Search results for: stuck particles separation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2887

Search results for: stuck particles separation

1417 Drying Shrinkage of Magnesium Silicate Hydrate Gel Cements

Authors: T. Zhang, X. Liang, M. Lorin, C. Cheeseman, L. J. Vandeperre

Abstract:

Cracks were observed when the magnesium silicate hydrate gel cement (prepared by 40% MgO/ 60% silica fume) was dried. This drying cracking is believed to be caused when unbound water evaporates from the binder. The shrinkage upon forced drying to 200 °C of mortars made up from a reactive magnesium oxide, silica fume and sand was measured using dilatometry. The magnitude of the drying shrinkage was found to decrease when more sand or less water was added to the mortars and can be as low as 0.16% for a mortar containing 60 wt% sand and a water to cement ratio of 0.5, which is of a similar order of magnitude as observed in Portland cement based mortars and concretes. A simple geometrical interpretation based on packing of the particles in the mortar can explain the observed drying shrinkages and based on this analysis the drying shrinkage of the hydration products at zero added solid is estimated to be 7.3% after 7 days of curing.

Keywords: magnesium silicate hydrate, shrinkage, dilatometry, gel cements

Procedia PDF Downloads 291
1416 Effectiveness of the Use of Polycarboxylic Ether Superplasticizers in High Performance Concrete Containing Silica Fume

Authors: Alya Harichane, Badreddine Harichane

Abstract:

The incorporation of polycarboxylate ether superplasticizer (PCE) and silica fume (SF) in high-performance concretes (HPC) leads to the achievement of remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, in turn promoting the workability of the concrete. Silica fume enables a very well compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in the loss of slump and in poor rheological behavior. The main objective of the research is the study of the influence of three types of PCEs, which all have a different molecular architecture, on the rheological and mechanical behavior of high-performance concretes containing 10% of SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF.

Keywords: polycarboxylate-ether superplasticizer, rheology, compressive strength, high-performance concrete, silica fume

Procedia PDF Downloads 61
1415 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms

Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin

Abstract:

This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.

Keywords: machine learning, business models, convex analysis, online learning

Procedia PDF Downloads 129
1414 Self-Assembly of Monodisperse Oleic Acid-Capped Superparamagnetic Iron Oxide Nanoparticles

Authors: Huseyin Kavas

Abstract:

Oleic acid (OA) capped superparamagnetic iron oxide nanoparticles (SPION) were synthesized by a thermal decomposition method. The composition of nanoparticles was confirmed by X-ray powder diffraction, and the morphology of particles was investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM). The crystalline and particle size distribution of SPIONS capped with OA were investigated with a mean size of 6.99 nm and 8.9 nm, respectively. It was found that SPIONS have superparamagnetic characteristics with a saturation magnetization value of 64 emu/g. The thin film form of self-assembled SPIONS was fabricated by coating techniques of spin coating and dip coating. SQUID-VSM magnetometer and FMR techniques were performed in order to evaluate the magnetic properties of thin films, especially the existence of magnetic anisotropy. The thin films with magnetic anisotropy were obtained by self-assembled monolayers of SPION.

Keywords: magnetic materials, nanostructures, self-assembly, FMR

Procedia PDF Downloads 90
1413 Optimization of Biodiesel Production from Palm Oil over Mg-Al Modified K-10 Clay Catalyst

Authors: Muhammad Ayoub, Abrar Inayat, Bhajan Lal, Sintayehu Mekuria Hailegiorgis

Abstract:

Biodiesel which comes from pure renewable resources provide an alternative fuel option for future because of limited fossil fuel resources as well as environmental concerns. The transesterification of vegetable oils for biodiesel production is a promising process to overcome this future crises of energy. The use of heterogeneous catalysts greatly simplifies the technological process by facilitating the separation of the post-reaction mixture. The purpose of the present work was to examine a heterogeneous catalyst, in particular, Mg-Al modified K-10 clay, to produce methyl esters of palm oil. The prepared catalyst was well characterized by different latest techniques. In this study, the transesterification of palm oil with methanol was studied in a heterogeneous system in the presence of Mg-Al modified K-10 clay as solid base catalyst and then optimized these results with the help of Design of Experiments software. The results showed that methanol is the best alcohol for this reaction condition. The best results was achieved for optimization of biodiesel process. The maximum conversion of triglyceride (88%) was noted after 8 h of reaction at 60 ̊C, with a 6:1 molar ratio of methanol to palm oil and 3 wt % of prepared catalyst.

Keywords: palm oil, transestrefication, clay, biodiesel, mesoporous clay, K-10

Procedia PDF Downloads 377
1412 Reliability Verification of the Performance Evaluation of Multiphase Pump

Authors: Joon-Hyung Kim, Him-Chan Lee, Jin-Hyuk Kim, Yong-Kab Lee, Young-Seok Choi

Abstract:

The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of the pump under study. The performance of the designed model was evaluated through numerical analysis and experiment, and the results of the performance evaluation were compared to verify the reliability of the result using numerical analysis.

Keywords: multiphase pump, numerical analysis, experiment, performance evaluation, reliability verification

Procedia PDF Downloads 414
1411 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method

Authors: Karuna Tuchinda, Sasithon Bland

Abstract:

This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.

Keywords: physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction

Procedia PDF Downloads 361
1410 CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers

Authors: Nader Pourmahmoud, Amir Hassanzadeh

Abstract:

This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment.

Keywords: energy separation, inlet pressure, numerical simulation, vortex chamber, vortex tube

Procedia PDF Downloads 356
1409 Low-Temperature Silanization of Medical Vials: Chemical Bonding and Performance

Authors: Yuanping Yang, Ruolin Zhou, Xingyu Liu, Lianbin Wu

Abstract:

Based on the challenges of silanization of pharmaceutical glass packaging materials, the silicone oil high-temperature baking method consumes a lot of energy; silicone oil is generally physically adsorbed on the inner surface of the medical vials, leading to protein adsorption on the surface of the silicone oil and fall off, so that the number of particles in the drug solution increases, which brings potential risks to people. In this paper, a new silanizing method is proposed. High-efficiency silanization is achieved by grafting trimethylsilyl groups to the inner surface of medical vials by chemical bond at low temperatures. The inner wall of the vial successfully obtained stable hydrophobicity, and the water contact Angle of the surface reached 100°~110°. With the increase of silicified reagent concentration, the water resistance of corresponding treatment vials increased gradually. This treatment can effectively reduce the risk of pH value increase and sodium ion leaching.

Keywords: low-temperature silanization, medical vials, chemical bonding, hydrophobicity

Procedia PDF Downloads 66
1408 Generalized Uncertainty Principle Modified Hawking Radiation in Bumblebee Gravity

Authors: Sara Kanzi, Izzet Sakalli

Abstract:

The effect of Lorentz symmetry breaking (LSB) on the Hawking radiation of Schwarzschild-like black hole found in the bumblebee gravity model (SBHBGM) is studied in the framework of quantum gravity. To this end, we consider Hawking radiation spin-0 (bosons) and spin-12particles (fermions), which go in and out through the event horizon of the SBHBGM. We use the modified Klein-Gordon and Dirac equations, which are obtained from the generalized uncertainty principle (GUP) to show how Hawking radiation is affected by the GUP and LSB. In particular, we reveal that independent of the spin of the emitted particles, GUP causes a change in the Hawking temperature of the SBHBGM. Furthermore, we compute the semi-analytic greybody factors (for both bosons and fermions) of the SBHBGM. Thus, we reveal that LSB is effective on the greybody factor of the SBHBGM such that its redundancy decreases the value of the greybody factor. Our findings are graphically depicted.

Keywords: bumblebee gravity model, Hawking radiation, generalized uncertainty principle, Lorentz symmetry breaking

Procedia PDF Downloads 121
1407 Photocatalytic Degradation of Organic Pollutants Using Strontium Titanate Synthesized by Electrospinning Method

Authors: Hui-Hsin Huang, Yi-Feng Lin, Che-Chia Hu

Abstract:

To date, photocatalytic wastewater treatment using solar energy has attracted considerable attention. In this study, strontium titanates with various morphologies, i.e., nanofibers and cubic-like particles, were prepared as photocatalysts using the electrospinning (ES), solid-state (SS), and sol-gel (SG) methods. X-ray diffraction (XRD) analysis showed that ES and SS can be assigned to pure phase SrTiO3, while SG was referred to Sr2TiO4. These samples displayed optical absorption edges at 385-395 nm, indicating they can be activated in UV light irradiation. Scanning electron microscope (SEM) analyses revealed that ES SrTiO3 has a uniform fibrous structure with length and diameter of several microns and 100-200 nm, respectively. After loading of nanoparticulate Ag as a co-catalyst onto the surface of strontium titanates, ES sample exhibited highest photocatalytic activity to degrade methylene orange dye solution in comparison to that of SS and SG ones. These results indicate that Ag-loaded ES SrTiO3, which has a desirable SrTiO3 phase and a facile electron transfer along the preferential direction in fibrous structure, can be a promising photocatalyst.

Keywords: photocatalytic degradation, strontium titanate, electrospinning, co-catalyst

Procedia PDF Downloads 252
1406 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Authors: M. S. Khurram, S. A. Memon, S. Khan

Abstract:

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

Keywords: axial voidage, circulating fluidized bed, splash zone, static bed

Procedia PDF Downloads 272
1405 Removal of Aromatic Fractions of Natural Organic Matter from Synthetic Water Using Aluminium Based Electrocoagulation

Authors: Tanwi Priya, Brijesh Kumar Mishra

Abstract:

Occurrence of aromatic fractions of Natural Organic Matter (NOM) led to formation of carcinogenic disinfection by products such as trihalomethanes in chlorinated water. In the present study, the efficiency of aluminium based electrocoagulation on the removal of prominent aromatic groups such as phenol, hydrophobic auxochromes, and carboxyl groups from NOM enriched synthetic water has been evaluated using various spectral indices. The effect of electrocoagulation on turbidity has also been discussed. The variation in coagulation performance as a function of pH has been studied. Our result suggests that electrocoagulation can be considered as appropriate remediation approach to reduce trihalomethanes formation in water. It has effectively reduced hydrophobic fractions from NOM enriched low turbid water. The charge neutralization and enmeshment of dispersed colloidal particles inside metallic hydroxides is the possible mechanistic approach in electrocoagulation.

Keywords: aromatic fractions, electrocoagulation, natural organic matter, spectral indices

Procedia PDF Downloads 259
1404 Adsorption of Reactive Dye Using Entrapped nZVI

Authors: P. Gomathi Priya, M. E. Thenmozhi

Abstract:

Iron nanoparticles were used to cleanup effluents. This paper involves synthesis of iron nanoparticles chemically by sodium borohydride reduction of ammonium ferrous sulfate solution (FAS). Iron oxide nanoparticles have lesser efficiency of adsorption than Zero Valent Iron nanoparticles (nZVI). Glucosamine acts as a stabilizing agent and chelating agent to prevent Iron nanoparticles from oxidation. nZVI particles were characterized using Scanning Electron Microscopy (SEM). Thus, the synthesized nZVI was subjected to entrapment in biopolymer, viz. barium (Ba)-alginate beads. The beads were characterized using SEM. Batch dye degradation studies were conducted using Reactive black Water soluble Nontoxic Natural substances (WNN) dye which is one of the most hazardous dyes used in textile industries. Effect of contact time, effect of pH, initial dye concentration, adsorbent dosage, isotherm and kinetic studies were carried out.

Keywords: ammonium ferrous sulfate solution, barium, alginate beads, reactive black WNN dye, zero valent iron nanoparticles

Procedia PDF Downloads 311
1403 Heating Behavior of Ni-Embedded Thermoplastic Polyurethane Adhesive Film by Induction Heating

Authors: DuckHwan Bae, YongSung Kwon, Min Young Shon, SanTaek Oh, GuNi Kim

Abstract:

The heating behavior of nanometer and micrometer sized Nickel particle-imbedded thermoplastic polyurethane adhesive (TPU) under induction heating is examined in present study. The effects of particle size and content, TPU film thickness on heating behaviors were examined. The correlation between heating behavior and magnetic properties of Nickel particles were also studied. From the results, heat generation increased with increase of Nickel content and film thickness. However, in terms of particle sizes, heat generation of Nickel-imbedded TPU film were in order of 70nm>1µm>20 µm>70 µm and this results can explain by increasing ration of eddy heating to hysteresis heating with increase of particle size.

Keywords: induction heating, thermoplastic polyurethane, nickel, composite, hysteresis loss, eddy current loss, curie temperature

Procedia PDF Downloads 343
1402 Analysis of Drilling Parameters for Al-Mg2-Si Metal Matrix Composite

Authors: S. Jahangir, S. H. I. Jaffery, M. Khan, Z. Zareef, A. Yar, A. Mubashir, S. Butt, L. Ali

Abstract:

In this work, drilling responses and behavior of MMC was investigated in Al-Mg2Si composites. For the purpose Al-15% wt. Mg2Si, was selected from the hypereutectic region of Al- Mg2Si phase diagram. Based on hardness and tensile strength, drill bit of appropriate material and morphology was selected. The performance of different drill bits of different morphology and material was studied and analysed using experimental data. For theoretical calculations of axial thrust force and required power calculation, material factor “K” was obtained from different data charts and at the same time cutting forces (drilling forces) were practically obtained using a Peizo electric force dynamometer. These results show the role of reinforcement particles on the machinability of MMCs and provide a useful guide for a better control and optimized drilling parameters for the drilling process. Furthermore, in this work, comparison of MMC with non -reinforced Aluminum Alloy regarding drilling operation was also studied.

Keywords: drilling, metal matrix composite (MMC), cutting forces, thrust force

Procedia PDF Downloads 411
1401 Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes

Authors: Ibrahim Gomaa, Hoda M. O. Mokhtar

Abstract:

Although most of the existing skyline queries algorithms focused basically on querying static points through static databases; with the expanding number of sensors, wireless communications and mobile applications, the demand for continuous skyline queries has increased. Unlike traditional skyline queries which only consider static attributes, continuous skyline queries include dynamic attributes, as well as the static ones. However, as skyline queries computation is based on checking the domination of skyline points over all dimensions, considering both the static and dynamic attributes without separation is required. In this paper, we present an efficient algorithm for computing continuous skyline queries without discriminating between static and dynamic attributes. Our algorithm in brief proceeds as follows: First, it excludes the points which will not be in the initial skyline result; this pruning phase reduces the required number of comparisons. Second, the association between the spatial positions of data points is examined; this phase gives an idea of where changes in the result might occur and consequently enables us to efficiently update the skyline result (continuous update) rather than computing the skyline from scratch. Finally, experimental evaluation is provided which demonstrates the accuracy, performance and efficiency of our algorithm over other existing approaches.

Keywords: continuous query processing, dynamic database, moving object, skyline queries

Procedia PDF Downloads 198
1400 Energy-efficient Buildings In Construction Industry Using Fly Ash-based Geopolymer Technology

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of nanoparticles additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of nanoparticles flexural strength, water absorption, and micro-structural properties of the cured samples. The results revealed that the inclusion of nanoparticles additive significantly enhanced the mechanical and electrical properties of the geopolymer binder. Micro-structural analysis using scanning electron microscopy (SEM) revealed a more compact and homogeneous structure in the geopolymer samples with nanoparticles. The dispersion of nanoparticles particles within the geopolymer matrix was observed, suggesting improved inter-particle bonding and increased density. Overall, this study demonstrates the positive impact of nanoparticles additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications for the development of construction and infrastructure for energy buildings.

Keywords: fly-ash, geopolymer, energy buildings, nanotechnology

Procedia PDF Downloads 73
1399 Manufacturing an Eminent Mucolytic Medicine Using an Efficient Synthesis Path

Authors: Farzaneh Ziaee, Mohammad Ziaee

Abstract:

N-acetyl-L-cysteine (NAC) is a well-known mucolytic agent, and recently its efficacy has been examined for the prevention and remediation of several diseases such as lung infections caused by Coronavirus. Also, it is administrated as the main antidote in paracetamol overdose and is effective for the treatment of idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD). This medicine is used as an antioxidant to prevent diabetic kidney disease (nephropathy). In this study, a method for the acylation of amino acids is employed to manufacture this drug in a height yield. Regarding this patented path, NAC can be made in a single batch step at ambient pressure and temperature. Moreover, this study offers a technique to make peptide bonds which is of interest for pharmaceutical and medicinal industries. The separation process was undertaken using appropriate solvents to achieve an excellent purification level. The synthesized drug was characterized via proton nuclear magnetic resonance (1H NMR), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and melting point.

Keywords: N-acetylcysteine, synthesis, mucolytic medication, lung anti-inflammatory, COVID-19, antioxidant, pharmaceutical supplement, characterization

Procedia PDF Downloads 179
1398 The Effect of Street Dust on Urban Environment

Authors: Turki M. Habeebullah, Abdel Hameed A. A. Awad, Said Munir, Atif M. F. Mohammed, Essam A. Morsy, Abdulaziz R. Seroji

Abstract:

Street dust has been knoweldged as an important source of air pollution. It does not remain deposited in a place for long, as it is easily resuspended back into the atmosphere. Street dust is a complex mixture derived from different sources: Deposited dust, traffic, tire, and brake wear, construction and demolition processes. The present study aims to evaluate the elementals ”iron, calcium, lead, cadmium, nickel, silicon, and selenium” and microbial “bacteria and fungi” contents associated street dust at the holy mosque areas. The street dust was collected by sweeping an arera~1m2 along the both sides of the road. The particles with diameter ≤ 1.7 µm constitued the highest percentages of the total particulate ≤45 µm. Moreover, The crustal species: iron and calcium were found in the highest concentrations, and proof that demolition and constricution were the main source of street dust. Also, the low biodiversity of microorganisms is attributed to severe weather conditions and characteristics of the arid environment.

Keywords: dust, microbial, environment, street

Procedia PDF Downloads 530
1397 Flocculation on the Treatment of Olive Oil Mill Wastewater: Pre-Treatment

Authors: G. Hodaifa, J. A. Páez, C. Agabo, E. Ramos, J. C. Gutiérrez, A. Rosal

Abstract:

Currently, the continuous two-phase decanter process used for olive oil production is the more internationally widespread. The wastewaters generated from this industry (OMW) is a real environmental problem because of its high organic load. Among proposed treatments for these wastewaters, the advanced oxidation technologies (Fenton process, ozone, photoFenton, etc.) are the most favourable. The direct application of these processes is somewhat expensive. Therefore, the application of a previous stage based on a flocculation-sedimentation operation is of high importance. In this research five commercial flocculants (three cationic, and two anionic) have been used to achieve the separation of phases (liquid clarified-sludge). For each flocculant, different concentrations (0-1000 mg/L) have been studied. In these experiments, sludge volume formed over time and the final water quality were determined. The final removal percentages of total phenols (11.3-25.1%), COD (5.6-20.4%), total carbon (2.3-26.5%), total organic carbon (1.50-23.8%), total nitrogen (1.45-24.8%), and turbidity (27.9-61.4%) were obtained. Also, the variation on the electric conductivity reduction percentage (1-8%) was determined. Finally, the best flocculants with highest removal percentages have been determined (QG2001 and Flocudex CS49).

Keywords: flocculants, flocculation, olive oil mill wastewater, water quality

Procedia PDF Downloads 524
1396 Effect of Non-Fat Solid Ratio on Bloom Formation in Untempered Chocolate

Authors: Huanhuan Zhao, Bryony J. James

Abstract:

The relationship between the non-fat solid ratio and bloom formation in untempered chocolate was investigated using two types of chocolate: model chocolate made of varying cocoa powder ratios (46, 49.5 and 53%) and cocoa butter, and commercial Lindt chocolate with varying cocoa content (70, 85 and 90%). X-ray diffraction and colour measurement techniques were used to examine the polymorphism of cocoa butter and the surface whiteness index (WI), respectively. The polymorphic transformation of cocoa butter was highly correlated with the changes of WI during 30 days of storage since it led to the redistribution of fat within the chocolate matrix and resulted in a bloomed surface. The change in WI indicated a similar bloom rate in the chocolates, but the model chocolates with a higher cocoa powder ratio had more pronounced total bloom. This is due to a higher ratio of non-fat solid particles on the surface resulting in microscopic changes in morphology. The ratio of non-fat solids is an important factor in determining the extent of bloom but not the bloom rate.

Keywords: untempered chocolate, microstructure of bloom, polymorphic transformation, surface whiteness

Procedia PDF Downloads 334
1395 Experimental Investigation on the Effect of Adding CuO Nanoparticles to R-600a Refrigerant on Heat Transfer Enhancement of a Horizontal Flattened Tube

Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi

Abstract:

An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused significant enhancement in heat transfer performance so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%.

Keywords: nano particles, flattend tube, R600a, CuO

Procedia PDF Downloads 307
1394 Charged Amphiphilic Polypeptide Based Micelle Hydrogel Composite for Dual Drug Release

Authors: Monika Patel, Kazuaki Matsumura

Abstract:

Synthetic hydrogels, with their unique properties such as porosity, strength, and swelling in aqueous environment, are being used in many fields from food additives to regenerative medicines, from diagnostic and pharmaceuticals to drug delivery systems (DDS). But, hydrogels also have some limitations in terms of homogeneity of drug distribution and quantity of loaded drugs. As an alternate, polymeric micelles are extensively used as DDS. With the ease of self-assembly, and distinct stability they remarkably improve the solubility of hydrophobic drugs. However, presently, combinational therapy is the need of time and so are systems which are capable of releasing more than one drug. And it is one of the major challenges towards DDS to control the release of each drug independently, which simple DDS cannot meet. In this work, we present an amphiphilic polypeptide based micelle hydrogel composite to study the dual drug release for wound healing purposes using Amphotericin B (AmpB) and Curcumin as model drugs. Firstly, two differently charged amphiphilic polypeptide chains were prepared namely, poly L-Lysine-b-poly phenyl alanine (PLL-PPA) and poly Glutamic acid-b-poly phenyl alanine (PGA-PPA) through ring opening polymerization of amino acid N-carboxyanhydride. These polymers readily self-assemble to form micelles with hydrophobic PPA block as core and hydrophilic PLL/PGA as shell with an average diameter of about 280nm. The thus formed micelles were loaded with the model drugs. The PLL-PPA micelle was loaded with curcumin and PGA-PPA was loaded with AmpB by dialysis method. Drug loaded micelles showed a slight increase in the mean diameter and were fairly stable in solution and lyophilized forms. For forming the micelles hydrogel composite, the drug loaded micelles were dissolved and were cross linked using genipin. Genipin uses the free –NH2 groups in the PLL-PPA micelles to form a hydrogel network with free PGA-PPA micelles trapped in between the 3D scaffold formed. Different composites were tested by changing the weight ratios of the both micelles and were seen to alter its resulting surface charge from positive to negative with increase in PGA-PPA ratio. The composites with high surface charge showed a burst release of drug in initial phase, were as the composites with relatively low net charge showed a sustained release. Thus the resultant surface charge of the composite can be tuned to tune its drug release profile. Also, while studying the degree of cross linking among the PLL-PPA particles for effect on dual drug release, it was seen that as the degree of crosslinking increases, an increase in the tendency to burst release the drug (AmpB) is seen in PGA-PPA particle, were as on the contrary the PLL-PPA particles showed a slower release of Curcumin with increasing the cross linking density. Thus, two different pharmacokinetic profile of drugs were seen by changing the cross linking degree. In conclusion, a unique charged amphiphilic polypeptide based micelle hydrogel composite for dual drug delivery. This composite can be finely tuned on the basis of need of drug release profiles by changing simple parameters such as composition, cross linking and pH.

Keywords: amphiphilic polypeptide, dual drug release, micelle hydrogel composite, tunable DDS

Procedia PDF Downloads 196
1393 Fabrication of Wearable Antennas through Thermal Deposition

Authors: Jeff Letcher, Dennis Tierney, Haider Raad

Abstract:

Antennas are devices for transmitting and/or receiving signals which make them a necessary component of any wireless system. In this paper, a thermal deposition technique is utilized as a method to fabricate antenna structures on substrates. Thin-film deposition is achieved by evaporating a source material (metals in our case) in a vacuum which allows vapor particles to travel directly to the target substrate which is encased with a mask that outlines the desired structure. The material then condenses back to solid state. This method is used in comparison to screen printing, chemical etching, and ink jet printing to indicate advantages and disadvantages to the method. The antenna created undergoes various testing of frequency ranges, conductivity, and a series of flexing to indicate the effectiveness of the thermal deposition technique. A single band antenna that is operated at 2.45 GHz intended for wearable and flexible applications was successfully fabricated through this method and tested. It is concluded that thermal deposition presents a feasible technique of producing such antennas.

Keywords: thermal deposition, wearable antennas, bluetooth technology, flexible electronics

Procedia PDF Downloads 266
1392 Shear Enhanced Flotation Technology Applied to Treat Winery Wastewater

Authors: Bernard Bladergroen, David Vlotman, Bradley Cerff

Abstract:

The agricultural sector is one which requires and consumes large amounts of water globally. Commercial wine production, in particular, uses extensive volumes of fresh water and generates significant volumes of wastewater through various processes. The wastewater produced by wineries typically exhibits elevated levels of chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), acidic pH and varying salinity and nutrient contents. This study investigates the performance of a shear-enhanced flotation separation (SEFS) pilot plant as a primary treatment stage during winery wastewater processing by modifying a conventional Dissolved Air Flotation (DAF) system. The SEFS pilot plant achieved a 99% reduction in both turbidity and TSS in comparison to the 97% achieved with the conventional DAF system. The COD was reduced by 66% and 51% for the SEFS and DAF systems, respectively. SEFS shows the advantages of hydrodynamic shear to enhance the coagulation and subsequent flocculation processes with a significant reduction of coagulant and flocculant (36% and 31%, respectively).

Keywords: shear enhanced flotation, suspended solids, primary wastewater treatment, zeta potential

Procedia PDF Downloads 48
1391 Ferroelectricity in Nano-Composite Films of Sodium Nitrite: Starch Prepared by Drop Cast Technique

Authors: Navneet Dabra, Baljinder Kaur, Lakhbir Singh, V. Annapu Reddy, R. Nath, Dae-Yong Jeong, Jasbir S. Hundal

Abstract:

Nano-composite films of sodium nitrite (NaNO2): Starch with different proportions of NaNO2 and Starch have been prepared by drop cast technique. The ferroelectric hysteresis loops (P-V) have been traced using modified Sawyar-Tower circuit. The films containing equal proportions of NaNO2 and Starch exhibit optimized ferroelectric properties. The stability of the remanent polarization, Pr in the optimized nano-composite films exhibit improved stability over the pure NaNO2 films. The Atomic Force Microscopy (AFM) has been employed to investigate the surface morphology. AFM images clearly reveal the nano sized particles of NaNO2 dispersed in starch with small value of surface roughness.

Keywords: ferroelectricity, nano-composite films, Atomic Force Microscopy (AFM), nano composite film

Procedia PDF Downloads 494
1390 Consideration of Starlight Waves Redshift as Produced by Friction of These Waves on Its Way through Space

Authors: Angel Pérez Sánchez

Abstract:

In 1929, a light redshift was discovered in distant galaxies and was interpreted as produced by galaxies moving away from each other at high speed. This interpretation led to the consideration of a new source of energy, which was called Dark Energy. Redshift is a loss of light wave frequency produced by galaxies moving away at high speed, but the loss of frequency can also be produced by the friction of light waves on their way to Earth. This friction is impossible because outer space is empty, but if it were not empty and a medium existed in this empty space, it would be possible. The consequences would be extraordinary because Universe acceleration and Dark Energy would be in doubt. This article presents evidence that empty space is actually a medium occupied by different particles, among them the most significant would-be Graviton or Higgs Boson, because let's not forget that gravity also affects empty space.

Keywords: Big Bang, dark energy, doppler effect, redshift, starlight frequency reduction, universe acceleration

Procedia PDF Downloads 50
1389 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System

Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan

Abstract:

With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.

Keywords: dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation, pressure drop

Procedia PDF Downloads 152
1388 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina

Abstract:

An unconventional composite inorganic ceramic membrane capable in carbon dioxide emission decline was fabricated and tested at laboratory scale to develop in conformism to various environmental guidelines to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms are presented and discussed. Single gas separation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous supported reactor.was carried out to investigate individual gas permeation behaviours at different pressures and membrane efficiency after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However at above a pressure of 3bar, CO2 permeability ratio to than the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: carbon dioxide, composite membranes, permeability, transport mechanisms

Procedia PDF Downloads 487