Search results for: Ezekiel Green
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2156

Search results for: Ezekiel Green

656 Advancing Sustainable Development in the Construction Industry: A Theoretical Framework for Integrating Sustainable Project Management

Authors: Francis Kwesi Bondinuba, Seidu Abdullah, Nelly Bondinuba

Abstract:

Purpose: The study proposes a theoretical framework for integrating sustainable project management in the construction sector, addressing the need for sustainable development practices. Methodology: The study adopts a theoretical approach by reviewing existing literature on sustainable development and project management in the construction industry. It analyses various concepts, theories, and frameworks to develop a comprehensive theoretical framework for integrating sustainable project management. Findings: The study emphasizes the importance of incorporating sustainable development practices into construction project management, focusing on collaboration, stakeholder engagement, and continuous improvement to achieve environmental conservation, social responsibility, and economic viability. Conclusion: Sustainable Project Management (SPM) in Ghana's construction industry is challenging due to lack of awareness, regulatory frameworks, financial constraints, and skill shortages, despite its benefits in promoting social inclusivity, job creation, and environmental resilience. Recommendation: The construction industry in Ghana should adopt a comprehensive approach involving local communities, government bodies, and environmental organizations. It should utilize green materials and technologies and effectively manage waste. Originality: This study presents a theoretical framework for sustainable project management in construction. It emphasizes collaboration and stakeholder engagement for long-term sustainable outcomes and considers environmental, social, and economic aspects.

Keywords: construction industry, theoretical framework, integration, project management, sustainable development

Procedia PDF Downloads 30
655 Energetics of Photosynthesis with Respect to the Environment and Recently Reported New Balanced Chemical Equation

Authors: Suprit Pradhan, Sushil Pradhan

Abstract:

Photosynthesis is a physiological process where green plants prepare their food from carbon dioxide from the atmosphere and water being absorbed from the soil in presence of sun light and chlorophyll. From this definition it is clear that four reactants (Carbon Dioxide, Water, Light and Chlorophyll) are essential for the process to proceed and the product is a sugar or carbohydrate ultimately stored as starch. The entire process has “Light Reaction” (Photochemical) and “Dark Reaction” (Biochemical). Biochemical reactions are very much complicated being catalysed by various enzymes and the path of carbon is known as “Calvin Cycle” according to the name of its discover. The overall reaction which is now universally accepted can be explained like this. Six molecules of carbon dioxide react with twelve molecules of water in presence of chlorophyll and sun light to give only one molecule of sugar (Carbohydrate) six molecules of water and six molecules of oxygen is being evolved in gaseous form. This is the accepted equation and also chemically balanced. However while teaching the subject the author came across a new balanced equation from among the students who happened to be the daughter of the author. In the new balanced equation in place of twelve water molecules in the reactant side seven molecules can be expressed and accordingly in place of six molecules of water in the product side only one molecule of water is produced. The energetics of the photosynthesis as related to the environment and the newly reported balanced chemical equation has been discussed in detail in the present research paper presentation in this international conference on energy, environmental and chemical engineering.

Keywords: biochemistry, enzyme , isotope, photosynthesis

Procedia PDF Downloads 509
654 Evaluation of the Spatial Performance of Ancient Cities in the Context of Landscape Architecture

Authors: Elvan Ender Altay, Zeynep Pirselimoglu Batman, Murat Zencirkiran

Abstract:

Ancient cities are, according to United Nations Educational, Scientific and Cultural Organization (UNESCO), landscape areas designed and created by people, at the same time naturally developing and constantly changing sustainable cultural landscapes. Ancient cities are the urban settlements where we can see the reflection of public lifestyle existed thousands of years ago. The conceptual and spatial traces in ancient cities, are crucial for examining the city history and its preservation. This study is intended to demonstrate the impacts of human life and physical environment on the cultural landscape. This research aims to protect and maintain cultural continuity of the ancient cities in Bursa which contain archeological and historical elements and could not majorly reach to the day because of not being protected and to show importance of landscape architecture to ensure this protection. In this context, ancient cities in Bursa were researched and a total of 7 ancient cities were identified. These ancient cities are; Apollonia, Lopadion, Nicaea, Myrleia, Cius, Daskyleion and Basilinopolis. In the next stage, the spatial performances of ancient cities were assessed by weighted criteria method. The highest score is the Nicaea Ancient City. Considering current situation of the ancient cities in Bursa, it is seen that most of them could not survive until our day due to lack of interest in these areas. As a result, according to the findings, it is a priority to create a protective band with green areas around the archaeological sites, thus adapting to nearby areas and emphasizing culture. In addition, proposals have been made to provide a transportation network that does not harm the ancient cities and the cultural landscape.

Keywords: ancient cities, Bursa, landscape, spatial performance

Procedia PDF Downloads 201
653 Second Generation Biofuels: A Futuristic Green Deal for Lignocellulosic Waste

Authors: Nivedita Sharma

Abstract:

The global demand for fossil fuels is very high, but their use is not sustainable since its reserves are declining. Additionally, fossil fuels are responsible for the accumulation of greenhouse gases. The emission of greenhouse gases from the transport sector can be reduced by substituting fossil fuels by biofuels. Thus, renewable fuels capable of sequestering carbon dioxide are in high demand. Second‐generation biofuels, which require lignocellulosic biomass as a substrate and ultimately producing ethanol, fall largely in this category. Bioethanol is a favorable and near carbon-neutral renewable biofuel leading to reduction in tailpipe pollutant emission and improving the ambient air quality. Lignocellulose consists of three main components: cellulose, hemicellulose and lignin which can be converted to ethanol with the help of microbial enzymes. Enzymatic hydrolysis of lignocellulosic biomass in 1st step is considered as the most efficient and least polluting methods for generating fermentable hexose and pentose sugars which subsequently are fermented to power alcohol by yeasts in 2nd step of the process. In the present technology, a complete bioconversion process i.e. potential hydrolytic enzymes i.e. cellulase and xylanase producing microorganisms have been isolated from different niches, screened for enzyme production, identified using phenotyping and genotyping, enzyme production, purification and application of enzymes for saccharification of different lignocellulosic biomass followed by fermentation of hydrolysate to ethanol with high yield is to be presented in detail.

Keywords: cellulase, xylanase, lignocellulose, bioethanol, microbial enzymes

Procedia PDF Downloads 95
652 Electrokinetic Remediation of Nickel Contaminated Clayey Soils

Authors: Waddah S. Abdullah, Saleh M. Al-Sarem

Abstract:

Electrokinetic remediation of contaminated soils has undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar contaminants (such as heavy metals) and nonpolar organic contaminants. It can efficiently be used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. EK processes have proved to be superior to other conventional methods, such as the pump and treat, and soil washing, since these methods are ineffective in such cases. This paper describes the use of electrokinetic remediation to clean up soils contaminated with nickel. Open cells, as well as advanced cylindrical cells, were used to perform electrokinetic experiments. Azraq green clay (low permeability soil, taken from the east part of Jordan) was used for the experiments. The clayey soil was spiked with 500 ppm of nickel. The EK experiments were conducted under direct current of 80 mA and 50 mA. Chelating agents (NaEDTA), disodium ethylene diamine-tetra-ascetic acid was used to enhance the electroremediation processes. The effect of carbonates presence in soils was, also, investigated by use of sodium carbonate. pH changes in the anode and the cathode compartments were controlled by using buffer solutions. The results showed that the average removal efficiency was 64%, for the Nickel spiked saturated clayey soil.Experiment results have shown that carbonates retarded the remediation process of nickel contaminated soils. Na-EDTA effectively enhanced the decontamination process, with removal efficiency increased from 64% without using the NaEDTA to over 90% after using Na-EDTA.

Keywords: buffer solution, contaminated soils, EDTA enhancement, electrokinetic processes, Nickel contaminated soil, soil remediation

Procedia PDF Downloads 244
651 Assessment of the Effect of Cu and Zn on the Growth of Two Chlorophytic Microalgae

Authors: Medina O. Kadiri, John E. Gabriel

Abstract:

Heavy metals are metallic elements with a relatively high density, at least five times greater compared to water. The sources of heavy metal pollution in the environment include industrial, medical, agricultural, pharmaceutical, domestic effluents, and atmospheric sources, mining, foundries, smelting, and any heavy metal-based operation. Although some heavy metals in trace quantities are required for biological metabolism, their higher concentrations elicit toxicities. Others are distinctly toxic and are of no biological functions. Microalgae are the primary producers of aquatic ecosystems and, therefore, the foundation of the aquatic food chain. A study investigating the effects of copper and zinc on the two chlorophytes-Chlorella vulgaris and Dictyosphaerium pulchellum was done in the laboratory, under different concentrations of 0mg/l, 2mg/l, 4mg/l, 6mg/l, 8mg/l, 10mg/l, and 20mg/l. The growth of the test microalgae was determined every two days for 14 days. The results showed that the effects of the test heavy metals were concentration-dependent. From the two microalgae species tested, Chlorella vulgaris showed appreciable growth up to 8mg/l concentration of zinc. Dictyoshphaerium pulchellum had only minimal growth at different copper concentrations except for 2mg/l, which seemed to have relatively higher growth. The growth of the control was remarkably higher than in other concentrations. Generally, the growth of both test algae was consistently inhibited by heavy metals. Comparatively, copper generally inhibited the growth of both algae than zinc. Chlorella vulgaris can be used for bioremediation of high concentrations of zinc. The potential of many microalgae in heavy metal bioremediation can be explored.

Keywords: heavy metals, green algae, microalgae, pollution

Procedia PDF Downloads 193
650 Non-Burn Treatment of Health Care Risk Waste

Authors: Jefrey Pilusa, Tumisang Seodigeng

Abstract:

This research discusses a South African case study for the potential of utilizing refuse-derived fuel (RDF) obtained from non-burn treatment of health care risk waste (HCRW) as potential feedstock for green energy production. This specific waste stream can be destroyed via non-burn treatment technology involving high-speed mechanical shredding followed by steam or chemical injection to disinfect the final product. The RDF obtained from this process is characterised by a low moisture, low ash, and high calorific value which means it can be potentially used as high-value solid fuel. Due to the raw feed of this RDF being classified as hazardous, the final RDF has been reported to be non-infectious and can blend with other combustible wastes such as rubber and plastic for waste to energy applications. This study evaluated non-burn treatment technology as a possible solution for on-site destruction of HCRW in South African private and public health care centres. Waste generation quantities were estimated based on the number of registered patient beds, theoretical bed occupancy. Time and motion study was conducted to evaluate the logistics viability of on-site treatment. Non-burn treatment technology for HCRW is a promising option for South Africa, and successful implementation of this method depends upon the initial capital investment, operational cost and environmental permitting of such technology; there are other influencing factors such as the size of the waste stream, product off-take price as well as product demand.

Keywords: autoclave, disposal, fuel, incineration, medical waste

Procedia PDF Downloads 176
649 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure

Authors: Zekun Lin, Xun Li

Abstract:

Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.

Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling

Procedia PDF Downloads 155
648 Estimation of PM10 Concentration Using Ground Measurements and Landsat 8 OLI Satellite Image

Authors: Salah Abdul Hameed Saleh, Ghada Hasan

Abstract:

The aim of this work is to produce an empirical model for the determination of particulate matter (PM10) concentration in the atmosphere using visible bands of Landsat 8 OLI satellite image over Kirkuk city- IRAQ. The suggested algorithm is established on the aerosol optical reflectance model. The reflectance model is a function of the optical properties of the atmosphere, which can be related to its concentrations. The concentration of PM10 measurements was collected using Particle Mass Profiler and Counter in a Single Handheld Unit (Aerocet 531) meter simultaneously by the Landsat 8 OLI satellite image date. The PM10 measurement locations were defined by a handheld global positioning system (GPS). The obtained reflectance values for visible bands (Coastal aerosol, Blue, Green and blue bands) of landsat 8 OLI image were correlated with in-suite measured PM10. The feasibility of the proposed algorithms was investigated based on the correlation coefficient (R) and root-mean-square error (RMSE) compared with the PM10 ground measurement data. A choice of our proposed multispectral model was founded on the highest value correlation coefficient (R) and lowest value of the root mean square error (RMSE) with PM10 ground data. The outcomes of this research showed that visible bands of Landsat 8 OLI were capable of calculating PM10 concentration with an acceptable level of accuracy.

Keywords: air pollution, PM10 concentration, Lansat8 OLI image, reflectance, multispectral algorithms, Kirkuk area

Procedia PDF Downloads 441
647 Investigating Citizens’ Perceptions and Attitudes toward China’s National Determined Contribution's Energy Restructuring Plan in Linfen City

Authors: Yuan Zhao, Phimsupha Kokchang

Abstract:

As a responsible nation, China has outlined its Nationally Determined Contributions (NDCs) of reaching peak carbon by 2030 and carbon neutrality by 2060. Peak and carbon neutrality are tough goals to achieve, and China must undertake a shift to green energy. In contrast, China's existing energy consumption structure is unsustainable and heavily dependent on coal supplies. China must revise its energy mix planning in order to strengthen energy security and satisfy the requirement for low-carbon energy generation to mitigate climate change. Shanxi Province is one of China's most important coal-producing regions, and Linfen is one of the province's key economic towns. However, Shanxi Province's economic development is severely hampered by the region's high levels of pollution and energy consumption. The purpose of this study is to investigate Linfen citizens' perceptions and attitudes toward China's NDC's energy restructuring plan through questionnaires. The majority of respondents were aware of China's NDCs, as indicated by 402 valid responses to an online questionnaire. Furthermore, respondents' perceptions and attitudes toward renewable energy initiatives are growing. To ensure that the results were dependable and consistent, reliability and validity were examined. According to the findings, the majority of Linfen's citizens believe that renewable energy projects such as solar and wind, which are consistent with China's NDCs, may improve their quality of life, public health, and the nation's economy.

Keywords: China’s NDC, perceptions, attitudes, Linfen, energy restructuring

Procedia PDF Downloads 75
646 Identifying the Traditional Color Scheme in Decorative Patterns Used by the Bahnar Ethnic Group in the Central Highlands of Vietnam

Authors: Nguyen Viet Tan

Abstract:

The Bahnar is one of 11 indigenous groups living in the Central Highlands of Vietnam. It is one among the four most popular groups in this area, including the Mnong who speak the same language of Mon Khmer family, while both groups of the Jrai and the Rhade belong to the Malayo-Polynesian language family. These groups once captured fertile plateaus, left their cultural and artistic heritage which affected the remaining small groups. Despite the difference in ethnic origins, these groups seem to share similar beliefs, customs and related folk arts after a very long time living beside each other. However, through an in-depth study, this paper points out the fact that the decorative patterns used by the Bahnar are different from the other ethnic groups, especially in color. Based on historical materials from the local museums and some studies in 1980s when all of the ethnic groups in this area had still lived in self-sufficient condition, this paper characterizes the traditional color scheme used by the Bahnar and identifies the difference in decorative motifs of this group compared to the others by pointing out they do not use green in their usual decorative patterns. Moreover, combined with some field surveys recently, through comparative analysis, it also discovers stylistic variations of these patterns in the process of cultural exchange with the other ethnic groups, both in and out of the region, in modern living conditions. This study helps to preserve and promote the traditional values and cultural identity of the Bahnar people in the Central Highlands of Vietnam, avoiding the fusion of styles among groups during the cultural exchange.

Keywords: Bahnar ethnic group, decorative patterns, the central highlands of Vietnam, the traditional color scheme

Procedia PDF Downloads 124
645 Agroforestry Systems: A Sustainable Strategy of the Agricultural Systems of Cumaral (Meta), Colombia

Authors: Amanda Silva Parra, Dayra Yisel García Ramirez

Abstract:

In developing countries, agricultural "modernization" has led to a loss of biodiversity and inefficiency of agricultural systems, manifested in increases in Greenhouse Gas Emissions (GHG) and the C footprint, generating the susceptibility of systems agriculture to environmental problems, loss of biodiversity, depletion of natural resources, soil degradation and loss of nutrients, and a decrease in the supply of products that affect food security for peoples and nations. Each year agriculture emits 10 to 12% (5.1 to 6.1 Gt CO2eq per year) of the total estimated GHG emissions (51 Gt CO2 eq per year). The FAO recommends that countries that have not yet done so consider declaring sustainable agriculture as an essential or strategic activity of public interest within the framework of green economies to better face global climate change. The objective of this research was to estimate the balance of GHG in agricultural systems of Cumaral, Meta (Colombia), to contribute to the recovery and sustainable operation of agricultural systems that guarantee food security and face changes generated by the climate in a more intelligent way. To determine the GHG balances, the IPCC methodologies were applied with a Tier 1 and 2 level of use. It was estimated that all the silvopastoral systems evaluated play an important role in this reconversion compared to conventional systems such as improved pastures. and degraded pastures due to their ability to capture C both in soil and in biomass, generating positive GHG balances, guaranteeing greater sustainability of soil and air resources.

Keywords: climate change, carbon capture, environmental sustainability, GHG mitigation, silvopastoral systems

Procedia PDF Downloads 117
644 A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory

Authors: Damir Latypov

Abstract:

A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance.

Keywords: quantum linear system algorithm, boundary integral equations, dense matrices, electromagnetic scattering theory

Procedia PDF Downloads 152
643 The Utilization of Salicylic Acid of the Extract from Avocado Skin as an Inhibitor of Ethylene Production to Keep the Quality of Banana in Storage

Authors: Adira Nofeadri Ryofi, Alvin Andrianus, Anna Khairunnisa, Anugrah Cahyo Widodo, Arbhyando Tri Putrananda, Arsy Imanda N. Raswati, Gita Rahmaningsih, Ina Agustina

Abstract:

The consumption level of fresh bananas from 2005 until 2010, increased from 8.2 to 10 kg/capita/year. The commercial scale of banana generally harvested when it still green to make the banana avoid physical damage, chemical, and disease after harvest and ripe fruit. That first metabolism activity can be used as a synthesis reaction. Ripening fruit was influenced by ethylene hormone that synthesized in fruit which is experiencing ripe and including hormone in the ripening fruit process in klimaterik phase. This ethylene hormone is affected by the respiration level that would speed up the restructuring of carbohydrates inside the fruit, so the weighting of fruit will be decreased. Compared to other klimaterik fruit, banana is a fruit that has a medium ethylene production rate and the rate of respiration is low. The salicylic acid can regulate the result number of the growth process or the development of fruits and plants. Salicylic acid serves to hinder biosynthesis ethylene and delay senses. The research aims to understand the influence of salicylic acid concentration that derived from the waste of avocado skin in inhibition process to ethylene production that the maturation can be controlled, so it can keep the quality of banana for storage. It is also to increase the potential value of the waste of avocado skin that were still used in industrial cosmetics.

Keywords: ethylene hormone, extract avocado skin, inhibitor, salicylic acid

Procedia PDF Downloads 236
642 Comparison of Methods for the Synthesis of Eu+++, Tb+++, and Tm+++ Doped Y2O3 Nanophosphors by Sol-Gel and Hydrothermal Methods for Bioconjugation

Authors: Ravindra P. Singh, Drupad Ram, Dinesh K. Gupta

Abstract:

Rare earth ions doped metal oxides are a class of luminescent materials which have been proved to be excellent for applications in field emission displays and cathode ray tubes, plasma display panels. Under UV irradiation Eu+++ doped Y2O3 is a red phosphor and Tb+++ doped Y 2O3 is a green phosphor. It is possible that, due to their high quantum efficiency, they might serve as improved luminescent markers for identification of biomolecules, as already reported for CdSe and CdSe/ZnS nanocrystals. However, for any biological applications these particle powders must be suspended in water while retaining their phosphorescence. We hereby report synthesis and characterization of Eu+++ and Tb+++ doped yttrium oxide nanoparticles by sol-gel and hydrothermal processes. Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo isopropoxide [Y5O(OPri)13] (crystallized twice) and it’s acetyl acetone modified product [Y(O)(acac)] as precursors. Generally the sol-gel derived metal oxides are required to be annealed to the temperature ranging from 400°C-800°C in order to develop crystalline phases. However, this annealing also results in the development of aggregates which are undesirable for bio-conjugation experiments. In the hydrothermal process, we have achieved crystallinity of the nanoparticles at 300°C and the development of crystalline phases has been found to be proportional to the time of heating of the reactor. The average particle sizes as calculated from XRD were found to be 28 nm, 32 nm, and 34 nm by hydrothermal process. The particles were successfully suspended in chloroform in the presence of trioctyl phosphene oxide and TEM investigations showed the presence of single particles along with agglomerates.

Keywords: nanophosphors, Y2O3:Eu+3, Y2O3:Tb+3, sol-gel, hydrothermal method, TEM, XRD

Procedia PDF Downloads 400
641 Innovative Technology to Sustain Food Security in Qatar

Authors: Sana Abusin

Abstract:

Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). Achieving food security requires three actions: 1) transforming surplus food to those who are insecure; 2) reducing food loss and waste by recycling food into valuable resources such as compost (“green fertilizer”) that can be used in growing food; and, finally, 3) establishing strong enforcement agencies to protect consumers from outdated food and promote healthy food. Currently, these objectives are approached separately and not in a sustainable fashion. Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). The study aims to develop an innovative mobile application that supports a sustainable solution to food insecurity and food waste in Qatar. The application will provide a common solution for many different users. For producers, it will facilitate easy disposal of excess food. For charities, it will notify them about surplus food ready for redistribution. The application will also benefit the second layer of end-users in the form of food recycling companies, who will receive information about available food waste that is unable to be consumed. We will use self-exoplanetary diagrams and digital pictures to show all the steps to the final stage. The aim is to motivate the young generation toward innovation and creation, and to encourage public-private collaboration in this sector.

Keywords: food security, innovative technology, sustainability, food waste, Qatar

Procedia PDF Downloads 121
640 Evaluation of Traditional Housing Texture in Context of Sustainability

Authors: Esra Yaldız, Dicle Aydın

Abstract:

Sustainability is a term that provides deciding about the future considering environment and investigates the harmony and balance between protection and usage of the resource. The main objective of sustainability is creating residential areas is nature compatible or providing continuance thereby adapting existing residential area to nature. In this context, historical and traditional areas must have utilized according to sustainability. Traditional housing texture are identified as a traditional architectural product has been designed based on this term. General characteristics of traditional housing within the context of sustainable architecture are their specific dynamics and components and their harmonisation of environment and nature. Owing to the fact that traditional housing texture harmonizes natural conditions of the region, topography, climate and their context, construction materials are provided from environment and traditional techniques and their forms are used and due to construction materials has natural insulation traditional housing create healthy and comfortable living environment, traditional housing is rather significant in terms of sustainable architecture. The basis of this study comprise the routers in traditional housing design in accordance with the principles of sustainability. These are, accommodating topography, climate, and geography, accessibility, structuring at the scale of human, utilization of green zones, unique to the region used construction materials, the form of construction, building envelope and space organization of dwelling. In this context, the purpose of this study is that vernacular architecture approaches of traditional housing textures which are in Central Anatolia Region Located in Anatolia are utilized with regard to sustainability.

Keywords: Anatolia, sustainability, traditional housing texture, vernacular architecture

Procedia PDF Downloads 452
639 Assessing the Effects of Land Use Spatial Structure on Urban Heat Island Using New Launched Remote Sensing in Shenzhen, China

Authors: Kai Liua, Hongbo Sua, Weimin Wangb, Hong Liangb

Abstract:

Urban heat island (UHI) has attracted attention around the world since they profoundly affect human life and climatological. Better understanding the effects of landscape pattern on UHI is crucial for improving the ecological security and sustainability of cities. This study aims to investigate how landscape composition and configuration would affect UHI in Shenzhen, China, based on the analysis of land surface temperature (LST) in relation landscape metrics, mainly with the aid of three new satellite sensors launched by China. HJ-1B satellite system was utilized to estimate surface temperature and comprehensively explore the urban thermal spatial pattern. The landscape metrics of the high spatial resolution remote sensing satellites (GF-1 and ZY-3) were compared and analyzed to validate the performance of the new launched satellite sensors. Results show that the mean LST is correlated with main landscape metrics involving class-based metrics and landscape-based metrics, suggesting that the landscape composition and the spatial configuration both influence UHI. These relationships also reveal that urban green has a significant effect in mitigating UHI in Shenzhen due to its homogeneous spatial distribution and large spatial extent. Overall, our study not only confirm the applicability and effectiveness of the HJ-1B, GF-1 and ZY-3 satellite system for studying UHI but also reveal the impacts of the urban spatial structure on UHI, which is meaningful for the planning and management of the urban environment.

Keywords: urban heat island, Shenzhen, new remote sensing sensor, remote sensing satellites

Procedia PDF Downloads 404
638 Investigations of Metals and Metal-Antibrowning Agent Effects on Polyphenol Oxidase Activity from Red Poppy Leaf

Authors: Gulnur Arabaci

Abstract:

Heavy metals are one of the major groups of contaminants in the environment and many of them are toxic even at very low concentration in plants and animals. However, some metals play important roles in the biological function of many enzymes in living organisms. Metals such as zinc, iron, and cooper are important for survival and activity of enzymes in plants, however heavy metals can inhibit enzyme which is responsible for defense system of plants. Polyphenol oxidase (PPO) is a copper-containing metalloenzyme which is responsible for enzymatic browning reaction of plants. Enzymatic browning is a major problem for the handling of vegetables and fruits in food industry. It can be increased and effected with many different futures such as metals in the nature and ground. In the present work, PPO was isolated and characterized from green leaves of red poppy plant (Papaver rhoeas). Then, the effect of some known antibrowning agents which can form complexes with metals and metals were investigated on the red poppy PPO activity. The results showed that glutathione was the most potent inhibitory effect on PPO activity. Cu(II) and Fe(II) metals increased the enzyme activities however, Sn(II) had the maximum inhibitory effect and Zn(II) and Pb(II) had no significant effect on the enzyme activity. In order to reduce the effect of heavy metals, the effects of metal-antibrowning agent complexes on the PPO activity were determined. EDTA and metal complexes had no significant effect on the enzyme. L-ascorbic acid and metal complexes decreased but L-ascorbic acid-Cu(II)-complex had no effect. Glutathione–metal complexes had the best inhibitory effect on Red poppy leaf PPO activity.

Keywords: inhibition, metal, red poppy, poly phenol oxidase (PPO)

Procedia PDF Downloads 327
637 Ecological Implication of Air Pollution From Quarrying and Stone Cutting Industries on Agriculture and Plant Biodiversity Around Quarry Sites in Mpape, Bwari Area Council, FCT, Abuja

Authors: Muhammed Rabiu, Moses S. Oluyomi, Joshua Olorundare

Abstract:

Quarry activities are important to modern day life and the socio-economic development of local communities. Unfortunately, this industry is usually associated with air pollution. To assess the impact of quarry dust on plant biodiversity and agriculture, PM2.5, PM10 and some meteorological parameters were measured using Gas analyzer, handheld thermometer and Multifunction Anemometer (PCE-EM 888) as well as taking a social survey. High amount of particulate matters that exceeded the international standard were recorded at the study locations which include the Julius Berger Quarry and 1km away from the quarry site which serve as the base for the farmlands. The correlation coefficient between the particulate matters with the meteorological parameters of the locations all show a strong relationship with temperature recording a stronger value of 0.952 and 0.931 for PM2.5 and PM10 respectively. Similarly, the coefficient of determination 0.906 and 0.866 shows that temperature has the highest meteorological percentage variation on PM2.5 and PM10. Furthermore, a notable negative impact of quarrying on plant biodiversity and local farm crops are also revealed based on respondents’ results where wide range of local plants were affected with Maize and Azadiracta indica (Neem) been the most with respondent of 31.5% and 27.5%. According to the obtained results, it is highly recommended to develop green belt surrounding the quarrying using pollutant-tolerant trees (usually with broad leaves) in order to restrict spreading of quarrying dust via intercepting, filtering and absorbing pollutants.

Keywords: agriculture, air pollution, biodiversity, quarry

Procedia PDF Downloads 82
636 Brand Creation for Community Product: A Case Study at Samut Songkram, Thailand

Authors: Cholpassorn Sitthiwarongchai

Abstract:

The purposes of this paper were to search for the uniqueness of community products from Bang Khonthi District, Samut Songkram Province, Thailand and to create a proper brand for the community products. Four important questions were asked to identify the uniqueness of the community products. The first question: What is the brand of coconut sugar that community wants to imply? The answer was 100 percent authentic coconut sugar. The second question: What is the nature of this product? The answer was that it is a natural product without any harmful chemical. The third question is: Who are the target customers? The answer was that homemakers and tourists are target customers. The fourth question: What is the brand guarantee to customers? The answer was that the brand guarantees that the product is 100 percent natural process with a high quality and it is a community production. The findings revealed that in terms of product, customers rated quality and package as the two most important factors. In terms of price, customers rated lower price and a visible label as the two most important factors. In terms of place, customer rated layout and the cleanliness of the place as the two most important factors. In terms of promotion, customer rated public relations and brochure at the store as the most important factors. From the group discussion, the local community agreed that the brand for the community coconut sugar of Salapi community should be a picture of a green coconut tree and yellow color background. This brand implies the strength of community and authentic of the high quality natural product.

Keywords: coconut sugar, community brand, Samut Songkram, natural product

Procedia PDF Downloads 396
635 A Comparative Analysis Approach Based on Fuzzy AHP, TOPSIS and PROMETHEE for the Selection Problem of GSCM Solutions

Authors: Omar Boutkhoum, Mohamed Hanine, Abdessadek Bendarag

Abstract:

Sustainable economic growth is nowadays driving firms to extend toward the adoption of many green supply chain management (GSCM) solutions. However, the evaluation and selection of these solutions is a matter of concern that needs very serious decisions, involving complexity owing to the presence of various associated factors. To resolve this problem, a comparative analysis approach based on multi-criteria decision-making methods is proposed for adequate evaluation of sustainable supply chain management solutions. In the present paper, we propose an integrated decision-making model based on FAHP (Fuzzy Analytic Hierarchy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) to contribute to a better understanding and development of new sustainable strategies for industrial organizations. Due to the varied importance of the selected criteria, FAHP is used to identify the evaluation criteria and assign the importance weights for each criterion, while TOPSIS and PROMETHEE methods employ these weighted criteria as inputs to evaluate and rank the alternatives. The main objective is to provide a comparative analysis based on TOPSIS and PROMETHEE processes to help make sound and reasoned decisions related to the selection problem of GSCM solution.

Keywords: GSCM solutions, multi-criteria analysis, decision support system, TOPSIS, FAHP, PROMETHEE

Procedia PDF Downloads 162
634 How Reverse Logistics Can Improve the Sustainability Performance of a Business?

Authors: Taknaz Banihashemi, Jiangang Fei, Peggy Shu-Ling Chen

Abstract:

Reverse logistics (RL) is a part of the logistics of companies and its aim is to reclaim value from the returned products in an environmentally friendly manner. In recent years, RL has attracted significant attention among both practitioners and academics due to environmental directives and governmental legislation, consumer concerns and social responsibilities for environment, awareness of the limits of natural resources and economic potential. Sustainability development is considered as a critical goal for organisations due to its impact on competitive advantage. With growing environmental concerns and legal regulations related to green and sustainability issues, product disposition through RL can be considered as an environmental, economic and social sound way to achieve sustainable development. When employed properly, RL can help firms to improve their sustainability performance. The aim of this paper is to investigate the sustainability issues in the context of RL in the perspective of the triple-bottom-line approach. Content analysis was used to collect the information. The findings show that there is a research gap to investigate the relationship between RL and sustainability performance. Most of the studies have focused on performance evaluation of RL by considering the factors related to economic and environmental performance. RL can have significant effects on social issues along with economic and environmental issues. The inclusion of the social aspect in the sustainability performance will provide a complete and holistic picture of how RL may impact on the sustainability performance of firms. Generally, there is a lack of research on investigating the relationship between RL and sustainability by integrating the three pillars of triple-bottom-line sustainability performance. This paper provides academics and researchers a broad view of the correlations between RL and sustainability performance.

Keywords: verse Logistics, review, sustainability, sustainability performance

Procedia PDF Downloads 152
633 Energy Efficient Buildings in Tehran by Reviewing High-Tech Methods and Vernacular Architecture Principles

Authors: Shima Naderi, Abbas Abbaszadeh Shahri

Abstract:

Energy resources are reachable and affordable in Iran, thus surplus access to fossil fuels besides high level of economic growth leads to serious environmental critical such as pollutants and greenhouse gases in the atmosphere, increase in average degrease and lack of water sources specially in Tehran as a capital city of Iran. As building sector consumes a huge portion of energy, taking actions towards alternative sources of energy as well as conserving non-renewable energy resources and architectural energy saving methods are the fundamental basis for achieving sustainability`s goals. This study tries to explore implantation of both high technologies and traditional issues for reduction of energy demands in buildings of Tehran and introduce some factors and instructions for achieving this purpose. Green and energy efficient buildings such as ZEBs make it possible to preserve natural resources for the next generations by reducing pollution and increasing ecosystem self-recovery. However ZEB is not widely spread in Iran because of its low economic efficiency, it is not viable for a private entrepreneur without the governmental supports. Therefore executing of Architectural Energy Efficiency can be a better option. It is necessary to experience a substructure expansion with respect to traditional residential building style. Renewable energies and passive design which are the substantial part of the history of architecture in Iran can be regenerated and employed as an essential part of designing energy efficient buildings.

Keywords: architectural energy efficiency, passive design, renewable energies, zero energy buildings

Procedia PDF Downloads 357
632 Improved Reuse and Storage Performances at Room Temperature of a New Environmental-Friendly Lactate Oxidase Biosensor Made by Ambient Electrospray Deposition

Authors: Antonella Cartoni, Mattea Carmen Castrovilli

Abstract:

A biosensor for lactate detection has been developed using an environmentally friendly approach. The biosensor is based on lactate oxidase (LOX) and has remarkable capabilities for reuse and storage at room temperature. The manufacturing technique employed is ambient electrospray deposition (ESD), which enables efficient and sustainable immobilization of the LOX enzyme on a cost-effective com-mercial screen-printed Prussian blue/carbon electrode (PB/C-SPE). The study demonstrates that the ESD technology allows the biosensor to be stored at ambient pressure and temperature for extended periods without affecting the enzymatic activity. The biosensor can be stored for up to 90 days without requiring specific storage conditions, and it can be reused for up to 24 measurements on both freshly prepared electrodes and electrodes that are three months old. The LOX-based biosensor exhibits a lin-ear range of lactate detection between 0.1 and 1 mM, with a limit of detection of 0.07±0.02 mM. Ad-ditionally, it does not exhibit any memory effects. The immobilization process does not involve the use of entrapment matrices or hazardous chemicals, making it environmentally sustainable and non-toxic compared to current methods. Furthermore, the application of a electrospray deposition cycle on previously used biosensors rejuvenates their performance, making them comparable to freshly made biosensors. This highlights the excellent recycling potential of the technique, eliminating the waste as-sociated with disposable devices.

Keywords: green friendly, reuse, storage performance, immobilization, matrix-free, electrospray deposition, biosensor, lactate oxidase, enzyme

Procedia PDF Downloads 63
631 Characterization of Volatile Compounds in Meat Lamb Fed in Different Algeria Pasture

Authors: Nabila Berrighi, Kaddour Bouderoua, Maria Khossif, Gema Nieto, Gaspar Ros

Abstract:

Ruminant meat is an important source of nutrients and is also of high sensory value. However, the importance and nature of these characteristics depend on ruminant nutrition. The objective of this study is to assess the effect of two Algerian feeding systems applied in the steppic rearing area of Djelfa and in the highlands one of Tiaret on the growth performance of lambs and on their meat quality, especially on their aroma compounds of meat. At the beginning of the experiment, lambs had an average body weight of 34.04 kg, and 35.40 kg for the group reared at Highland (0% concentrate) and Steppe (30% concentrate), respectively. The incorporation of the concentrated feed in Steppe had a significant effect on slaughter weight compared to lambs fed only on pasture (Highland) (49.72 Kg vs. 42.06 Kg, P<0.05). Beyond the first month, animals from the Steppe one showed better weight gains compared to those from Highland (14.32Kg vs. 8.02 Kg, respectively, P<0,05). After slaughter, samples from the Longissimus thoracis were removed and analyzed. The results point to significant differences in the amounts of many of the predominant volatile compounds between both groups (p<0.05), such as Hexanal, 2-methyl-3-furanthiol and nonanal (8.92 μg/kg vs. 4.57 μg/kg), (8.88 μg/kg vs. 7.45 μg/kg) and (2.09 μ/kg vs. 1.02 μg/kg) associated with smells of green, boiling meat and orange fruit, respectively. These compounds, measured by olfactometry, derived from the oxidation of lipids and appear to be responsible for the characteristic flavor of lamb meat in the steppe compared to that generated by meat from animals from the Highland pastures. The Algerian Steppe ecosystem is very interesting for outdoor sheep breeding, which allows to obtain attractive sensory quality and in the production of typical lamb meat that can be considered as a label.

Keywords: falvour, growth performance, lamb meat, steppe pasture

Procedia PDF Downloads 99
630 Rapid Identification and Diagnosis of the Pathogenic Leptospiras through Comparison among Culture, PCR and Real Time PCR Techniques from Samples of Human and Mouse Feces

Authors: S. Rostampour Yasouri, M. Ghane, M. Doudi

Abstract:

Leptospirosis is one of the most significant infectious and zoonotic diseases along with global spreading. This disease is causative agent of economoic losses and human fatalities in various countries, including Northern provinces of Iran. The aim of this research is to identify and compare the rapid diagnostic techniques of pathogenic leptospiras, considering the multifacetedness of the disease from a clinical manifestation and premature death of patients. In the spring and summer of 2020-2022, 25 fecal samples were collected from suspected leptospirosis patients and 25 Fecal samples from mice residing in the rice fields and factories in Tonekabon city. Samples were prepared by centrifugation and passing through membrane filters. Culture technique was used in liquid and solid EMJH media during one month of incubation at 30°C. Then, the media were examined microscopically. DNA extraction was conducted by extraction Kit. Diagnosis of leptospiras was enforced by PCR and Real time PCR (SYBR Green) techniques using lipL32 specific primer. Out of the patients, 11 samples (44%) and 8 samples (32%) were determined to be pathogenic Leptospira by Real time PCR and PCR technique, respectively. Out of the mice, 9 Samples (36%) and 3 samples (12%) were determined to be pathogenic Leptospira by the mentioned techniques, respectively. Although the culture technique is considered to be the gold standard technique, but due to the slow growth of pathogenic Leptospira and lack of colony formation of some species, it is not a fast technique. Real time PCR allowed rapid diagnosis with much higher accuracy compared to PCR because PCR could not completely identify samples with lower microbial load.

Keywords: culture, pathogenic leptospiras, PCR, real time PCR

Procedia PDF Downloads 83
629 Optimising Light Conditions for Recombinant Protein Production in the Microalgal Chlamydomonas reinhardtii Chloroplast

Authors: Saskya E. Carrera P., Ben Hankamer, Melanie Oey

Abstract:

The green alga C. reinhardtii provides a platform for the cheap, scalable, and safe production of complex proteins. Despite gene expression in photosynthetic organisms being tightly regulated by light, most expression studies have analysed chloroplast recombinant protein production under constant light. Here the influence of illumination time and intensity on GFP and a GFP-PlyGBS (bacterial-lysin) fusion protein expression was investigated. The expression of both proteins was strongly influenced by the light regime (6-24 hr illumination per day), the light intensity (0-450 E m⁻²s⁻¹) and growth condition (photoautotrophic, mixotrophic and heterotrophic). Heterotrophic conditions resulted in relatively low recombinant protein yields per unit volume, despite high protein yields per cell, due to low growth rates. Mixotrophic conditions exhibited the highest yields at 6 hrs illumination at 200µE m⁻²s⁻¹ and under continuous low light illumination (13-16 mg L⁻¹ GFP and 1.2-1.6 mg L⁻¹ GFP-PlyGBS), as these conditions supported good cell growth and cellular protein yields. A ~23-fold increase in protein accumulation per cell and ~9-fold increase L⁻¹ culture was observed compared to standard constant 24 hr illumination for GFP-PlyGBS. The highest yields under photoautotrophic conditions were obtained under 9 hrs illumination (6 mg L⁻¹ GFP and 2.1 mg L⁻¹ GFP-PlyGBS). This represents a ~4-fold increase in cellular protein accumulation for GFP-PlyGBS. On a volumetric basis the highest yield was at 15 hrs illumination (~2-fold increase L⁻¹ over the constant light for GFP-PlyGBS). Optimising illumination conditions to balance growth and protein expression can thus significantly enhance overall recombinant protein production in C. reinhardtii cultures.

Keywords: chlamydomonas reinhardtii, light, mixotrophic, recombinant protein

Procedia PDF Downloads 252
628 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction

Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li

Abstract:

Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.

Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable

Procedia PDF Downloads 75
627 Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran

Authors: Majid AghaAlikhani, Mostafa Hojati, Saeid Satari-Yuzbashkandi

Abstract:

This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure.

Keywords: Cobbe Douglas function, economical analysis, energy efficiency, energy use patterns, soybean

Procedia PDF Downloads 333