Search results for: energy and water consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17252

Search results for: energy and water consumption

2162 Nutritional Composition of Provitamin A-Biofortified Amahewu, a Maize Based Beverage with Potential to Alleviate Vitamin A Deficiency

Authors: Temitope D. Awobusuyi, Eric O. Amonsou, Muthulisi Siwela

Abstract:

Amahewu, a lactic acid fermented non-alcoholic maize based beverage is widely consumed in Southern Africa. It is traditionally made with white maize which is deficient in vitamin A. Provitamin A-biofortified maize has been developed for use as a complementary strategy to alleviate vitamin A deficiency. In this study the nutritional composition and protein digestibility of amahewu produced using provitamin A-biofortified maize was determined. Provitamin A-biofortified amahewu was processed by fermenting cooked maize porridge using malted provitamin A-biofortified maize, wheat bran and lactobacillus mixed starter culture with either malted maize or wheat bran. The total provitamin A content in amahewu products ranged from 3.3-3.8 μg/g (DW). The % retention of total provitamin A ranged from 79 %- 90 % μg/g (DW). The lowest % retention was observed in products fermented with the addition of starter culture. The gross energy of amahewu products were approx. 20 MJ/kg. There was a slight increase in the lysine content of amahewu after fermentation. Protein digestibility of amahewu (approx.91%) was slightly higher compared to unprocessed provitamin A maize (86%). However, a general decrease was observed in the minerals when compared to the unprocessed provitamin A maize. Amahewu processed using starter cultures has higher iron content than those processed with the addition of malt. These result suggests that provitamin A-biofortified amahewu has the potential to make a significant contribution towards alleviating Vitamin A Deficiency in rural communities who are also the most vulnerable to VAD.

Keywords: vitamin A deficiency, provitamin A maize, biofortification, fermentation

Procedia PDF Downloads 419
2161 Appliance of the Analytic Hierarchy Process Methodology for the Selection of a Small Modular Reactors to Enhance Maritime Traffic Decarbonisation

Authors: Sara Martín, Ying Jie Zheng, César Hueso

Abstract:

International shipping is considered one of the largest sources of pollution in the world, accounting for 812 million tons of CO2 emissions in the year 2018. Current maritime decarbonisation is based on the implementation of new fuel alternatives, such as LNG, biofuels, and methanol, among others, which are less polluting as well as less efficient. Despite being a carbon-free and highly-developed technology, nuclear propulsion is hardly discussed as an alternative. Scientifically, it is believed that Small Modular Reactors (SMR) could be a promising solution to decarbonized maritime traffic due to their small dimensions and safety capabilities. However, as of today, there are no merchant ships powered by nuclear systems. Therefore, this project aims to understand the challenges of the development of nuclear-fuelled vessels by analysing all SMR designs to choose the most suitable one. In order not to fall into subjectivities, the Analytic Hierarchy Process (AHP) will be used to make the selection. This multiple-criteria evaluation technique analyses complex decisions by pairwise comparison of a number of evaluation criteria that can be applied to each SMR. The state-of-the-art 72 SMRs presented by the International Atomic Energy Agency (IAEA) will be analysed and ranked by a global parameter, calculated by applying the AHP methodology. The main target of the work is to find an adequate SMR system to power a ship. Top designs will be described in detail, and conclusions will be drawn from the results. This project has been conceived as an effort to foster the near-term development of zero-emission maritime traffic.

Keywords: international shipping, decarbonization, SMR, AHP, nuclear-fuelled vessels

Procedia PDF Downloads 129
2160 Ecotourism Adaptation Practices to Climate Change in the Context of Sustainable Management in Dana Biosphere Reserve, Jordan

Authors: Malek Jamaliah, Robert Powell

Abstract:

In spite of the influence of climate change on tourism destinations, particularly those rely heavily on natural resources, little attention paid to study the appropriate adaptation efforts to cope with, moderate and benefit from the impacts of climate change. The existing literature indicated that the research of climate change adaptation in the tourism and outdoor recreation field is at least 5-7 years behind other sectors such as water resources and agriculture. In Jordan, there are many observed changes in climate patterns such as higher temperatures, decreased precipitation and increased severity and frequency of drought. Dana Biosphere Reserve (DBR), the largest protected area and the major eco-tourism destination in Jordan, is facing climate change, which gradually degrading environment, shifting tourism seasons and changing livelihood and lifestyle of local communities. This study aims to assess climate change adaptation practices and policies used in DBR to cope with climate change related-risks. We conducted qualitative semi-structured interviews with key informants in DBR to assess climate change adaptation practices. Direct content analysis (or a priori content analysis) was used to determine the components and indicators of climate change adaptation. The results found that DBR has implemented a wide range of adaptation practices, including infrastructure development, diversification of tourism products, environmentally-friendly practices, visitor management, land use management, rainwater collection, environmental monitoring and research, environmental education and collaboration with stakeholders. These diverse practices implicitly and explicitly play an important role in coping with the social, economic and environmental impacts caused by climate change. Finally, this study demonstrated that climate change adaptation is closely related to sustainable management of eco-tourism.

Keywords: climate change adaptation, dana biosphere reserve, ecotourism, sustainable management

Procedia PDF Downloads 514
2159 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis

Procedia PDF Downloads 138
2158 Combined Treatment of Aged Rats with Donepezil and the Gingko Extract EGb 761® Enhances Learning and Memory Superiorly to Monotherapy

Authors: Linda Blümel, Bettina Bert, Jan Brosda, Heidrun Fink, Melanie Hamann

Abstract:

Age-related cognitive decline can eventually lead to dementia, the most common mental illness in elderly people and an immense challenge for patients, their families and caregivers. Cholinesterase inhibitors constitute the most commonly used antidementia prescription medication. The standardized Ginkgo biloba leaf extract EGb 761® is approved for treating age-associated cognitive impairment and has been shown to improve the quality of life in patients suffering from mild dementia. A clinical trial with 96 Alzheimer´s disease patients indicated that the combined treatment with donepezil and EGb 761® had fewer side effects than donepezil alone. In an animal model of cognitive aging, we compared the effect of combined treatment with EGb 761® or donepezil monotherapy and vehicle. We compared the effect of chronic treatment (15 days of pretreatment) with donepezil (1.5 mg/kg p. o.), EGb 761® (100 mg/kg p. o.), or the combination of the two drugs, or vehicle in 18 – 20 month old male OFA rats. Learning and memory performance were assessed by Morris water maze testing, motor behavior in an open field paradigm. In addition to chronic treatment, the substances were administered orally 30 minutes before testing. Compared to the first day and to the control group, only the combination group showed a significant reduction in latency to reach the hidden platform on the second day of testing. Moreover, from the second day of testing onwards, the donepezil, the EGb 761® and the combination group required less time to reach the hidden platform compared to the first day. The control group did not reach the same latency reduction until day three. There were no effects on motor behavior. These results suggest a superiority of the combined treatment of donepezil with EGb 761® compared to monotherapy.

Keywords: age-related cognitive decline, dementia, ginkgo biloba leaf extract EGb 761®, learning and memory, old rats

Procedia PDF Downloads 370
2157 Hatching Rhythm, Larval Release of the Rocky Intertidal Crab Leptoduis exaratus (Brachyura: Xanthidae) in Kuwait, Arabian Gulf

Authors: Zainab Al-Wazzan, Luis Gimenez, Lewis Le Vay, Manaf Behbehani

Abstract:

The hatching rhythm and larval release patterns of the rocky shore crab Leptoduis exaratus was investigated in relation to the tidal cycle, the time of the day, and lunar cycle. Ovigerous females were collected from rocky shores at six sites along the Kuwait coastline between April and July of 2014. The females were kept separated in aquaria under a natural photoperiod cycle and the pattern of larval release was monitored in relation to local tidal and dial cycles. Larval release occurred mostly during the night time, and was highly synchronized with neap tides that followed full moon; at the end of the hatching period, significant larval release occurred also during spring tides. Time series analysis showed a highly significant autocorrelation and the periodicity at a peak of 14-15 days. The cross-correlation analysis between hatching and the daily low tide level suggests that larvae are released about a day before neap tide. Hatching during neap tides occurred early in the night at times of the expected ebb tide. During spring tide period (late in the season), larval release occurred later during night at tides of the ebb tide. The results of this study indicated a strong relationship between the tidal cycle, time of the day and the hatching rhythm of L. exaratus. In addition, the results suggest that water level in the intertidal zone is also playing a very important role in determining the time of the hatching. Hatching and larval release synchronize with the preferred larval environmental conditions to prevent exposing larvae to physiological or environmental stress during their early larval stages. It is also an important factor in determining the larval dispersal.

Keywords: brachyura, hatching rhythm, larvae, Kuwait

Procedia PDF Downloads 681
2156 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic system, Primal-dual interior point method, Three-phase optimal power flow, Voltage unbalance

Procedia PDF Downloads 336
2155 Load Transfer of Steel Pipe Piles in Warming Permafrost

Authors: S. Amirhossein Tabatabaei, Abdulghader A. Aldaeef, Mohammad T. Rayhani

Abstract:

As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied.

Keywords: Adfreeze, frozen soil-structure interface, ice-poor soils, pull-out capacity, warming permafrost

Procedia PDF Downloads 113
2154 Development and Modeling of the Process of Narrow-seam Laser Welding of Ni-Superalloy in a Hard-to-Reach Place

Authors: Vladimir Isakov, Evgeniy Rykov, Lubov Magerramova, Nikolay Emmaussky

Abstract:

For the manufacture of critical hollow products, a laser narrow-seam welding scheme based on the supply of a laser beam into the inner cavity has been developed. The report presents the results of comprehensive studies aimed at creating a sealed weld that repeats the geometric shape of the inner cavity using a rotary mirror. Laser welding of hard-to-reach places requires preliminary modeling of the process to identify defect-free modes performed at the highest possible welding speed. Optimization of the technological modes of the welded joint with a ratio of the seam width to its depth equal to 1/5 of the thickness of the Ni superalloy 6.0 mm was performed using the Verhulst limited growth model in a discrete representation. This mathematical model in the form of a recurrence relation made it possible to numerically investigate the entire variety of laser melting modes: chaotic; self-oscillating; stationary and attenuated. The control parameters and the parameter of the order to which other variables of the technological system of laser welding are subordinated are established. In it, the coefficient of relative heat capacity of the melt bath was used as a control parameter, characterizing the competition between the heat input by the laser and the heat sink into the surrounding metal. The parameter of the order of the narrow–seam laser welding process, in this interpretation, is a dimensionless value of the penetration depth, which is an argument of the function of the desired logistic equation. Experimental studies of narrow-seam welding were performed using a copper, water-cooled mirror by radiation from a powerful fiber laser. The obtained results were used to validate the evolutionary mathematical model of the laser welding process.

Keywords: laser welding, internal cavity, limited growth model, ni-superalloy

Procedia PDF Downloads 16
2153 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 53
2152 Factors That Contribute to Noise Induced Hearing Loss Amongst Employees at the Platinum Mine in Limpopo Province, South Africa

Authors: Livhuwani Muthelo, R. N. Malema, T. M. Mothiba

Abstract:

Long term exposure to excessive noise in the mining industry increases the risk of noise induced hearing loss, with consequences for employee’s health, productivity and the overall quality of life. Objective: The objective of this study was to investigate the factors that contribute to Noise Induced Hearing Loss amongst employees at the Platinum mine in the Limpopo Province, South Africa. Study method: A qualitative, phenomenological, exploratory, descriptive, contextual design was applied in order to explore and describe the contributory factors. Purposive non-probability sampling was used to select 10 male employees who were diagnosed with NIHL in the year 2014 in four mine shafts, and 10 managers who were involved in a Hearing Conservation Programme. The data were collected using semi-structured one-on-one interviews. A qualitative data analysis of Tesch’s approach was followed. Results: The following themes emerged: Experiences and challenges faced by employees in the work environment, hearing protective device factors and management and leadership factors. Hearing loss was caused by partial application of guidelines, policies, and procedures from the Department of Minerals and Energy. Conclusion: The study results indicate that although there are guidelines, policies, and procedures available, failure in the implementation of one element will affect the development and maintenance of employees hearing mechanism. It is recommended that the mine management should apply the guidelines, policies, and procedures and promptly repair the broken hearing protective devices.

Keywords: employees, factors, noise induced hearing loss, noise exposure

Procedia PDF Downloads 134
2151 Sustainable Development in India: Towards a New Paradigm

Authors: Raghav Srivastava, Namrata Ramachandran

Abstract:

Strong sustainability has been, by consensus, imagined as comprising economic and extra-economic variables and cannot be viewed merely in terms of a trade-off between the economic needs of today and the potential left for tomorrow. Specifically, the cultural as well the ecological impacts of development projects on the affected communities should be evaluated, in addition to the economic. In developing and densely populated economies such as India, energy intensive development is seen as a sine qua non – a necessary trade off with ecological conservation. Although social impact assessment has been included as an inalienable part of the Environmental Impact Assessment required to be conducted under Indian law, it seems that the same is unable to meet the ends it seeks to achieve. The dissociation between those bearing the costs of development, and those reaping its benefits, lies at the heart of this failure. This paper attempts to study the various cost–benefit relationships for these minority stakeholders using the proposed Nyamjang Chhu hydroelectric power plant in Tawang District of Arunachal Pradesh (in North-east India) as the chief object of study, and discusses whether the current model of sustainable development is truly sustainable, given the level of social dissociation and disintegration that occurs between affected communities and their environment. The economic allure of hydroelectric projects in the hilly regions of India very rarely results in a proper assessment of their ecological and social externalities. Examining the various issues that have been agitated in the course of litigation over the Nyamjang Chhu hydroelectric project, the authors argue that there is a pressing need to re-evaluate the current Indian model of sustainable development going forward.

Keywords: hydroelectric power, socio-cultural dissociation, sustainable development, trade offs

Procedia PDF Downloads 289
2150 Climate Risk Perception and Trust – Presence of a Social Trap for Willingness to Act in Favour of Climate Mitigation and Support for Renewables: A Cross-sectional Study of Four European Countries

Authors: Lana Singleton

Abstract:

Achieving a sufficient global solution to climate change seems elusive through disappointing climate agreements and lack of cooperation. However, is this reluctance of coordination deep rooted on a more individual, societal level within countries due to a fundamental lack of social and institutional trust? The risks of climate change are illustrious and widely accepted, yet responses on an individual level are also largely inadequate. This research looks to further investigate types of trust, risk perception of climate change, and their interaction to build a greater understanding of whether a social trap (Rothstein, 2005) – where an absence of trust can overwhelm an individuals’ risk perception and result in minimal action despite knowing the dangers of no action – exists and where it is more prevalent. Presence of the social trap will be analysed for willingness to act in favour of climate change mitigation as well as attitude (acceptance) of different types of renewable energy forms. Using probit models with cross-sectional survey data on four developed European countries (UK, France, Germany, and Norway), we find evidence of the social trap in the aggregated data model, which highlights the importance of social trust regarding willingness to act in favour of climate mitigation as there is a high probability of action regardless of risk perception of climate change when social trust is high. In contrast, the same is not true for renewables, as interactions were mainly insignificant, although there were interesting findings involving institutional trust, gender, and country specific results for particular renewables.

Keywords: climate risk, renewables, risk perception, social trap, trust, willingness to act

Procedia PDF Downloads 99
2149 Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future.

Keywords: multi-layer facade, porous media, wind damping, wind tunnel test, building ventilation

Procedia PDF Downloads 155
2148 Environmental and Toxicological Impacts of Glyphosate with Its Formulating Adjuvant

Authors: I. Székács, Á. Fejes, S. Klátyik, E. Takács, D. Patkó, J. Pomóthy, M. Mörtl, R. Horváth, E. Madarász, B. Darvas, A. Székács

Abstract:

Environmental and toxicological characteristics of formulated pesticides may substantially differ from those of their active ingredients or other components alone. This phenomenon is demonstrated in the case of the herbicide active ingredient glyphosate. Due to its extensive application, this active ingredient was found in surface and ground water samples collected in Békés County, Hungary, in the concentration range of 0.54–0.98 ng/ml. The occurrence of glyphosate appeared to be somewhat higher at areas under intensive agriculture, industrial activities and public road services, but the compound was detected at areas under organic (ecological) farming or natural grasslands, indicating environmental mobility. Increased toxicity of the formulated herbicide product Roundup, compared to that of glyphosate was observed on the indicator aquatic organism Daphnia magna Straus. Acute LC50 values of Roundup and its formulating adjuvant Polyethoxylated Tallowamine (POEA) exceeded 20 and 3.1 mg/ml, respectively, while that of glyphosate (as isopropyl salt) was found to be substantially lower (690-900 mg/ml) showing good agreement with literature data. Cytotoxicity of Roundup, POEA and glyphosate has been determined on the neuroectodermal cell line, NE-4C measured both by cell viability test and holographic microscopy. Acute toxicity (LC50) of Roundup, POEA and glyphosate on NE-4C cells was found to be 0.013±0.002%, 0.017±0.009% and 6.46±2.25%, respectively (in equivalents of diluted Roundup solution), corresponding to 0.022±0.003 and 53.1±18.5 mg/ml for POEA and glyphosate, respectively, indicating no statistical difference between Roundup and POEA and 2.5 orders of magnitude difference between these and glyphosate. The same order of cellular toxicity seen in average cell area has been indicated under quantitative cell visualization. The results indicate that toxicity of the formulated herbicide is caused by the formulating agent, but in some parameters toxicological synergy occurs between POEA and glyphosate.

Keywords: glyphosate, polyethoxylated tallowamine, Roundup, combined aquatic and cellular toxicity, synergy

Procedia PDF Downloads 323
2147 Efficacy of Plant Extracts on Insect Pests of Watermelon and Their Effects on Nutritional Contents of the Fruits

Authors: Fatai Olaitan Alao, Thimoty Abiodun Adebayo, Oladele Abiodun Olaniran

Abstract:

This experiment was conducted at Ladoke Akintola University of Technology, Ogbomoso, Teaching and Research farm during the major and minor planting season , 2017 to determine the effects of Annona squamosa (Linn.) and Moringa oleifera (Lam) extracts on insect pests of watermelon and their effects on nutritional contents of watermelon fruits. Synthetic insecticide and untreated plots were included in the treatments for comparison. Selected plants were prepared with cold water and each plant extracts was applied at three different concentrations (5,10 and 20% v/v). Data were collected on population density of insect pests, number of aborted fruits, number of defoliated flowers , the yield was calculated in t/ha, nutritional and fatty acid contents were determine using gas chromatography. The results show that the two major insects were observed - Diabrotica undicimpunctata and Dacus cucurbitea. The tested plant extracts had about 65% control of the observed insect pests when compared with the control and the two plant extracts had the same insecticidal efficacy. However, the applied plant extracts at 20% v/v had higher insecticidal effects than the other tested concentrations. Significant higher yield was observed on the plant extracts treated plants compared with untreated plants which had the least yield() but none of the plant extracts performed effectively as Lambdachyalothrin in the control of insect pests and yield. Meanwhile, the tested plant extracts significantly improved the proximate and fatty acid contents of watermelon fruits while Lambdachyalothrin contributed negatively to the nutritional contents of watermelon fruits. Therefore, A. squpmosa and M. oleifera can be used in the management of insect pests and to improve the nutritional contents of the watermelon especially in the organic farming system.

Keywords: Annona squamosa, Dacus cucubitea, Diabrotical undicimpunctata, Moringa oleifera, watermelon

Procedia PDF Downloads 129
2146 Recovery of Selenium from Scrubber Sludge in Copper Process

Authors: Lakshmikanth Reddy, Bhavin Desai, Chandrakala Kari, Sanjay Sarkar, Pradeep Binu

Abstract:

The sulphur dioxide gases generated as a by-product of smelting and converting operations of copper concentrate contain selenium apart from zinc, lead, copper, cadmium, bismuth, antimony, and arsenic. The gaseous stream is treated in waste heat boiler, electrostatic precipitator and scrubbers to remove coarse particulate matter in order to produce commercial grade sulfuric acid. The gas cleaning section of the acid plant uses water to scrub the smelting gases. After scrubbing, the sludge settled at the bottom of the scrubber, was analyzed in present investigation. It was found to contain 30 to 40 wt% copper and selenium up to 40 wt% selenium. The sludge collected during blow-down is directly recycled to the smelter for copper recovery. However, the selenium is expected to again vaporize due to high oxidation potential during smelting and converting, causing accumulation of selenium in sludge. In present investigation, a roasting process has been developed to recover the selenium before the copper recovery from the sludge at smelter. Selenium is associated with copper in sludge as copper selenide, as determined by X-ray diffraction and electron microscopy. The thermodynamic and thermos-gravimetry study revealed that the copper selenide phase present in the sludge was amenable to oxidation at 600°C forming oxides of copper and selenium (Cu-Se-O). However, the dissociation of selenium from the copper oxide was made possible by sulfatation using sulfur dioxide between 450 to 600°C, resulting into the formation of CuSO₄ (s) and SeO₂ (g). Lab scale trials were carried out in vertical tubular furnace to determine the optimum roasting conditions with respect to roasting time, temperature and molar ratio of O₂:SO₂. Using these optimum conditions, selenium up to 90 wt% in the form of SeO₂ vapors could be recovered from the sludge in a large-scale commercial roaster. Roasted sludge free from the selenium and containing oxides and sulfates of copper could now be recycled in the smelter for copper recovery.

Keywords: copper, selenium, copper selenide, sludge, roasting, SeO₂

Procedia PDF Downloads 209
2145 Nutritional Status of Morbidly Obese Patients Prior to Bariatric Surgery

Authors: Azadeh Mottaghi, Reyhaneh Yousefi, Saeed Safari

Abstract:

Background: Bariatric surgery is widely proposed as the most effective approach to mitigate the growing pace of morbid obesity. As bariatric surgery candidates suffer from pre-existing nutritional deficiencies, it is of great importance to assess nutritional status of candidates before surgery in order to establish appropriate nutritional interventions. Objectives: The present study assessed and represented baseline data according to the nutritional status among candidates for bariatric surgery. Methods: A cross-sectional analysis of pre-surgery data was collected on 170 morbidly obese patients undergoing bariatric surgery between October 2017 and February 2018. Dietary intake data (evaluated through 147-item food frequency questionnaire), anthropometric measures and biochemical parameters were assessed. Results: Participants included 145 females (25 males) with average age of 37.3 ± 10.2 years, BMI of 45.7 ± 6.4 kg/m² and reported to have a total of 72.3 ± 22.2 kg excess body weight. The most common nutritional deficiencies referred to iron, ferritin, transferrin, albumin, vitamin B12, and vitamin D, the prevalence of which in the study population were as followed; 6.5, 6.5, 3, 2, 17.6 and 66%, respectively. Mean energy, protein, fat, and carbohydrate intake were 3887.3 ± 1748.32 kcal/day, 121.6 ± 57.1, 144.1 ± 83.05, and 552.4 ± 240.5 gr/day, respectively. The study population consumed lower levels of iron, calcium, folic acid, and vitamin B12 compared to the Dietary Reference Intake (DRI) recommendations (2, 26, 2.5, and 13%, respectively). Conclusion: According to the poor dietary quality of bariatric surgery candidates, leading to nutritional deficiencies pre-operatively, close monitoring and tailored supplementation pre- and post-bariatric surgery are required.

Keywords: bariatric surgery, food frequency questionnaire, obesity, nutritional status

Procedia PDF Downloads 174
2144 Thermodynamic Properties of Calcium-Containing DPPA and DPPC Liposomes

Authors: Tamaz Mdzinarashvili, Mariam Khvedelidze, Eka Shekiladze, Salome Chinchaladze, Mariam Mdzinarashvili

Abstract:

The work is about the preparation of calcium-containing 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA) and their calorimetric study. In order to prepare these complex liposomes, for the first stage it is necessary for ligands and lipids to directly interact, followed by the addition of pH-buffered water or solvent at temperatures slightly above the liposome phase transition temperature. The resulting mixture is briefly but vigorously shaken and then transformed into liposomes of the desired size using an extruder. Particle sizing and calorimetry were used to evaluate liposome formation. We determined the possible structure of calcium-containing liposomes made by our new technology and determined their thermostability. The paper provides calculations showing how many phospholipid molecules are required to make a 200 nm diameter liposome. Calculations showed that 33x10³ lipid molecules are needed to prepare one DPPA and DPPC liposome. Based on the calorimetric experiments, we determined that the structure of uncomplexed DPPA liposomes is unilaminar (one double layer), while DPPC liposome is a nanoparticle with a multilaminar (multilayer) structure. This was determined by the cooperativity of the heat absorption peak. Calorimetric studies of calcium liposomes made by our technology showed that calcium ions are placed in the multilaminar structure of the DPPC liposome. Calcium ions also formed a complex in the DPPA liposome structure, moreover, calcium made the DPPA liposome multilaminar, since the cooperative narrow heat absorption peak was transformed into a three-peak heat absorption peak. Since both types of liposomes in complex with calcium ions present a multilaminar structure, where the number of lipid heads in one particle is large, the number of calcium ions in one particle will also be increased. That makes it possible to use these nanoparticles as transporters of a large amount of calcium ions in a living organism.

Keywords: calcium, liposomes, thermodynamic parameters, calorimetry

Procedia PDF Downloads 54
2143 Exploring Management of the Fuzzy Front End of Innovation in a Product Driven Startup Company

Authors: Dmitry K. Shaytan, Georgy D. Laptev

Abstract:

In our research we aimed to test a managerial approach for the fuzzy front end (FFE) of innovation by creating controlled experiment/ business case in a breakthrough innovation development. The experiment was in the sport industry and covered all aspects of the customer discovery stage from ideation to prototyping followed by patent application. In the paper we describe and analyze mile stones, tasks, management challenges, decisions made to create the break through innovation, evaluate overall managerial efficiency that was at the considered FFE stage. We set managerial outcome of the FFE stage as a valid product concept in hand. In our paper we introduce hypothetical construct “Q-factor” that helps us in the experiment to distinguish quality of FFE outcomes. The experiment simulated for entrepreneur the FFE of innovation and put on his shoulders responsibility for the outcome of valid product concept. While developing managerial approach to reach the outcome there was a decision to look on product concept from the cognitive psychology and cognitive science point of view. This view helped us to develop the profile of a person whose projection (mental representation) of a new product could optimize for a manager or entrepreneur FFE activities. In the experiment this profile was tested to develop breakthrough innovation for swimmers. Following the managerial approach the product concept was created to help swimmers to feel/sense water. The working prototype was developed to estimate the product concept validity and value added effect for customers. Based on feedback from coachers and swimmers there were strong positive effect that gave high value for customers, and for the experiment – the valid product concept being developed by proposed managerial approach for the FFE. In conclusions there is a suggestion of managerial approach that was derived from experiment.

Keywords: concept development, concept testing, customer discovery, entrepreneurship, entrepreneurial management, idea generation, idea screening, startup management

Procedia PDF Downloads 448
2142 Preparation of Novel Silicone/Graphene-based Nanostructured Surfaces as Fouling Release Coatings

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Ping Jing Mo

Abstract:

As marine fouling-release (FR) surfaces, two new superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) loaded with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were created. The self-cleaning and antifouling capabilities were modified by controlling the nanofillers' shapes and distribution in the silicone matrix. With an average diameter of 10-20 nm and a length of 200 nm, γ-AlOOH nanorods showed a single crystallinity. RGO was made using a hydrothermal process, whereas GO-γ-AlOOH nanocomposites were made using a chemical deposition method for use as fouling-release coating materials. These nanofillers were disseminated in the silicone matrix using the solution casting method to explore the synergetic effects of graphene-based materials on the surface, mechanical, and FR characteristics. Water contact angle (WCA), scanning electron, and atomic force microscopes were used to investigate the surface's hydrophobicity and antifouling capabilities (SEM and AFM). The roughness, superhydrophobicity, and surface mechanical characteristics of coatings all increased the homogeneity of the nanocomposite dispersion. To examine the antifouling effects of the coating systems, laboratory tests were conducted for 30 days using specified bacteria.PDMS/GO-γ-AlOOH nanorod composite demonstrated superior antibacterial efficacy against several bacterial strains than PDMS/RGO nanocomposite. The high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers are to blame for this. The biodegradability percentage of the PDMS/GO-γ-AlOOH nanorod composite (3 wt.%) was the lowest (1.6%), while the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. The homogeneity of the GO-γ-AlOOH (3 wt.%) dispersion, which had a WCA of 151° and a rough surface, was the most profound superhydrophobic antifouling nanostructured coating.

Keywords: superhydrophobic nanocomposite, fouling release, nanofillers, surface coating

Procedia PDF Downloads 239
2141 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis

Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed

Abstract:

This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.

Keywords: gas turbine, optimization, ANFIS, performance, operating conditions

Procedia PDF Downloads 429
2140 Linking Temporal Changes of Climate Factors with Staple Cereal Yields in Southern Burkina Faso

Authors: Pius Borona, Cheikh Mbow, Issa Ouedraogo

Abstract:

In the Sahel, climate variability has been associated with a complex web of direct and indirect impacts. This natural phenomenon has been an impediment to agro-pastoral communities who experience uncertainty while involving in farming activities which is also their key source of livelihood. In this scenario, the role of climate variability in influencing the performance, quantity and quality of staple cereals yields, vital for food and nutrition security has been a topic of importance. This response of crops and subsequent yield variability is also a subject of immense debate due to the complexity of crop development at different stages. This complexity is further compounded by influence of slowly changing non-climatic factors. With these challenges in mind, the present paper initially explores the occurrence of climate variability at an inter annual and inter decadal level in South Burkina Faso. This is evidenced by variation of the total annual rainfall and the number of rainy days among other climatic descriptors. Further, it is shown how district-scale cereal yields in the study area including maize, sorghum and millet casually associate variably to the inter-annual variation of selected climate variables. Statistical models show that the three cereals widely depict sensitivity to the length of the growing period and total dry days in the growing season. Maize yields on the other hand relate strongly to the rainfall amount variation (R2=51.8%) showing high moisture dependence during critical growth stages. Our conclusions emphasize on adoption of efficient water utilization platforms especially those that have evidently increased yields and strengthening of forecasts dissemination.

Keywords: climate variability, cereal yields, seasonality, rain fed farming, Burkina Faso, rainfall

Procedia PDF Downloads 206
2139 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration

Procedia PDF Downloads 277
2138 Distinctive Features of Legal Relations in the Area of Subsoil Use, Renewal and Protection in Ukraine

Authors: N. Maksimentseva

Abstract:

The issue of public administration in subsoil use, renewal and protection is of high importance for Ukraine since it is strongly linked to energy security of the state as well as it shall facilitate the people of Ukraine to efficiently implement its propitiatory rights towards natural resources and redistribution of national wealth. As it is stipulated in the Article 11 of the Subsoil Code of Ukraine (the Code) the authorities that administer the industry are limited to central executive bodies and local governments. In particular, it is stipulated in the Code that the Ukraine’s Cabinet of Ministers carries out public administration in geological exploration, production and protection of subsoil. Other state bodies of public administration include central public authority responsible for state environmental protection policies; central public authority in charge of implementation of state geological exploration and efficient subsoil use policies; central authority in charge of state health and safety control policies. There are also public authorities in the Autonomous Republic of Crimea; local executive bodies and other state authorities and local self-government authorities in compliance with laws of Ukraine. This article is devoted to the analysis of the legal relations in the area of public administration of subsoil use, renewal and protection in Ukraine. The main approaches to study the essence of legal relations in the named area as well as its tasks, functions and methods are analyzed. It is concluded in this article that legal relationship in the field of public administration of subsoil use, renewal and protection is characterized by specifics of its task (development of natural resources).

Keywords: legal relations, public administration, subsoil code of Ukraine, subsoil use, renewal and protection

Procedia PDF Downloads 358
2137 The Effect of Potassium Hydroxide on Fine Soil Treated with Olivine

Authors: Abdelmaoula Mahamoud Tahir, Sedat Sert

Abstract:

The possibility of improving the shear strength of unsaturated clayey soil with the addition of olivine was investigated in this paper. Unconsolidated undrained triaxial tests (UU), under different cell pressures (namely: 100 kPa and 200 kPa), with varying percentages of olivine (10% and 20% by weight) and with one day, 28 days, and 56 days curing times, were performed to determine the shear strength of the soil. The increase in strength was observed as a function of the increase in olivine content. An olivine content of 25% was determined as the optimum value to achieve the targeted improvement for both cure times. A comparative study was also conducted between clay samples treated with only olivine and others in the presence of potassium hydroxide (KOH). Clay samples treated with olivine and activated with potassium hydroxide (KOH) had higher shear strength than non-activated olivine-treated samples. It was determined that the strength of the clay samples treated with only olivine did not increase over time and added resistance only with the high specific gravity of olivine. On the other hand, the samples activated with potassium hydroxide (KOH) added to the resistance with high specific gravity and the chemical bonds of olivine. Morphological and mineralogical analyzes were carried out in this study to see and analyze the chemical bonds formed after the reaction. The main components of this improvement were the formation of magnesium-aluminate-hydrate and magnesium-silicate-hydrate. Compared to older methods such as cement addition, these results show that in stabilizing clayey soils, olivine additive offers an energy-efficient alternative for reducing carbon dioxide emissions.

Keywords: ground stabilization, clay, olivine additive, KOH, microstructure

Procedia PDF Downloads 121
2136 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading

Authors: Neeraj Kumar, J. P. Narayan

Abstract:

The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.

Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings

Procedia PDF Downloads 221
2135 Plasma Collagen XVIII in Response to Intensive Aerobic Running and Aqueous Extraction of Black Crataegus Elbursensis in Male Rats

Authors: A. Abdi, A. Abbasi Daloee, A. Barari

Abstract:

Aim: The adaptations that occur in human body after doing exercises training are a factor to help healthy people stay away from certain diseases. One of the main adaptations is a change in blood circulation, especially in vessels. The increase of capillary density is dependent on the balance between angiogenic and angiostatic factors. Most studies show that the changes made to angiogenic developmental factors resulted from physical exercises indicate the low level of stimulators compared with inhibitors. It is believed that the plasma level of VEGF-A, the important angiogenic factor, is reduced after physical exercise. Findings indicate that the extract of crataegus plant reduces the platelet-derived growth factor receptor (PDGFR) autophosphorylation in human's fibroblast. More importantly, crataegus (1 to 100 mg in liter) clearly leads to the inhibition of PDGFR autophosphorylation in vascular smooth muscle cells (VSMCs). Angiogenesis is a process that can be classified into physiological and pathophysiological forms. collagen XVIII is a part of extracellular protein and heparan sulfate proteoglycans in vascular epithelial and endothelial basement membrane cause the release of endostatin from noncollagenous collagen XVIII. Endostatin inhibits the growth of endothelial cells, inhibits angiogenesis, weakens different types of cancer, and the growth of tumors. The purpose of the current study was to investigate the effect of intensive aerobic running with or without aqueous extraction of black Crataegus elbursensis on Collagen XVIII in male rats. Design: Thirty-two Wistar male rats (4-6 weeks old, 125-135 gr weight) were acquired from the Pasteur's Institute (Amol, Mazandaran), and randomly assigned into control (n = 16) and training (n = 16) groups. Rats were further divided into saline-control (SC) (n=8), saline-training (ST) (n=8), crataegus pentaegyna extraction -control (CPEC) (n=8), and crataegus pentaegyna extraction - training (CPET) (n=8). The control (SC and CPEC) groups remained sedentary; whereas the training groups underwent a high running exercise program. plasma were excised and immediately frozen in liquid nitrogen. Statistical analysis was performed using a one way analysis of variance and Tukey test. Significance was accepted at P = 0.05. Results: The results show that aerobic exercise group had the highest concentration collagen XVIII compared to other groups and then respectively black crataegus, training-crataegus and control groups. Conclusion: In general, researchers in this study concluded that the increase of collagen XVIII (albeit insignificant) as a result of physical activity and consumption of black crataegus extract could possibly serve as a regional inhibitor of angiogenesis and another evidence for the anti-cancer effects of physical activities. Since the research has not managed in this study to measure the amount of plasma endostatin, it is suggested that both indices are measured with important angiogenic factors so that we can have a more accurate interpretation of changes to angiogenic and angiostatic factors resulted from physical exercises.

Keywords: aerobic running, Crataegus elbursensis, Collagen XVIII

Procedia PDF Downloads 327
2134 Effect of Carbon Nanotubes on Ultraviolet and Immersion Stability of Diglycidyl Ether of Bisphenol A Epoxy Coating

Authors: Artemova Anastasiia, Shen Zexiang, Savilov Serguei

Abstract:

The marine environment is very aggressive for a number of factors, such as moisture, temperature, winds, ultraviolet radiation, chloride ion concentration, oxygen concentration, pollution, and biofouling, all contributing to marine corrosion. Protective organic coatings provide protection either by a barrier action from the layer, which is limited due to permeability to water and oxygen or from active corrosion inhibition and cathodic protection due to the pigments in the coating. Carbon nanotubes can play not only barrier effect but also passivation effect via adsorbing molecular species of oxygen, hydroxyl, chloride and sulphate anions. Multiwall carbon nanotubes composite provide very important properties such as mechanical strength, non-cytotoxicity, outstanding thermal and electrical conductivity, and very strong absorption of ultraviolet radiation. The samples of stainless steel (316L) coated by epoxy resin with carbon nanotubes-based pigments were exposed to UV irradiation (340nm), and immersion to the sodium chloride solution for 1000h and corrosion behavior in 3.5 wt% sodium chloride (NaCl) solution was investigated. Experimental results showed that corrosion current significantly decreased in the presence of carbon nanotube-based materials, especially nitrogen-doped ones, in the composite coating. Importance of the structure and composition of the pigment materials and its composition was established, and the mechanism of the protection was described. Finally, the effect of nitrogen doping on the corrosion behavior was investigated. The pigment-polymer crosslinking improves the coating performance and the corrosion rate decreases in comparison with pure epoxy coating from 5.7E-05 to 1.4E-05mm/yr for the coating without any degradation; in more than 6 times for the coating after ultraviolet degradation; and more than 16% for the coatings after immersion degradation.

Keywords: corrosion, coating, carbon nanotubes, degradation

Procedia PDF Downloads 164
2133 3-D Modeling of Particle Size Reduction from Micro to Nano Scale Using Finite Difference Method

Authors: Himanshu Singh, Rishi Kant, Shantanu Bhattacharya

Abstract:

This paper adopts a top-down approach for mathematical modeling to predict the size reduction from micro to nano-scale through persistent etching. The process is simulated using a finite difference approach. Previously, various researchers have simulated the etching process for 1-D and 2-D substrates. It consists of two processes: 1) Convection-Diffusion in the etchant domain; 2) Chemical reaction at the surface of the particle. Since the process requires analysis along moving boundary, partial differential equations involved cannot be solved using conventional methods. In 1-D, this problem is very similar to Stefan's problem of moving ice-water boundary. A fixed grid method using finite volume method is very popular for modelling of etching on a one and two dimensional substrate. Other popular approaches include moving grid method and level set method. In this method, finite difference method was used to discretize the spherical diffusion equation. Due to symmetrical distribution of etchant, the angular terms in the equation can be neglected. Concentration is assumed to be constant at the outer boundary. At the particle boundary, the concentration of the etchant is assumed to be zero since the rate of reaction is much faster than rate of diffusion. The rate of reaction is proportional to the velocity of the moving boundary of the particle. Modelling of the above reaction was carried out using Matlab. The initial particle size was taken to be 50 microns. The density, molecular weight and diffusion coefficient of the substrate were taken as 2.1 gm/cm3, 60 and 10-5 cm2/s respectively. The etch-rate was found to decline initially and it gradually became constant at 0.02µ/s (1.2µ/min). The concentration profile was plotted along with space at different time intervals. Initially, a sudden drop is observed at the particle boundary due to high-etch rate. This change becomes more gradual with time due to declination of etch rate.

Keywords: particle size reduction, micromixer, FDM modelling, wet etching

Procedia PDF Downloads 433