Search results for: artificial intelligence in medicine
2584 Development of Electroencephalograph Collection System in Language-Learning Self-Study System That Can Detect Learning State of the Learner
Authors: Katsuyuki Umezawa, Makoto Nakazawa, Manabu Kobayashi, Yutaka Ishii, Michiko Nakano, Shigeichi Hirasawa
Abstract:
This research aims to develop a self-study system equipped with an artificial teacher who gives advice to students by detecting the learners and to evaluate language learning in a unified framework. 'Detecting the learners' means that the system understands the learners' learning conditions, such as each learner’s degree of understanding, the difference in each learner’s thinking process, the degree of concentration or boredom in learning, and problem solving for each learner, which can be interpreted from learning behavior. In this paper, we propose a system to efficiently collect brain waves from learners by focusing on only the brain waves among the biological information for 'detecting the learners'. The conventional Electroencephalograph (EEG) measurement method during learning using a simple EEG has the following disadvantages. (1) The start and end of EEG measurement must be done manually by the experiment participant or staff. (2) Even when the EEG signal is weak, it may not be noticed, and the data may not be obtained. (3) Since the acquired EEG data is stored in each PC, there is a possibility that the time of data acquisition will be different in each PC. This time, we developed a system to collect brain wave data on the server side. This system overcame the above disadvantages.Keywords: artificial teacher, e-learning, self-study system, simple EEG
Procedia PDF Downloads 1422583 Adaptation of Smart City Concept in Africa: Localization, Relevance and Bottleneck
Authors: Adeleye Johnson Adelagunayeja
Abstract:
The concept of making cities, communities, and neighborhoods smart, intelligent, and responsive is relatively new to Africa and its urban renewal agencies. Efforts must be made by relevant agencies to begin a holistic review of the implementation of infrastructural facilities and urban renewal methodologies that will revolve around the appreciation and application of artificial intelligence. The propagation of the ideals and benefits of the smart city concept are key factors that can encourage governments of African nations, the African Union, and other regional organizations in Africa to embrace the ideology. The ability of this smart city concept to curb insecurities – armed robbery, assassination, terrorism, and civil disorder – is one major reason, amongst others, why African governments must speedily embrace this contemporary developmental concept whose time has come! The seamlessness to access information and virtually cross-pollinate ideas with people living in already established smart cities, when combined with the great efficiency that the emergence of smart cities brings with it, are other reasons why Africa must come up with action plans that can enable the existing cities to metamorphose into smart cities. Innovations will be required to enable Africa to develop a smart city concept that will be compatible with the basic patterns of livelihood because the essence of the smart city evolution is to make life better for people to co-exist, to be productive and to enjoy standard infrastructural facilities. This research paper enumerates the multifaceted adaptive factors that have the potentials of making the adoption of smartcity concept in Africa seamless. It also proffers solutions to potential bottlenecks capable of undermining the execution of the smart city concept in Africa.Keywords: smartcity compactibility innovation Africa government evolution, Africa as global village member, evolution in Africa, ways to make Africa adopt smartcity, localizing smartcity concept in Africa, bottleneck to smartcity developmet in Africa
Procedia PDF Downloads 842582 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor
Authors: Tayyaba Azim, Bibi Amina
Abstract:
The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec
Procedia PDF Downloads 1482581 Identifying a Drug Addict Person Using Artificial Neural Networks
Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh
Abstract:
Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system
Procedia PDF Downloads 2992580 Mental Accounting Theory Development Review and Application
Authors: Kang-Hsien Li
Abstract:
Along with global industries in using technology to enhance the application, make the study drawn more close to the people’s behavior and produce data analysis, extended out from the mental accounting of prospect theory, this paper provides the marketing and financial applications in the field of exploration and discussions with the future. For the foreseeable future, the payment behavior depends on the form of currency, which affects a variety of product types on the marketing of marketing strategy to provide diverse payment methods to enhance the overall sales performance. This not only affects people's consumption also affects people's investments. Credit card, PayPal, Apple pay, Bitcoin and any other with advances in technology and other emerging payment instruments, began to affect people for the value and the concept of money. Such as the planning of national social welfare policies, monetary and financial regulators and regulators. The expansion can be expected to discuss marketing and finance-related mental problems at the same time, recent studies reflect two different ideas, the first idea is that individuals affected by situational frames, not broad impact at the event level, affected by the people basically mental, second idea is that when an individual event affects a broader range, and majority of people will choose the same at the time that the rational choice. That are applied to practical application of marketing, at the same time provide an explanation in the financial market under the anomalies, due to the financial markets has varied investment products and different market participants, that also highlights these two points. It would provide in-depth description of humanity's mental. Certainly, about discuss mental accounting aspects, while artificial intelligence application development, although people would be able to reduce prejudice decisions, that will also lead to more discussion on the economic and marketing strategy.Keywords: mental accounting, behavior economics, consumer behaviors, decision-making
Procedia PDF Downloads 4512579 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 572578 Variation in the Traditional Knowledge of Curcuma longa L. in North-Eastern Algeria
Authors: A. Bouzabata, A. Boukhari
Abstract:
Curcuma longa L. (Zingiberaceae), commonly known as turmeric, has a long history of traditional uses for culinary purposes as a spice and a food colorant. The present study aimed to document the ethnobotanical knowledge about Curcuma longa and to assess the variation in the herbalists’ experience in Northeastern Algeria. Data were collected by semi-structured questionnaires and direct interviews with 30 herbalists. Ethnobotanical indices, including the fidelity level (FL%), the relative frequency citation (RFC) and use value (UV) were determined by quantitative methods. Diversity in the knowledge was analyzed using univariate, non-parametric and multivariate statistical methods. Three main categories of uses were recorded for C. longa: for food, for medicine and for cosmetic purposes. As a medicine, turmeric was used for the treatment of gastrointestinal, dermatological and hepatic diseases. Medicinal and food uses were correlated with both forms of use (rhizome and powder). The age group did not influence the use. Multivariate analyses showed a significant variation in traditional knowledge, associated with the use value, origin, quality and efficacy of the drug. These findings suggested that the geographical origin of C. longa affected the use in Algeria.Keywords: curcuma, indices, knowledge, variation
Procedia PDF Downloads 5412577 An Analysis of Organoleptic Qualities of a Three-Course Menu from Moringa Leaves in Mubi, Adamawa State Nigeria
Authors: Rukaiya Suleiman Umar, Annah Kwadu Medugu
Abstract:
Moringa oleifera is mainly used as herbal medicine in most homes in Northern Nigeria. The plant is easy to grow and thrives very well regardless the type of soil. Use of moringa leaves in food production can yield attractive varieties on menu. This paper evaluates the acceptability of dishes produced with fresh moringa leaves with a view to promoting it in popular restaurants. A three course menu consisting of cream of moringa soup as the starter, mixed meat moringa sauce with semovita as the main dish and moringa roll as sweet was produced and served to a 60-member taste panel made of three groups of 20 each. Respondents were asked to rate the organoleptic qualities of the samples on a 10-point bipolar scale ranging from 1 (Dislike extremely) – 10 (Like extremely). Data collected were treated to one sample t-test and One Way ANOVA. Results show that the panelists extremely like the moringa products. It is recommended that Moringa oleifera should be incorporated into meals which is more readily acceptable than medicine.Keywords: Moringa oleifera, food production, menu planning, healthy living
Procedia PDF Downloads 2812576 Revolutionizing Autonomous Trucking Logistics with Customer Relationship Management Cloud
Authors: Sharda Kumari, Saiman Shetty
Abstract:
Autonomous trucking is just one of the numerous significant shifts impacting fleet management services. The Society of Automotive Engineers (SAE) has defined six levels of vehicle automation that have been adopted internationally, including by the United States Department of Transportation. On public highways in the United States, organizations are testing driverless vehicles with at least Level 4 automation which indicates that a human is present in the vehicle and can disable automation, which is usually done while the trucks are not engaged in highway driving. However, completely driverless vehicles are presently being tested in the state of California. While autonomous trucking can increase safety, decrease trucking costs, provide solutions to trucker shortages, and improve efficiencies, logistics, too, requires advancements to keep up with trucking innovations. Given that artificial intelligence, machine learning, and automated procedures enable people to do their duties in other sectors with fewer resources, CRM (Customer Relationship Management) can be applied to the autonomous trucking business to provide the same level of efficiency. In a society witnessing significant digital disruptions, fleet management is likewise being transformed by technology. Utilizing strategic alliances to enhance core services is an effective technique for capitalizing on innovations and delivering enhanced services. Utilizing analytics on CRM systems improves cost control of fuel strategy, fleet maintenance, driver behavior, route planning, road safety compliance, and capacity utilization. Integration of autonomous trucks with automated fleet management, yard/terminal management, and customer service is possible, thus having significant power to redraw the lines between the public and private spheres in autonomous trucking logistics.Keywords: autonomous vehicles, customer relationship management, customer experience, autonomous trucking, digital transformation
Procedia PDF Downloads 1072575 Anatomical and Pathological Evaluation of Anomaly Cases Presented to the Department of Pathology at the Kafkas University Faculty of Veterinary Medicine, between 2017 and 2019
Authors: Gülseren Kırbaş Doğan, Emin Karakurt, Mushap Kuru, Hilmi Nuhoğlu
Abstract:
Developmental anomalies can be caused by defects in bone tissue, cartilage tissue, or primitive mesenchymal tissue. Genetic-, environmental-, teratogenic-, faulty breeding selection–, or feeding-related anomalies can be observed either locally or systemically. This study aimed to evaluate in detail the various anomalies in six calves according to pathological and anatomical investigations. Six calves were delivered to the Department of Pathology at the Kafkas University Faculty of Veterinary Medicine between 2017 and 2019. These calves comprised one with anencephaly, one with the diencephalic syndrome, one with Schistosoma reflexum, two with anasarca, and one with nasal and calvarium openings. After necropsy, samples were taken from the organs, foreseen, and routine pathological examinations were performed. Following these procedures, the calves were brought to the anatomy laboratory and anatomically examined. As a result, various anomalies in 6 calves were evaluated according to pathological and anatomical investigations. These findings are believed to contribute to the literature.Keywords: anatomy, anomaly, calf, pathology
Procedia PDF Downloads 1782574 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System
Authors: A. Mohamed Mydeen, Pallapa Venkataram
Abstract:
The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.Keywords: knowledge representation, pervasive computing, agent technology, ECA rules
Procedia PDF Downloads 3372573 Indoor and Outdoor Forest Farming for Year-Round Food and Medicine Production, Carbon Sequestration, Soil-Building, and Climate Change Mitigation
Authors: Jerome Osentowski
Abstract:
The objective at Central Rocky Mountain Permaculture Institute has been to put in practice a sustainable way of life while growing food, medicine, and providing education. This has been done by applying methods of farming such as agroforestry, forest farming, and perennial polycultures. These methods have been found to be regenerative to the environment through carbon sequestration, soil-building, climate change mitigation, and the provision of food security. After 30 years of implementing carbon farming methods, the results are agro-diversity, self-sustaining systems, and a consistent provision of food and medicine. These results are exhibited through polyculture plantings in an outdoor forest garden spanning roughly an acre containing about 200 varieties of fruits, nuts, nitrogen-fixing trees, and medicinal herbs, and two indoor forest garden greenhouses (one Mediterranean and one Tropical) containing about 50 varieties of tropical fruits, beans, herbaceous plants and more. While the climate zone outside the greenhouse is 6, the tropical forest garden greenhouse retains an indoor climate zone of 11 with near-net-zero energy consumption through the use of a climate battery, allowing the greenhouse to serve as a year-round food producer. The effort to source food from the forest gardens is minimal compared to annual crop production. The findings at Central Rocky Mountain Permaculture Institute conclude that agroecological methods are not only beneficial but necessary in order to revive and regenerate the environment and food security.Keywords: agroecology, agroforestry, carbon farming, carbon sequestration, climate battery, food security, forest farming, forest garden, greenhouse, near-net-zero, perennial polycultures
Procedia PDF Downloads 4402572 AI-Assisted Business Chinese Writing: Comparing the Textual Performances Between Independent Writing and Collaborative Writing
Authors: Stephanie Liu Lu
Abstract:
With the proliferation of artificial intelligence tools in the field of education, it is crucial to explore their impact on language learning outcomes. This paper examines the use of AI tools, such as ChatGPT, in practical writing within business Chinese teaching to investigate how AI can enhance practical writing skills and teaching effectiveness. The study involved third and fourth-year university students majoring in accounting and finance from a university in Hong Kong within the context of a business correspondence writing class. Students were randomly assigned to a control group, who completed business letter writing independently, and an experimental group, who completed the writing with the assistance of AI. In the latter, the AI-assisted business letters were initially drafted by the students issuing commands and interacting with the AI tool, followed by the students' revisions of the draft. The paper assesses the performance of both groups in terms of grammatical expression, communicative effect, and situational awareness. Additionally, the study collected dialogue texts from interactions between students and the AI tool to explore factors that affect text generation and the potential impact of AI on enhancing students' communicative and identity awareness. By collecting and comparing textual performances, it was found that students assisted by AI showed better situational awareness, as well as more skilled organization and grammar. However, the research also revealed that AI-generated articles frequently lacked a proper balance of identity and writing purpose due to limitations in students' communicative awareness and expression during the instruction and interaction process. Furthermore, the revision of drafts also tested the students' linguistic foundation, logical thinking abilities, and practical workplace experience. Therefore, integrating AI tools and related teaching into the curriculum is key to the future of business Chinese teaching.Keywords: AI-assistance, business Chinese, textual analysis, language education
Procedia PDF Downloads 542571 The Effect of Artificial Intelligence on Electric Machines and Welding
Authors: Mina Malak Zakaria Henin
Abstract:
The finite detail evaluation of magnetic fields in electromagnetic devices shows that the machine cores revel in extraordinary flux patterns consisting of alternating and rotating fields. The rotating fields are generated in different configurations variety, among circular and elliptical, with distinctive ratios between the fundamental and minor axes of the flux locus. Experimental measurements on electrical metal uncovered one-of-a-kind flux patterns that divulge distinctive magnetic losses in the samples below the test. Therefore, electric machines require unique interest throughout the core loss calculation technique to bear in mind the flux styles. In this look, a circular rotational unmarried sheet tester is employed to measure the middle losses in the electric-powered metallic pattern of M36G29. The sample becomes exposed to alternating fields, circular areas, and elliptical fields with axis ratios of zero.2, zero. Four, 0.6 and 0.8. The measured statistics changed into applied on 6-4 switched reluctance motors at 3 distinctive frequencies of interest to the industry 60 Hz, 400 Hz, and 1 kHz. The effects reveal an excessive margin of error, which can arise at some point in the loss calculations if the flux pattern difficulty is overlooked. The mistake in exceptional components of the gadget associated with considering the flux styles may be around 50%, 10%, and a couple of at 60Hz, 400Hz, and 1 kHz, respectively. The future paintings will focus on the optimization of gadget geometrical shape, which has a primary effect on the flux sample on the way to decrease the magnetic losses in system cores.Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems) synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway tractionalternating core losses, finite element analysis, rotational core losses
Procedia PDF Downloads 262570 Information Visualization Methods Applied to Nanostructured Biosensors
Authors: Osvaldo N. Oliveira Jr.
Abstract:
The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique
Procedia PDF Downloads 3342569 Artificial Neural Network and Statistical Method
Authors: Tomas Berhanu Bekele
Abstract:
Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression
Procedia PDF Downloads 642568 Exploration of Artificial Neural Network and Response Surface Methodology in Removal of Industrial Effluents
Authors: Rakesh Namdeti
Abstract:
Toxic dyes found in industrial effluent must be treated before being disposed of due to their harmful impact on human health and aquatic life. Thus, Musa acuminata (Banana Leaves) was employed in the role of a biosorbent in this work to get rid of methylene blue derived from a synthetic solution. The effects of five process parameters, such as temperature, pH, biosorbent dosage, and initial methylene blue concentration, using a central composite design (CCD), and the percentage of dye clearance were investigated. The response was modelled using a quadratic model based on the CCD. The analysis of variance revealed the most influential element on experimental design response (ANOVA). The temperature of 44.30C, pH of 7.1, biosorbent dose of 0.3 g, starting methylene blue concentration of 48.4 mg/L, and 84.26 percent dye removal were the best conditions for Musa acuminata (Banana leave powder). At these ideal conditions, the experimental percentage of biosorption was 76.93. The link between the estimated results of the developed ANN model and the experimental results defined the success of ANN modeling. As a result, the study's experimental results were found to be quite close to the model's predicted outcomes.Keywords: Musa acuminata, central composite design, methylene blue, artificial neural network
Procedia PDF Downloads 752567 Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy
Authors: Dimitrios Bakavos, Dimitrios Tsivoulas, Chaowalit Limmaneevichitr
Abstract:
Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product.Keywords: ageing, casting, mechanical strength, precipitates
Procedia PDF Downloads 4952566 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 732565 Design of 3D Bioprinted Scaffolds for Cartilage Regeneration
Authors: Gloria Pinilla, Jose Manuel Baena, Patricia Gálvez-Martín, Juan Antonio Marchad
Abstract:
Cartilage is a dense connective tissue with limited self-repair properties. Currently, the therapeutic use of autologous or allogenic chondrocytes makes up an alternative therapy to the pharmacological treatment. The design of a bioprinted 3D cartilage with chondrocytes and biodegradable biomaterials offers a new therapeutic alternative able of bridging the limitations of current therapies in the field. We have developed an enhanced printing processes-Injection Volume Filling (IVF) to increase the viability and survival of the cells when working with high-temperature thermoplastics without the limitation of the scaffold geometry in contact with cells. We have demonstrated the viability of the printing process using chondrocytes for cartilage regeneration. This development will accelerate the clinical uptake of the technology and overcomes the current limitation when using thermoplastics as scaffolds. An alginate-based hydrogel combined with human chondrocytes (isolated from osteoarthritis patients) was formulated as bioink-A and the polylactic acid as bioink-B. The bioprinting process was carried out with the REGEMAT V1 bioprinter (Regemat 3D, Granada-Spain) through a IVF. The printing capacity of the bioprinting plus the viability and cell proliferation of bioprinted chondrociytes was evaluated after five weeks by confocal microscopy and Alamar Blue Assay (Biorad). Results showed that the IVF process does not decrease the cell viability of the chondrocytes during the printing process as the cells do not have contact with the thermoplastic at elevated temperatures. The viability and cellular proliferation of the bioprinted artificial 3D cartilage increased after 5 weeks. In conclusion, this study demonstrates the potential use of Regemat V1 for 3D bioprinting of cartilage and the viability of bioprinted chondrocytes in the scaffolds for application in regenerative medicine.Keywords: cartilage regeneration, bioprinting, bioink, scaffold, chondrocyte
Procedia PDF Downloads 3112564 Particle Separation Using Individually-Controlled Magnetic Soft Artificial Cilia
Authors: Yau-Luen Ng, Nathan Banka, Santosh Devasia
Abstract:
In this paper, a method based on soft artificial cilia is introduced to separate particles based on size and mass. In nature, cilia are used for fluid propulsion in the mammalian circulatory system, as well as for swimming and size-selective particle entrainment for feeding in microorganisms. Inspired by biological cilia, an array of artificial cilia was fabricated using Polydimethylsiloxane (PDMS) to simulate the actual motion. A row of four individually-controlled magnetic artificial cilia in a semi-circular channel are actuated by the magnetic fields from four permanent magnets. Each cilium is a slender rectangular cantilever approximately 13mm long made from a composite of PDMS and carbonyl iron particles. A time-varying magnetic force is achieved by periodically varying the out-of-plane distance from the permanent magnets to the cilia, resulting in large-amplitude deflections of the cilia that can be used to drive fluid motion. Previous results have shown that this system of individually-controlled magnetic cilia can generate effective mixing flows; the purpose of the present work is to apply the individual cilia control to a particle separation task. Based on the observed beating patterns of cilia arrays in nature, the experimental beating patterns were selected as a metachronal wave, in which a fixed phase lead or lag is imposed between adjacent cilia. Additionally, the beating frequency was varied. For each set of experimental parameters, the channel was filled with water and polyethylene microspheres introduced at the center of the cilia array. Two types of particles were used: large red microspheres with density 0.9971 g/cm³ and 850-1000 μm avg. diameter, and small blue microspheres with density 1.06 g/cm³ and diameter 30 μm. At low beating frequencies, all particles were propelled in the mean flow direction. However, the large particles were observed to reverse directions above about 4.8 Hz, whereas reversal of the small particle transport direction did not occur until 6 Hz. Between these two transition frequencies, the large and small particles can be separated as they move in opposite directions. The experimental results show that selecting an appropriate cilia beating pattern can lead to selective transport of neutrally-buoyant particles based on their size. Importantly, the separation threshold can be chosen dynamically by adjusting the actuation frequency. However, further study is required to determine the range of particle sizes that can be effectively separated for a given system geometry.Keywords: magnetic cilia, particle separation, tunable separation, soft actutors
Procedia PDF Downloads 1992563 Upcoming Fight Simulation with Smart Shadow
Authors: Ramiz Kuliev, Fuad Kuliev-Smirnov
Abstract:
The 'Shadow Sparring' training exercise is widely used in the training of boxers and martial artists. The main disadvantage of the usual shadow sparring is that the trainer cannot fully control such training and evaluate its results. During the competition, the athlete, preparing for the upcoming fight, imagines the Shadow (upcoming opponent) in accordance with his own imagination. A ‘Smart-Shadow Sparring’ (SSS) is an innovative version of the ‘Shadow Sparring’. During SSS, the fighter will see the Shadow (virtual opponent that moves, defends, and punches) and understand when he misses the punches from the Shadow. The task of a real athlete is to spar with a virtual one, move around, punch in the direction of unprotected areas of the Shadow and dodge his punches. Moves and punches of Shadow are set up before each training. The system will give the coach full information about virtual sparring: (i) how many and what type of punches has the fighter landed, (ii) accuracy of these punches, (iii) how many and what type of virtual punches (punches of Smart-Shadow) has the fighter missed, etc. SSS will be recorded as animated fighting of two fighters and will help the coach to analyze past training. SSS can be configured to fit the physical and technical characteristics of the next real opponent (size, techniques, speed, missed and landed punches, etc.). This will allow to simulate and rehearse the upcoming fight and improve readiness for the next opponent. For amateur fighters, SSS will be reconfigured several times during a tournament, when the real opponent becomes known. SSS can be used in three versions: (1) Digital Shadow: the athlete will see a Shadow on a monitor (2) VR-Shadow: the athlete will see a Shadow in a VR-glasses (3) Smart Shadow: a Shadow will be controlled by artificial intelligence. These technologies are based on the ‘semi-real simulation’ method. The technology allows coaches to train athletes remotely. Simulation of different opponents will help the athletes better prepare for competition. Repeat rehearsals of the upcoming fight will help improve results. SSS can improve results in Boxing, Taekwondo, Karate, and Fencing. 41 sets of medals will be awarded in these sports at the 2020 Olympic Games.Keywords: boxing, combat sports, fight simulation, shadow sparring
Procedia PDF Downloads 1302562 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.
Authors: Zabeehullah, Fahim Arif, Yawar Abbas
Abstract:
Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.Keywords: SDN, IoT, DL, ML, DRS
Procedia PDF Downloads 1102561 Addressing Primary Care Clinician Burnout in a Value Based Care Setting During the COVID-19 Pandemic
Authors: Robert E. Kenney, Efrain Antunez, Samuel Nodal, Ameer Malik, Richard B. Aguilar
Abstract:
Physician burnout has gained much attention during the COVID pandemic. After-hours workload, HCC coding, HEDIS metrics, and clinical documentation negatively impact career satisfaction. These and other influences have increased the rate of physicians leaving the workforce. In addition, roughly 1% of the entire physician workforce will be retiring earlier than expected based on pre-pandemic trends. The two Medical Specialties with the highest rates of burnout are Family Medicine and Primary Care. With a predicted shortage of primary care physicians looming, the need to address physician burnout is crucial. Commonly reported issues leading to clinician burnout are clerical documentation requirements, increased time working on Electronic Health Records (EHR) after hours, and a decrease in work-life balance. Clinicians experiencing burnout with physical and emotional exhaustion are at an increased likelihood of providing lower quality and less efficient patient care. This may include a lack of suitable clinical documentation, medication reconciliation, clinical assessment, and treatment plans. While the annual baseline turnover rates of physicians hover around 6-7%, the COVID pandemic profoundly disrupted the delivery of healthcare. A report found that 43% of physicians switched jobs during the initial two years of the COVID pandemic (2020 and 2021), tripling the expected average annual rate to 21.5 %/yr. During this same time, an average of 4% and 1.5% of physicians retired or left the workforce for a non-clinical career, respectively. The report notes that 35.2% made career changes for a better work-life balance and another 35% reported the reason as being unhappy with their administration’s response to the pandemic. A physician-led primary care-focused health organization, Cano Health (CH), based out of Florida, sought to preemptively address this problem by implementing several supportive measures. Working with >120 clinics and >280 PCPs from Miami to Tampa and Orlando, managing nearly 120,000 Medicare Advantage lives, CH implemented a number of changes to assist with the clinician’s workload. Supportive services such as after hour and home visits by APRNs, in-clinic care managers, and patient educators were implemented. In 2021, assistive Artificial Intelligence Software (AIS) was integrated into the EHR platform. This AIS converts free text within PDF files into a usable (copy-paste) format facilitating documentation. The software also systematically and chronologically organizes clinical data, including labs, medical records, consultations, diagnostic images, medications, etc., into an easy-to-use organ system or chronic disease state format. This reduced the excess time and documentation burden required to meet payor and CMS guidelines. A clinician Documentation Support team was employed to improve the billing/coding performance. The effects of these newly designed workflow interventions were measured via analysis of clinician turnover from CH’s hiring and termination reporting software. CH’s annualized average clinician turnover rate in 2020 and 2021 were 17.7% and 12.6%, respectively. This represents a 30% relative reduction in turnover rate compared to the reported national average of 21.5%. Retirement rates during both years were 0.1%, demonstrating a relative reduction of >95% compared to the national average (4%). This model successfully promoted the retention of clinicians in a Value-Based Care setting.Keywords: clinician burnout, COVID-19, value-based care, burnout, clinician retirement
Procedia PDF Downloads 812560 Electrochemical Behaviour of 2014 and 2024 Al-Cu-Mg Alloys of Various Tempers
Authors: K. S. Ghosh, Sagnik Bose, Kapil Tripati
Abstract:
Potentiodynamic polarization studies carried out on AA2024 and AA2014 Al-Cu-Mg alloys of various tempers in 3.5 wt. % NaCl and in 3.5 wt. % NaCl + 1.0 % H2O2 solution characteristic E-i curves. Corrosion potential (Ecorr) value has shifted towards more negative potential with the increase of artificial aging time. The Ecorr value for the alloy tempers has also shifted anodically in presence of H2O2 in 3.5 % NaCl solution. Further, passivity phenomenon has been observed in all the alloy tempers when tested in 3.5 wt. % NaCl solution at pH 12. Stress corrosion cracking (SCC) behaviour of friction stir weld (FSW) joint of AA2014 alloy has been studied bu slow strain rate test (SSRT) in 3.5 wt. % NaCl solution. Optical micrographs of the corroded surfaces of polarised samples showed general corrosion, extensive pitting and intergranular corrosion as well. Further, potentiodynamic cyclic polarization curves displayed wide hysteresis loop indicating that the alloy tempers are susceptible to pit growth damage. Attempts have been made to explain the variation of observed electrochemical and SCC behaviour of the alloy tempers and the electrolyte conditions with the help of microstructural features.Keywords: AA 2014 and AA 2024 Al-C-Mg alloy, artificial ageing, potentiodynamic polarization, TEM micrographs, stress corrosion cracking (SCC)
Procedia PDF Downloads 3332559 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang
Abstract:
Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.Keywords: CNN, classification, deep learning, GAN, Resnet50
Procedia PDF Downloads 862558 Effects of Using a Recurrent Adverse Drug Reaction Prevention Program on Safe Use of Medicine among Patients Receiving Services at the Accident and Emergency Department of Songkhla Hospital Thailand
Authors: Thippharat Wongsilarat, Parichat tuntilanon, Chonlakan Prataksitorn
Abstract:
Recurrent adverse drug reactions are harmful to patients with mild to fatal illnesses, and affect not only patients but also their relatives, and organizations. To compare safe use of medicine among patients before and after using the recurrent adverse drug reaction prevention program . Quasi-experimental research with the target population of 598 patients with drug allergy history. Data were collected through an observation form tested for its validity by three experts (IOC = 0.87), and analyzed with a descriptive statistic (percentage). The research was conducted jointly with a multidisciplinary team to analyze and determine the weak points and strong points in the recurrent adverse drug reaction prevention system during the past three years, and 546, 329, and 498 incidences, respectively, were found. Of these, 379, 279, and 302 incidences, or 69.4; 84.80; and 60.64 percent of the patients with drug allergy history, respectively, were found to have caused by incomplete warning system. In addition, differences in practice in caring for patients with drug allergy history were found that did not cover all the steps of the patient care process, especially a lack of repeated checking, and a lack of communication between the multidisciplinary team members. Therefore, the recurrent adverse drug reaction prevention program was developed with complete warning points in the information technology system, the repeated checking step, and communication among related multidisciplinary team members starting from the hospital identity card room, patient history recording officers, nurses, physicians who prescribe the drugs, and pharmacists. Including in the system were surveillance, nursing, recording, and linking the data to referring units. There were also training concerning adverse drug reactions by pharmacists, monthly meetings to explain the process to practice personnel, creating safety culture, random checking of practice, motivational encouragement, supervising, controlling, following up, and evaluating the practice. The rate of prescribing drugs to which patients were allergic per 1,000 prescriptions was 0.08, and the incidence rate of recurrent drug reaction per 1,000 prescriptions was 0. Surveillance of recurrent adverse drug reactions covering all service providing points can ensure safe use of medicine for patients.Keywords: recurrent drug, adverse reaction, safety, use of medicine
Procedia PDF Downloads 4552557 Efficient GIS Based Public Health System for Disease Prevention
Authors: K. M. G. T. R. Waidyarathna, S. M. Vidanagamachchi
Abstract:
Public Health System exists in Sri Lanka has a satisfactory complete information flow when compared to other systems in developing countries. The availability of a good health information system contributed immensely to achieve health indices that are in line with the developed countries like US and UK. The health information flow at the moment is completely paper based. In Sri Lanka, the fields like banking, accounting and engineering have incorporated information and communication technology to the same extent that can be observed in any other country. The field of medicine has behind those fields throughout the world mainly due to its complexity, issues like privacy, confidentially and lack of people with knowledge in both fields of Information Technology (IT) and Medicine. Sri Lanka’s situation is much worse and the gap is rapidly increasing with huge IT initiatives by private-public partnerships in all other countries. The major goal of the framework is to support minimizing the spreading diseases. To achieve that a web based framework should be implemented for this application domain with web mapping. The aim of this GIS based public health system is a secure, flexible, easy to maintain environment for creating and maintaining public health records and easy to interact with relevant parties.Keywords: DHIS2, GIS, public health, Sri Lanka
Procedia PDF Downloads 5622556 Integrating Artificial Intelligence (AI) into Education-Stakeholder Engagement and ICT Practices for Complex Systems: A Governance Framework for Addressing Counseling Gaps in Higher Education
Authors: Chinyere Ori Elom, Ikechukwu Ogeze Ukeje, Chukwudum Collins Umoke
Abstract:
This paper aims to stimulate scholarly interest in AI, ICT and the existing (complex) systems trajectory- theory, practice, and aspirations within the African continent and to shed fresh light on the shortcomings of the higher education sector (HEs) through the prism of AI-driven Solutions for enhancing Guidance and Counseling and sound governance framework (SGF) in higher education modeling. It further seeks to investigate existing prospects yet to be realized in Nigerian universities by probing innovation neglect in the localities, exploring practices in the global ICT spaces neglected by Nigeria universities’ governance regimes (UGRs), and suggesting area applicability, sustainability and solution modeling in response to peculiar ‘wicked ICT-driven problems’ and or issues facing the continent as well as other universities in emerging societies. This study will adopt a mixed-method approach to collect both qualitative and quantitative data. This paper argues that it will command great relevance in the local and global university system by developing ICT relevance sustainability policy initiatives (SPIs) powered by a multi-stakeholder engagement governance model (MSEGm) that is sufficiently dynamic, eclectic and innovative to surmount complex and constantly rising challenges of the modern-developing world. Hence, it will consider diverse actors both as producers and users alike as victims and beneficiaries of common concerns in the ICT world; thereby providing pathways on how AI’s integration into education governance can significantly reduce counseling gaps, ensuring more students are attended to especially when human counselors are unavailable.Keywords: AI-counseling solution, stakeholder engagement, university governance, higher education
Procedia PDF Downloads 142555 The Missing Link in Holistic Health Care: Value-Based Medicine in Entrustable Professional Activities for Doctor-Patient Relationship
Authors: Ling-Lang Huang
Abstract:
Background: The holistic health care should ideally cover physical, mental, spiritual, and social aspects of a patient. With very constrained time in current clinical practice system, medical decisions often tip the balance in favor of evidence-based medicine (EBM) in comparison to patient's personal values. Even in the era of competence-based medical education (CBME), when scrutinizing the items of entrustable professional activities (EPAs), we found that EPAs of establishing doctor-patient relationship remained incomplete or even missing. This phenomenon prompted us to raise this project aiming at advocating value-based medicine (VBM), which emphasizes the importance of patient’s values in medical decisions. A true and effective doctor-patient communication and relationship should be a well-balanced harmony of EBM and VBM. By constructing VBM into current EPAs, we can further promote genuine shared decision making (SDM) and fix the missing link in holistic health care. Methods: In this project, we are going to find out EPA elements crucial for establishing an ideal doctor-patient relationship through three distinct pairs of doctor-patient relationships: patients with pulmonary arterial hypertension (relatively young but with grave disease), patients undergoing surgery (facing critical medical decisions), and patients with terminal diseases (facing forthcoming death). We’ll search for important EPA elements through the following steps: 1. Narrative approach to delineate patients’ values among 2. distinct groups. 3.Hermeneutics-based interview: semi-structured interview will be conducted for both patients and physicians, followed by qualitative analysis of collected information by compiling, disassembling, reassembling, interpreting, and concluding. 4. Preliminarily construct those VBM elements into EPAs for doctor-patient relationships in 3 groups. Expected Outcomes: The results of this project are going to give us invaluable information regarding the impact of patients’ values, while facing different medical situations, on the final medical decision. The competence of well-blending and -balanced both values from patients and evidence from clinical sciences is the missing link in holistic health care and should be established in future EPAs to enhance an effective SDM.Keywords: value-based medicine, shared decision making, entrustable professional activities, holistic health care
Procedia PDF Downloads 121