, including the employment of Open-Source Artificial Intelligence (OS-AI) across multiple collection points. The extracted behavioral data was then applied to identify non-traditional indicators as they contribute to human trafficking. Furthermore, as the JAM OS-AI analyses data from the inverted position, i.e., the viewpoint of the traffickers, it examines the behavioral and physical traits required to succeed. This transposed examination of the requirements of success delivers potential leverage points for exploitation in the fight against human trafficking in a new and novel way. Findings: Our approach identified new innovative datasets that have previously been overlooked or, at best, undervalued. For example, the JAM OS-AI approach identified critical 'dark agent' lynchpins within human trafficking that are difficult to detect and harder to connect to actors and agents within a network. Our preliminary data suggests this is in part due to the fact that ‘dark agents’ in extant research have been difficult to detect and potentially much harder to directly connect to the actors and organizations in human trafficking networks. Our research demonstrates that using new investigative techniques such as OS-AI-aided JAM introduces a powerful toolset to increase understanding of human trafficking and transnational crime and illuminate networks that, to date, avoid global law enforcement scrutiny.

Keywords: human trafficking, open-source intelligence, transnational crime, human security, international human rights, intelligence analysis, JAM OS-AI, Dark Money

Procedia PDF Downloads 90
26 Chronic Impact of Silver Nanoparticle on Aerobic Wastewater Biofilm

Authors: Sanaz Alizadeh, Yves Comeau, Arshath Abdul Rahim, Sunhasis Ghoshal

Abstract:

The application of silver nanoparticles (AgNPs) in personal care products, various household and industrial products has resulted in an inevitable environmental exposure of such engineered nanoparticles (ENPs). Ag ENPs, released via household and industrial wastes, reach water resource recovery facilities (WRRFs), yet the fate and transport of ENPs in WRRFs and their potential risk in the biological wastewater processes are poorly understood. Accordingly, our main objective was to elucidate the impact of long-term continuous exposure to AgNPs on biological activity of aerobic wastewater biofilm. The fate, transport and toxicity of 10 μg.L-1and 100 μg.L-1 PVP-stabilized AgNPs (50 nm) were evaluated in an attached growth biological treatment process, using lab-scale moving bed bioreactors (MBBRs). Two MBBR systems for organic matter removal were fed with a synthetic influent and operated at a hydraulic retention time (HRT) of 180 min and 60% volumetric filling ratio of Anox-K5 carriers with specific surface area of 800 m2/m3. Both reactors were operated for 85 days after reaching steady state conditions to develop a mature biofilm. The impact of AgNPs on the biological performance of the MBBRs was characterized over a period of 64 days in terms of the filtered biodegradable COD (SCOD) removal efficiency, the biofilm viability and key enzymatic activities (α-glucosidase and protease). The AgNPs were quantitatively characterized using single-particle inductively coupled plasma mass spectroscopy (spICP-MS), determining simultaneously the particle size distribution, particle concentration and dissolved silver content in influent, bioreactor and effluent samples. The generation of reactive oxygen species and the oxidative stress were assessed as the proposed toxicity mechanism of AgNPs. Results indicated that a low concentration of AgNPs (10 μg.L-1) did not significantly affect the SCOD removal efficiency whereas a significant reduction in treatment efficiency (37%) was observed at 100 μg.L-1AgNPs. Neither the viability nor the enzymatic activities of biofilm were affected at 10 μg.L-1AgNPs but a higher concentration of AgNPs induced cell membrane integrity damage resulting in 31% loss of viability and reduced α-glucosidase and protease enzymatic activities by 31% and 29%, respectively, over the 64-day exposure period. The elevated intercellular ROS in biofilm at a higher AgNPs concentration over time was consistent with a reduced biological biofilm performance, confirming the occurrence of a nanoparticle-induced oxidative stress in the heterotrophic biofilm. The spICP-MS analysis demonstrated a decrease in the nanoparticles concentration over the first 25 days, indicating a significant partitioning of AgNPs into the biofilm matrix in both reactors. The concentration of nanoparticles increased in effluent of both reactors after 25 days, however, indicating a decreased retention capacity of AgNPs in biofilm. The observed significant detachment of biofilm also contributed to a higher release of nanoparticles due to cell-wall destabilizing properties of AgNPs as an antimicrobial agent. The removal efficiency of PVP-AgNPs and the biofilm biological responses were a function of nanoparticle concentration and exposure time. This study contributes to a better understanding of the fate and behavior of AgNPs in biological wastewater processes, providing key information that can be used to predict the environmental risks of ENPs in aquatic ecosystems.

Keywords: biofilm, silver nanoparticle, single particle ICP-MS, toxicity, wastewater

Procedia PDF Downloads 268
25 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan

Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad

Abstract:

Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.

Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules

Procedia PDF Downloads 107
24 A Study of Seismic Design Approaches for Steel Sheet Piles: Hydrodynamic Pressures and Reduction Factors Using CFD and Dynamic Calculations

Authors: Helena Pera, Arcadi Sanmartin, Albert Falques, Rafael Rebolo, Xavier Ametller, Heiko Zillgen, Cecile Prum, Boris Even, Eric Kapornyai

Abstract:

Sheet piles system can be an interesting solution when dealing with harbors or quays designs. However, current design methods lead to conservative approaches due to the lack of specific basis of design. For instance, some design features still deal with pseudo-static approaches, although being a dynamic problem. Under this concern, the study particularly focuses on hydrodynamic water pressure definition and stability analysis of sheet pile system under seismic loads. During a seismic event, seawater produces hydrodynamic pressures on structures. Currently, design methods introduce hydrodynamic forces by means of Westergaard formulation and Eurocodes recommendations. They apply constant hydrodynamic pressure on the front sheet pile during the entire earthquake. As a result, the hydrodynamic load may represent 20% of the total forces produced on the sheet pile. Nonetheless, some studies question that approach. Hence, this study assesses the soil-structure-fluid interaction of sheet piles under seismic action in order to evaluate if current design strategies overestimate hydrodynamic pressures. For that purpose, this study performs various simulations by Plaxis 2D, a well-known geotechnical software, and CFD models, which treat fluid dynamic behaviours. Knowing that neither Plaxis nor CFD can resolve a soil-fluid coupled problem, the investigation imposes sheet pile displacements from Plaxis as input data for the CFD model. Then, it provides hydrodynamic pressures under seismic action, which fit theoretical Westergaard pressures if calculated using the acceleration at each moment of the earthquake. Thus, hydrodynamic pressures fluctuate during seismic action instead of remaining constant, as design recommendations propose. Additionally, these findings detect that hydrodynamic pressure contributes a 5% to the total load applied on sheet pile due to its instantaneous nature. These results are in line with other studies that use added masses methods for hydrodynamic pressures. Another important feature in sheet pile design is the assessment of the geotechnical overall stability. It uses pseudo-static analysis since the dynamic analysis cannot provide a safety calculation. Consequently, it estimates the seismic action. One of its relevant factors is the selection of the seismic reduction factor. A huge amount of studies discusses the importance of it but also about all its uncertainties. Moreover, current European standards do not propose a clear statement on that, and they recommend using a reduction factor equal to 1. This leads to conservative requirements when compared with more advanced methods. Under this situation, the study calibrates seismic reduction factor by fitting results from pseudo-static to dynamic analysis. The investigation concludes that pseudo-static analyses could reduce seismic action by 40-50%. These results are in line with some studies from Japanese and European working groups. In addition, it seems suitable to account for the flexibility of the sheet pile-soil system. Nevertheless, the calibrated reduction factor is subjected to particular conditions of each design case. Further research would contribute to specifying recommendations for selecting reduction factor values in the early stages of the design. In conclusion, sheet pile design still has chances for improving its design methodologies and approaches. Consequently, design could propose better seismic solutions thanks to advanced methods such as findings of this study.

Keywords: computational fluid dynamics, hydrodynamic pressures, pseudo-static analysis, quays, seismic design, steel sheet pile

Procedia PDF Downloads 142
23 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems

Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana

Abstract:

Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.

Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP

Procedia PDF Downloads 198
22 Intrigues of Brand Activism versus Brand Antagonism in Rival Online Football Brand Communities: The Case of the Top Two Premier Football Clubs in Ghana

Authors: Joshua Doe, George Amoako

Abstract:

Purpose: In an increasingly digital world, the realm of sports fandom has extended its borders, creating a vibrant ecosystem of online communities centered around football clubs. This study ventures into the intricate interplay of motivations that drive football fans to respond to brand activism and its profound implications for brand antagonism and engagement among two of Ghana's most revered premier football clubs. Methods: A sample of 459 fervent fans from these two rival clubs were engaged through self-administered questionnaires expertly distributed via social media and online platforms. Data was analysed, using PLS-SEM. Findings: The tapestry of motivations that weave through these online football communities is as diverse as the fans themselves. It becomes apparent that fans are propelled by a spectrum of incentives. They seek education, yearn for information, revel in entertainment, embrace socialization, and fortify their self-esteem through their interactions within these digital spaces. Yet, it is the nuanced distinction in these motivations that shapes the trajectory of brand antagonism and engagement. Surprisingly, the study reveals a remarkable pattern. Football fans, despite their fierce rivalries, do not engage in brand antagonism based on educational pursuits, information-seeking endeavors, or socialization. Instead, it is motivations rooted in entertainment and self-esteem that serve as the fertile grounds for brand antagonism. Paradoxically, it is these very motivations coupled with the desire for socialization that nurture brand engagement, manifesting as active support and advocacy for their chosen club brand. Originality: Our research charters new waters by extending the boundaries of existing theories in the field. The Technology Acceptance Uses and Gratifications Theory, and Social Identity Theory all find new dimensions within the context of online brand community engagement. This not only deepens our understanding of the multifaceted world of online football fandom but also invites us to explore the implications these insights carry within the digital realm. Contribution to Practice: For marketers, our findings offer a treasure trove of actionable insights. They beckon the development of targeted content strategies that resonate with fan motivations. The implementation of brand advocacy programs, fostering opportunities for socialization, and the effective management of brand antagonism emerge as pivotal strategies. Furthermore, the utilization of data-driven insights is poised to refine consumer engagement strategies and strengthen brand affinity. Future Studies: For future studies, we advocate for longitudinal, cross-cultural, and qualitative studies that could shed further light on this topic. Comparative analyses across different types of online brand communities, an exploration of the role of brand community leaders, and inquiries into the factors that contribute to brand community dissolution all beckon the research community. Furthermore, understanding motivation-specific antagonistic behaviors and the intricate relationship between information-seeking and engagement present exciting avenues for further exploration. This study unfurls a vibrant tapestry of fan motivations, brand activism, and rivalry within online football communities. It extends a hand to scholars and marketers alike, inviting them to embark on a journey through this captivating digital realm, where passion, rivalry, and engagement harmonize to shape the world of sports fandom as we know it.

Keywords: online brand engagement, football fans, brand antagonism, motivations

Procedia PDF Downloads 65
21 Problem, Policy and Polity in Agenda Setting: Analyzing Safe Motherhood Program in India

Authors: Vanita Singh

Abstract:

In developing countries, there are conflicting political agendas; policy makers have to prioritize issues from a list of issues competing for the limited resources. Thus, it is imperative to understand how some issues gain attention, and others lose in the policy circles. Multiple-Streams Theory of Kingdon (1984) is among the influential theories that help to understand the public policy process and is utilitarian for health policy makers to understand how certain health issues emerge on the policy agendas. The issue of maternal mortality was long standing in India and was linked with high birth rate thus the focus of maternal health policy was on family planning since India’s independence. However, a paradigm shift was noted in the maternal health policy in the year 1992 with the launch of Safe Motherhood Programme and then in the year 2005, when the agenda of maternal health policy became universalizing institutional deliveries and phasing-out of Traditional Birth Attendants (TBAs) from the health system. There were many solutions proposed by policy communities other than universalizing of institutional deliveries, including training of TBAs and improving socio-economic conditions of pregnant women. However, Government of India favored medical community, which was advocating for the policy of universalizing institutional delivery, and neglected the solutions proposed by other policy communities. It took almost 15 years for the advocates of institutional delivery to transform their proposed solution into a program - the Janani Suraksha Yojana (JSY), a safe-motherhood program promoting institutional delivery through cash incentives to pregnant women. Thus, the case of safe motherhood policy in India is worth studying to understand how certain issues/problems gain political attention and how advocacy work in policy circles. This paper attempts to understand the factors that favored the agenda of safe-motherhood in the policy circle in India, using John Kingdon’s Multiple-Stream model of agenda-setting. Through document analysis and literature review, the paper traces the evolution of safe motherhood program and maternal health policy. The study has used open source documents available on the website of Ministry of Health and Family Welfare, media reports (Times of India Archive) and related research papers. The documents analyzed include National health policy-1983, National Health Policy-2002, written reports of Ministry of Health and Family Welfare Department, National Rural Health Mission (NRHM) document, documents related to Janani Suraksha Yojana and research articles related to maternal health programme in India. The study finds that focusing events and credible indicators coupled with media attention has the potential to recognize a problem. The political elites favor clearly defined and well-accepted solutions. The trans-national organizations affect the agenda-setting process in a country through conditional resource provision. The closely-knit policy communities and political entrepreneurship are required for advocating solutions high on agendas. The study has implications for health policy makers in identifying factors that have the potential to affect the agenda-setting process for a desired policy agenda and identify the challenges in generating political priorities.

Keywords: agenda-setting, focusing events, Kingdon’s model, safe motherhood program India

Procedia PDF Downloads 147
20 Case Report: A Rare Presentation of Fowler's Syndrome in Pregnancy with Mitrofanoff Procedure

Authors: Humaira Saeed Malik, Salma Saad

Abstract:

Introduction: Fowler's syndrome, first described by Clare Fowler in 1985, is a rare urological condition characterized by difficulty in urination due to the abnormal function of the urethral sphincter. It predominantly affects young women and leads to chronic urinary retention. The main concern in managing this condition is ensuring regular bladder emptying. Clam cystoplasty is a bladder augmentation surgery in which the bladder is clam-shelled open, and a segment of the intestine is used to increase the bladder's capacity and reduce bladder pressure. The Mitrofanoff procedure, a surgical creation of a continent urinary diversion, is often performed in patients with Fowler's syndrome who require long-term catheterization. This procedure involves creating a conduit (from the appendix or a segment of the small intestine) between the bladder and the skin, allowing for intermittent self-catheterization to manage urinary retention. Study: This case study examines a 39-year-old gravida 3, para 0+2 woman with a BMI of 40, Fowler's syndrome, type I diabetes, and post-traumatic stress disorder (PTSD), presenting at Dumfries and Galloway Royal Infirmary at 8 weeks of gestation. Diagnosed with Fowler's syndrome at 23, . A sacral nerve stimulator (SNS) device was initially placed but was subsequently removed after one year due to malfunction caused by trauma, subsequently she had undergone clam cystoplasty and the Mitrofanoff procedure for bladder management. Her pregnancy was complicated by vaginal bleeding at 10 weeks, treated with progesterone pessaries, and a urinary tract infection at 14 weeks, managed with antibiotics. Despite these challenges, she continued self-catheterization through the Mitrofanoff stoma and was placed on prophylactic antibiotics. Her diabetes was well-controlled on insulin, and a 20-week fetal anomaly scan was normal. The multidisciplinary team, including an obstetrician and a urologist, planned for serial growth scans and the initiation of low molecular weight heparin (LMWH) from 28 weeks due to the intermediate risk of venous thromboembolism (VTE) and to continue six weeks after delivery. A planned cesarean delivery at 37 weeks was arranged, with an MRI scan scheduled later in the pregnancy to assist in surgical planning, ensuring the preservation of the Mitrofanoff stoma's function. The surgery will occur in an elective setting and include a consultant urologist. Conclusion: Pregnancy in women with Fowler's syndrome who have undergone Clam cystoplasty and the Mitrofanoff procedure is rare, and management requires careful planning and a multidisciplinary approach. This case highlights the importance of individualized care plans and close monitoring of both mother and fetus. The patient's risk of recurrent UTIs, coupled with her diabetes and high BMI, necessitated coordinated care across specialties to ensure the best possible outcomes. The Mitrofanoff procedure proved effective in managing her urinary retention, allowing her to maintain self-catheterization during pregnancy. The multidisciplinary team approach was crucial in addressing her complex medical needs, involving obstetrics, urology, and endocrinology. This case adds valuable information to the limited literature on pregnancy management in patients with Fowler's syndrome who have undergone the Mitrofanoff procedure, highlighting the need for comprehensive, individualized care and the involvement of a multidisciplinary team to achieve the best results.

Keywords: fowler's syndrome, clam cystoplasty, mitrofanoff procedure, pregnancy

Procedia PDF Downloads 32
19 A Digital Clone of an Irrigation Network Based on Hardware/Software Simulation

Authors: Pierre-Andre Mudry, Jean Decaix, Jeremy Schmid, Cesar Papilloud, Cecile Munch-Alligne

Abstract:

In most of the Swiss Alpine regions, the availability of water resources is usually adequate even in times of drought, as evidenced by the 2003 and 2018 summers. Indeed, important natural stocks are for the moment available in the form of snow and ice, but the situation is likely to change in the future due to global and regional climate change. In addition, alpine mountain regions are areas where climate change will be felt very rapidly and with high intensity. For instance, the ice regime of these regions has already been affected in recent years with a modification of the monthly availability and extreme events of precipitations. The current research, focusing on the municipality of Val de Bagnes, located in the canton of Valais, Switzerland, is part of a project led by the Altis company and achieved in collaboration with WSL, BlueArk Entremont, and HES-SO Valais-Wallis. In this region, water occupies a key position notably for winter and summer tourism. Thus, multiple actors want to apprehend the future needs and availabilities of water, on both the 2050 and 2100 horizons, in order to plan the modifications to the water supply and distribution networks. For those changes to be salient and efficient, a good knowledge of the current water distribution networks is of most importance. In the current case, the water drinking network is well documented, but this is not the case for the irrigation one. Since the water consumption for irrigation is ten times higher than for drinking water, data acquisition on the irrigation network is a major point to determine future scenarios. This paper first presents the instrumentation and simulation of the irrigation network using custom-designed IoT devices, which are coupled with a digital clone simulated to reduce the number of measuring locations. The developed IoT ad-hoc devices are energy-autonomous and can measure flows and pressures using industrial sensors such as calorimetric water flow meters. Measurements are periodically transmitted using the LoRaWAN protocol over a dedicated infrastructure deployed in the municipality. The gathered values can then be visualized in real-time on a dashboard, which also provides historical data for analysis. In a second phase, a digital clone of the irrigation network was modeled using EPANET, a software for water distribution systems that performs extended-period simulations of flows and pressures in pressurized networks composed of reservoirs, pipes, junctions, and sinks. As a preliminary work, only a part of the irrigation network was modelled and validated by comparisons with the measurements. The simulations are carried out by imposing the consumption of water at several locations. The validation is performed by comparing the simulated pressures are different nodes with the measured ones. An accuracy of +/- 15% is observed on most of the nodes, which is acceptable for the operator of the network and demonstrates the validity of the approach. Future steps will focus on the deployment of the measurement devices on the whole network and the complete modelling of the network. Then, scenarios of future consumption will be investigated. Acknowledgment— The authors would like to thank the Swiss Federal Office for Environment (FOEN), the Swiss Federal Office for Agriculture (OFAG) for their financial supports, and ALTIS for the technical support, this project being part of the Swiss Pilot program 'Adaptation aux changements climatiques'.

Keywords: hydraulic digital clone, IoT water monitoring, LoRaWAN water measurements, EPANET, irrigation network

Procedia PDF Downloads 145
18 Next-Generation Lunar and Martian Laser Retro-Reflectors

Authors: Simone Dell'Agnello

Abstract:

There are laser retroreflectors on the Moon and no laser retroreflectors on Mars. Here we describe the design, construction, qualification and imminent deployment of next-generation, optimized laser retroreflectors on the Moon and on Mars (where they will be the first ones). These instruments are positioned by time-of-flight measurements of short laser pulses, the so-called 'laser ranging' technique. Data analysis is carried out with PEP, the Planetary Ephemeris Program of CfA (Center for Astrophysics). Since 1969 Lunar Laser Ranging (LLR) to Apollo/Lunokhod laser retro-reflector (CCR) arrays supplied accurate tests of General Relativity (GR) and new gravitational physics: possible changes of the gravitational constant Gdot/G, weak and strong equivalence principle, gravitational self-energy (Parametrized Post Newtonian parameter beta), geodetic precession, inverse-square force-law; it can also constraint gravitomagnetism. Some of these measurements also allowed for testing extensions of GR, including spacetime torsion, non-minimally coupled gravity. LLR has also provides significant information on the composition of the deep interior of the Moon. In fact, LLR first provided evidence of the existence of a fluid component of the deep lunar interior. In 1969 CCR arrays contributed a negligible fraction of the LLR error budget. Since laser station range accuracy improved by more than a factor 100, now, because of lunar librations, current array dominate the error due to their multi-CCR geometry. We developed a next-generation, single, large CCR, MoonLIGHT (Moon Laser Instrumentation for General relativity high-accuracy test) unaffected by librations that supports an improvement of the space segment of the LLR accuracy up to a factor 100. INFN also developed INRRI (INstrument for landing-Roving laser Retro-reflector Investigations), a microreflector to be laser-ranged by orbiters. Their performance is characterized at the SCF_Lab (Satellite/lunar laser ranging Characterization Facilities Lab, INFN-LNF, Frascati, Italy) for their deployment on the lunar surface or the cislunar space. They will be used to accurately position landers, rovers, hoppers, orbiters of Google Lunar X Prize and space agency missions, thanks to LLR observations from station of the International Laser Ranging Service in the USA, in France and in Italy. INRRI was launched in 2016 with the ESA mission ExoMars (Exobiology on Mars) EDM (Entry, descent and landing Demonstration Module), deployed on the Schiaparelli lander and is proposed for the ExoMars 2020 Rover. Based on an agreement between NASA and ASI (Agenzia Spaziale Italiana), another microreflector, LaRRI (Laser Retro-Reflector for InSight), was delivered to JPL (Jet Propulsion Laboratory) and integrated on NASA’s InSight Mars Lander in August 2017 (launch scheduled in May 2018). Another microreflector, LaRA (Laser Retro-reflector Array) will be delivered to JPL for deployment on the NASA Mars 2020 Rover. The first lunar landing opportunities will be from early 2018 (with TeamIndus) to late 2018 with commercial missions, followed by opportunities with space agency missions, including the proposed deployment of MoonLIGHT and INRRI on NASA’s Resource Prospectors and its evolutions. In conclusion, we will extend significantly the CCR Lunar Geophysical Network and populate the Mars Geophysical Network. These networks will enable very significantly improved tests of GR.

Keywords: general relativity, laser retroreflectors, lunar laser ranging, Mars geodesy

Procedia PDF Downloads 270