Search results for: shear zone and flexural zone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3108

Search results for: shear zone and flexural zone

1638 Effect of Incremental Forming Parameters on Titanium Alloys Properties

Authors: P. Homola, L. Novakova, V. Kafka, M. P. Oscoz

Abstract:

Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and micro-hardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the micro-hardness at higher straining due to recovery processes.

Keywords: incremental forming, metallography, shear spinning, titanium alloys

Procedia PDF Downloads 225
1637 Geology, Geomorphology and Genesis of Andarokh Karstic Cave, North-East Iran

Authors: Mojtaba Heydarizad

Abstract:

Andarokh basin is one of the main karstic regions in Khorasan Razavi province NE Iran. This basin is part of Kopeh-Dagh mega zone extending from Caspian Sea in the east to northern Afghanistan in the west. This basin is covered by Mozdooran Formation, Ngr evaporative formation and quaternary alluvium deposits in descending order of age. Mozdooran carbonate formation is notably karstified. The main surface karstic features in Mozdooran formation are Groove karren, Cleft karren, Rain pit, Rill karren, Tritt karren, Kamintza, Domes, and Table karren. In addition to surface features, deep karstic feature Andarokh Cave also exists in the region. Studying Ca, Mg, Mn, Sr, Fe concentration and Sr/Mn ratio in Mozdooran formation samples with distance to main faults and joints system using PCA analyses demonstrates intense meteoric digenesis role in controlling carbonate rock geochemistry. The karst evaluation in Andarokh basin varies from early stages 'deep seated karst' in Mesozoic to mature karstic system 'Exhumed karst' in quaternary period. Andarokh cave (the main cave in Andarokh basin) is rudimentary branch work consists of three passages of A, B and C and two entrances Andarokh and Sky.

Keywords: Andarokh basin, Andarokh cave, geochemical analyses, karst evaluation

Procedia PDF Downloads 144
1636 Ultimate Strength Prediction of Shear Walls with an Aspect Ratio between One and Two

Authors: Said Boukais, Ali Kezmane, Kahil Amar, Mohand Hamizi, Hannachi Neceur Eddine

Abstract:

This paper presents an analytical study on the behavior of rectangular reinforced concrete walls with an aspect ratio between one and tow. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood equation for shear and strain compatibility analysis for flexure. Subsequently, nominal ultimate wall strengths from the formulas were compared with the ultimate wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate strength. New semi empirical equation are developed using data from tests of 46 walls with the objective of improving the prediction of ultimate strength of walls with the most possible accuracy and for all failure modes.

Keywords: prediction, ultimate strength, reinforced concrete walls, walls, rectangular walls

Procedia PDF Downloads 326
1635 Numerical Analysis of Crack's Effects in a Dissimilar Welded Joint

Authors: Daniel N. L. Alves, Marcelo C. Rodrigues, Jose G. de Almeida

Abstract:

The search for structural efficiency in mechanical systems has been strongly exerted with aim of economic optimization and structural safety. As soon, to understand the response of materials when submitted to adverse conditions is essential to design a safety project. This work investigates the presence of cracks in dissimilar welded joints (DWJ). Its fracture toughness responses depend upon the heterogeneity present in these joints. Thus, this work aim analyzing the behavior of the crack tip zone located in a buttery dissimilar welded joint (ASTM A-36, Inconel, and AISI 8630 M) used in the union of pipes present in the offshore oil production lines. The crack was placed 1 mm from fusion line (FL) Inconel-AISI 8630 M toward the AISI 8630 M. Finite Element Method (FEM) was used to analyze stress and strain fields generated during the loading imposed on the specimen. It was possible observing critical stress area by the numerical tool as well as a preferential plastic flow was also observed in the sample of dissimilar welded joint, which can be considered a harbinger of the crack growth path. The results obtained through numerical analysis showed a convergent behavior in relation to the plastic flow, qualitatively and quantitatively, in agreement with previous performed.

Keywords: crack, dissimilar welded joint, numerical analysis, strain field, the stress field

Procedia PDF Downloads 163
1634 Geochemical and Spatial Distribution of Minerals in the Tailings of IFE/IJESA Gold Mine Zone, Nigeria

Authors: Oladejo S. O, Tomori W. B, Adebayo A. O

Abstract:

The main objective of this research is to identify the geochemical and mineralogical characteristics potential of unexplored tailings around the gold deposit region using spatial statistics and map modeling. Some physicochemical parameters such as pH, redox potential, electrical conductivity, cation exchange capacity, total organic carbon, total organic matter, residual humidity, Cation exchange capacity, and particle size were determined from both the mine drains and tailing samples using standard methods. The physicochemical parameters of tailings ranges obtained were pH (6.0 – 7.3), Eh (−16 - 95 Mev), EC (49 - 156 µS/cm), RH (0.20-2.60%), CEC (3.64-6.45 cmol/kg), TOC (3.57-18.62%), TOM (6.15-22.93%). The geochemical oxide composition were identified using Proton Induced X-ray emission and the results indicated that SiO2>Al2O3>Fe2O3>TiO2>K2O>MgO>CaO>Na2O> P2O5>MnO>Cr2O3>SrO>K2O>P2O5. The major mineralogical components in the tailing samples were determined by quantitative X-ray diffraction techniques using the Rietveld method. Geostatistical relationships among the known points were determined using ArcGIS 10.2 software to interpolate mineral concentration with respect to the study area. The Rietveld method gave a general Quartz value of 73.73-92.76%, IImenite as 0.38-4.77%, Kaolinite group as 3.19-20.83%, Muscovite as 0.77-11.70% with a trace of other minerals. The high percentage of quartz is an indication of a sandy environment with a loose binding site.

Keywords: tailings, geochemical, mineralogy, spatial

Procedia PDF Downloads 53
1633 Effect of Nitriding and Shot Peening on Corrosion Behavior and Surface Properties of Austenite Stainless Steel 316L

Authors: Khiaira S. Hassan, Abbas S. Alwan, Muna K. Abbass

Abstract:

This research aims to study the effect of the liquid nitriding and shot peening on the hardness, surface roughness, residual stress, microstructure and corrosion behavior of austenite stainless steel 316 L. Chemical surface heat treatment by liquid nitriding process was carried out at 500 °C for 1 h and followed by shot peening with using ball steel diameter of 1.25 mm in different exposure time of 10 and 20 min. Electrochemical corrosion test was applied in sea water (3.5% NaCl solution) by using potentostat instrument. The results showed that the nitride layer consists of a compound layer (white layer) and diffusion zone immediately below the alloy layer. It has been found that the mechanical treatment (shot peening) has led to the formation of compressive residual stresses in layer surface that increased the hardness of stainless steel surface. All surface treatment (nitriding and shot peening) processes have led to the formation of carbide of CrN in hard surface layer. It was shown that both processes caused an increase in surface hardness and roughness which increases with shot peening time. Also, the corrosion results showed that the liquid nitriding and shot peening processes increase the corrosion rate to values more than that of not treated stainless steel.

Keywords: stainless steel 316L, shot peening, nitriding, corrosion, hardness

Procedia PDF Downloads 456
1632 Assessment of Air Quality Status Using Pollution Indicators in Industrial Zone of Brega City

Authors: Tawfig Falani, Abdulalaziz Saleh

Abstract:

Air pollution has become a major environmental issue with definitive repercussions on human health. Global concerns have been raised about the health effects of deteriorating air quality due mainly to widespread industrialization and urbanization. To assess the quality of air in Brega, air quality indicators were calculated using the U.S. Environmental Protection Agency procedure. Air quality was monitored from 01/10/2019 to 28/02/2021 with a daily average measuring six pollutants of particulate matter <2.5µm (PM2.5), and <10µm (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and carbon monoxide (CO). The result indicated that air pollution at general air quality monitoring sites for sulphur dioxide, carbon monoxide, PM₁₀ and PM2.5 and nitrogen dioxide are always within the permissible limit. Referring to a monthly average of Pollutants in the Brega Industrial area, all months were out of AQG limit for NO₂, and the same with O₃ except for two months. For PM2.5 and PM₁₀ 7, 5 out of 17 months were out of limits, respectively. Relative AQI for ozone is found in the range of moderate category of general air pollution, and the worst month was Nov. 2020, which was marked as Very Unhealthy category, then the next two months (Dec. 2020 and Jan. 2021 ) were Unhealthy categories. It's the first time that we have used the AQI in SOC, and not usually used in Libya to identify the quality of air pollution. So, I think it will be useful if AQI is used as guidance for specified air pollution. That dictate putting monitoring stations beside any industrial activity that has emissions of the six major air pollutants.

Keywords: air quality, air pollutants, air quality index (AQI), particulate matter

Procedia PDF Downloads 34
1631 Earthquake Resistant Sustainable Steel Green Building

Authors: Arup Saha Chaudhuri

Abstract:

Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation.

Keywords: steel building, green and sustainable, earthquake resistant, EBF system

Procedia PDF Downloads 341
1630 Effects of Axial Loads and Soil Density on Pile Group Subjected to Triangular Soil Movement

Authors: Ihsan Al-Abboodi, Tahsin Toma-Sabbagh

Abstract:

Laboratory tests have been carried out to investigate the response of 2x2 pile group subjected to triangular soil movement. The pile group was instrumented with displacement and tilting devices at the pile cap and strain gauges on two piles of the group. In this paper, results from four model tests were presented to study the effects of axial loads and soil density on the lateral behavior of piles. The responses in terms of bending moment, shear force, soil pressure, deflection, and rotation of piles were compared. Test results indicate that increasing the soil strength could increase the measured moment, shear, soil pressure, and pile deformations. Most importantly, adding loads to the pile cap induces additional moment to the head of front-pile row unlike the back-pile row which was influenced insignificantly.

Keywords: pile group, passive piles, lateral soil movement, soil density, axial loads

Procedia PDF Downloads 311
1629 Ex Situ Conservation Practices for Rare Plants in Living Collections

Authors: Erika Pénzesné Kónya

Abstract:

The conservation programme of various vascular plant species has been started in the Botanical garden o fEszterházy College in Eger cooperating with two national parks in the Northern mountain region and Botanical garden of Eötvös Lóránd University in Budapest. The seeds of the species were collected in the chosen habitats with the permission determined by the National Parks and the conservation specialists. Now we have different numbers of individuals from mainly endemic and relict species. We took some experiments to know how can we germinate and grow up this species succesfully up to blooming and fruiting. In the temperate zone the majority of species after ripening the seeds or corps get dormancy to avoid the inadequate period to germinate. The seeds of species need variously pre-treatment (for example pre-chill) and suitable environment (for example basic medium) to unlock the seed dormancy and germinate in large scale. This impacts are often similar to in their originally habitat. To bloom the plants need suitable types of soil, but we couldn’t grow them in the most fruitful soil of habitat. Suitable microclimate is usually more important for some relict species than the soil, that’s why should we make experiments to find the suitable essential conditions for different species and know all of fenological states of them. These experiments can start a method for growing common wild native plants as food materials.

Keywords: ex situ conservation, germination success, soil preference Hungary, regionality, native wild plants

Procedia PDF Downloads 280
1628 Investigation on Corrosion Behavior of Copper Brazed Joints

Authors: A. M. Aminazad, A. M. Hadian, F. Ghasimakbari

Abstract:

DHP (Deoxidized High Phosphorus )copper is widely used in various heat transfer units such as, air conditioners refrigerators, evaporators and condensers. Copper sheets and tubes (ISODHP) were brazed with four different brazing alloys. Corrosion resistances of the joints were examined by polarization and salt spray tests. The selected fillers consisted of three silver-based brazing alloys (hard solder); AWS-BCu5 BAg8, DINLAg30, and a copper-based filler AWS BCuP2. All the joints were brazed utilizing four different brazing processes including furnace brazing under argon, vacuum, air atmosphere and torch brazing. All of the fillers were used with and without flux. The microstructure of the brazed sheets was examined using both optical and scanning electron microscope (SEM). Hardness and leak tests were carried out on all the brazed tubes. In all three silver brazing alloys selective and galvanic corrosion were observed in filler metals, but in copper phosphor alloys the copper adjacent to the joints were noticeably corroded by pitting method. Microstructure of damaged area showed selective attack of copper lamellae as well. Interfacial attack was observed along boundaries as well as copper attack within the filler metal itself. It was found that the samples brazed with BAg5 filler metal using vacuum furnace show a higher resistance to corrosion. They also have a good ductility in the brazed zone.

Keywords: copper, brazing, corrosion, filler metal

Procedia PDF Downloads 454
1627 Characteristics and Key Exploration Directions of Gold Deposits in China

Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao

Abstract:

Based on the geodynamic environment, basic geological characteristics of minerals and so on, gold deposits in China are divided into 11 categories, of which tectonic fracture altered rock, mid-intrudes and contact zone, micro-fine disseminated and continental volcanic types are the main prospecting kinds. The metallogenic age of gold deposits in China is dominated by the Mesozoic and Cenozoic. According to the geotectonic units, geological evolution, geological conditions, spatial distribution, gold deposits types, metallogenic factors etc., 42 gold concentration areas are initially determined and have a concentrated distribution feature. On the basis of the gold exploration density, gold concentration areas are divided into high, medium and low level areas. High ones are mainly distributed in the central and eastern regions. 93.04% of the gold exploration drillings are within 500 meters, but there are some problems, such as less and shallower of drilling verification etc.. The paper discusses the resource potentials of gold deposits and proposes the future prospecting directions and suggestions. The deep and periphery of old mines in the central and eastern regions and western area, especially in Xinjiang and Qinghai, will be the future key prospecting one and have huge potential gold reserves. If the exploration depth is extended to 2,000 meters shallow, the gold resources will double.

Keywords: gold deposits, gold deposits types, gold concentration areas, prospecting, resource potentiality

Procedia PDF Downloads 62
1626 Drilling Quantification and Bioactivity of Machinable Hydroxyapatite : Yttrium phosphate Bioceramic Composite

Authors: Rupita Ghosh, Ritwik Sarkar, Sumit K. Pal, Soumitra Paul

Abstract:

The use of Hydroxyapatite bioceramics as restorative implants is widely known. These materials can be manufactured by pressing and sintering route to a particular shape. However machining processes are still a basic requirement to give a near net shape to those implants for ensuring dimensional and geometrical accuracy. In this context, optimising the machining parameters is an important factor to understand the machinability of the materials and to reduce the production cost. In the present study a method has been optimized to produce true particulate drilled composite of Hydroxyapatite Yttrium Phosphate. The phosphates are used in varying ratio for a comparative study on the effect of flexural strength, hardness, machining (drilling) parameters and bioactivity.. The maximum flexural strength and hardness of the composite that could be attained are 46.07 MPa and 1.02 GPa respectively. Drilling is done with a conventional radial drilling machine aided with dynamometer with high speed steel (HSS) and solid carbide (SC) drills. The effect of variation in drilling parameters (cutting speed and feed), cutting tool, batch composition on torque, thrust force and tool wear are studied. It is observed that the thrust force and torque varies greatly with the increase in the speed, feed and yttrium phosphate content in the composite. Significant differences in the thrust and torque are noticed due to the change of the drills as well. Bioactivity study is done in simulated body fluid (SBF) upto 28 days. The growth of the bone like apatite has become denser with the increase in the number of days for all the composition of the composites and it is comparable to that of the pure hydroxyapatite.

Keywords: Bioactivity, Drilling, Hydroxyapatite, Yttrium Phosphate

Procedia PDF Downloads 285
1625 Geotechnical and Mineralogical Properties of Clay Soils in the Second Organized Industrial Region, Konya, Turkey

Authors: Mustafa Yıldız, Ali Ulvi Uzer, Murat Olgun

Abstract:

In this study, geotechnical and mineralogical properties of gypsum containing clay basis which form the ground of Second Organized Industrial Zone in Konya province have been researched through comprehensive field and laboratory experiments. Although sufficient geotechnical research has not been performed yet, an intensive structuring in the region continues at present. The study area consists of mid-lake sediments formed by gypsum containing soft silt-clay basis which evolves to a large area. To determine the soil profile and geotechnical specifications; 18 drilling holes were opened and disturbed / undisturbed soil samples have been taken through shelby tubes within 1.5m intervals. Tests have been performed on these samples to designate the index and strength properties of soil. Besides, at all drilling holes Standart Penetration Tests have been done within 1.5m intervals. For the purpose of determining the mineralogical characteristics of the soil; all rock and X-RD analysis have been carried out on 6 samples which were taken from various depths through the soil profile. Strength and compressibility characteristics of the soil were defined with correlations using laboratory and field test results. Unconfined compressive strength, undrained cohesion, compression index varies between 16 kN/m2 and 405.4 kN/m2, 6.5 kN/m2 and 72 kN/m2, 0.066 and 0.864, respectively.

Keywords: Konya second organized industrial region, strength, compressibility, soft clay

Procedia PDF Downloads 295
1624 Development and Characterization of Ceramic-Filled Composite Filaments and Functional Structures for Fused Deposition Modeling

Authors: B. Khatri, K. Lappe, M. Habedank, T. Müller, C. Megnin, T. Hanemann

Abstract:

We present a process flow for the development of ceramic-filled polymer composite filaments compatible with the fused deposition modeling (FDM) 3D printing process. Thermoplastic-ceramic composites were developed using acrylonitrile butadiene styrene (ABS) and 10- and 20 vol.% barium titanate (BaTiO3) powder (corresponding to 39.47- and 58.23 wt.% respectively) and characterized for their flow properties. To make them compatible with the existing FDM process, the composites were extruded into filaments. These composite filaments were subsequently structured into tensile stress specimens using a commercially available FDM 3D printer and characterized for their mechanical properties. Rheometric characterization of the material composites revealed non-Newtonian behavior with the viscosity logarithmically decreasing over increasing shear rates, as well as higher viscosities for samples with higher BaTiO3 filler content for a given shear rate (with the ABS+20vol.% BaTiO3 composite being over 50% more viscous compared to pure ABS at a shear rate of 1x〖10〗^3 s^(-1)). Mechanical characterization of the tensile stress specimens exhibited increasingly brittle behavior as well as a linearly decreasing ultimate tensile strength of the material composites with increasing volumetric ratio of BaTiO3 (from σ_max=32.4MPa for pure ABS to σ_max=21.3MPa for ABS+20vol.% BaTiO3). Further studies being undertaken include the development of composites with higher filler concentrations, sintering of the printed composites to yield pure dielectric structures and the determination of the dielectric characteristics of the composites.

Keywords: ceramic composites, fused deposition modeling, material characterization, rapid prototyping

Procedia PDF Downloads 325
1623 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments

Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui

Abstract:

Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.

Keywords: grade 70, GTAW, hybrid welding, SAW, SMAW

Procedia PDF Downloads 330
1622 The Side Effect of the Perforation Shape towards Behaviour Flexural in Castellated Beam

Authors: Harrys Purnama, Wardatul Jannah, Rizkia Nita Hawari

Abstract:

In the development of the times, there are many materials used to plan a building structure. Steel became one of the most widely used materials in building construction that works as the main structure. Steel Castellated Beam is a type of innovation in the use of steel in building construction. Steel Castellated Beam is a beam that used for long span construction (more than 10 meters). The Castellated Beam is two steel profiles that unified into one to get the appropriate profile height (more than 10 meters). The profile is perforated to minimize the profile's weight, increase the rate, save costs, and have architectural value. The perforations shape in the Castellated Beam can be circular, elliptical, hexagonal, and rectangular. The Castellated beam has a height (h) almost 50% higher than the initial profile thus increasing the axial bending value and the moment of inertia (Iₓ). In this analysis, there are 3 specimens were used with 12.1 meters span of Castellated Beam as the sample with varied perforation, such us round, hexagon, and octagon. Castellated Beam testing system is done with computer-based applications that named Staad Pro V8i. It is to provide a central load in the middle of the steel beam span. It aims to determine the effect of perforation on bending behavior on the steel Castellated Beam by applying some form of perforations on the steel Castellated Beam with test specimen WF 200.100.5.5.8. From the analysis, results found the behavior of steel Castellated Beam when receiving such central load. From the results of the analysis will be obtained the amount of load, shear, strain, and Δ (deflection). The result of analysis by using Staad Pro V8i shows that with the different form of perforations on the profile of Castellated steel, then we get the different tendency of inertia moment. From the analysis, results obtained the moment of the greatest inertia can increase the stiffness of Castellated steel. By increasing the stiffness of the steel Castellated Beam the deflection will be smaller, so it can withstand the moment and a large strength. The results of the analysis show that the most effective and efficient perforations are the steel beam with a hexagon perforation shape.

Keywords: Castellated Beam, the moment of inertia, stress, deflection, bending test

Procedia PDF Downloads 159
1621 Implication of Soil and Seismic Ground Motion Variability on Dynamic Pile Group Impedance for Bridges

Authors: Muhammad Tariq Chaudhary

Abstract:

Bridges constitute a vital link in a transportation system and their functionality after an earthquake is critical in reducing disruption to social and economic activities of the society. Bridges supported on pile foundations are commonly used in many earthquake-prone regions. In order to properly design or investigate the performance of such structures, it is imperative that the effect of soil-foundation-structure interaction be properly taken into account. This study focused on the influence of soil and seismic ground motion variability on the dynamic impedance of pile-group foundations typically used for medium-span (about 30 m) urban viaduct bridges. Soil profiles corresponding to various AASHTO soil classes were selected from actual data of such bridges and / or from the literature. The selected soil profiles were subjected to 1-D wave propagation analysis to determine effective values of soil shear modulus and damping ratio for a suite of properly selected actual seismic ground motions varying in PGA from 0.01g to 0.64g, and having variable velocity and frequency content. The effective values of the soil parameters were then employed to determine the dynamic impedance of pile groups in horizontal, vertical and rocking modes in various soil profiles. Pile diameter was kept constant for bridges in various soil profiles while pile length and number of piles were changed based on AASHTO design requirements for various soil profiles and earthquake ground motions. Conclusions were drawn regarding variability in effective soil shear modulus, soil damping, shear wave velocity and pile group impedance for various soil profiles and ground motions and its implications for design and evaluation of pile-supported bridges. It was found that even though the effective soil parameters underwent drastic variation with increasing PGA, the pile group impedance was not affected much in properly designed pile foundations due to the corresponding increase in pile length or increase in a number of piles or both when subjected to increasing PGA or founded in weaker soil profiles.

Keywords: bridge, pile foundation, dynamic foundation impedance, soil profile, shear wave velocity, seismic ground motion, seismic wave propagation

Procedia PDF Downloads 314
1620 Isolation and Antifungal Susceptibility Pattern of Candida albicans from Endocervical and High Vaginal Swabs of Pregnant Women Attending State Specialist Hospital Gombe, Nigeria

Authors: Isa Shu’aibu, A. A. Mu’inat, F. U. Maigari, M. A. Mani

Abstract:

Candida albicans is the common cause of both oral and vaginal candidiasis in humans. This candidiasis leads to a wide range of physical, psychological and even physiological problems in humans particularly pregnant women. Samples of endocervical and high vaginal swab were collected from 200 women attending Gombe Specialist Hospital and inoculated on Saboraud Dextrose Agar (SDA) incorporated with chloramphenicol to get rid of the unwanted bacterial contaminants. Gram staining technique and germ tube test were employed for the identification, as Candida albicans is positive for both. Gram positive samples were 70% (n=140) and were further subjected to germ tube test. The remaining 30% (n=60) were found to be Gram negative. 90% (n=126) of the Gram positive ones isolated were also found to be positive for germ tube test; confirming the presence of Candida albicans. Antifungal susceptibility testing revealed that members of Imidazole (Ketoconazole, Miconazole) and those of Triazoles (Fluconazole and Itraconazole) were found to be more effective at concentrations of 20, 50 and 100 µg/disc compared to Griseofulvin (Fulcin) with only 26.00 mm zone of inhibition at 100 µg/disc concentration.

Keywords: Candida albicans, candidiasis, endocervical, vaginal swab, antifungal susceptibility, imidazole, triazoles

Procedia PDF Downloads 325
1619 A Comparative Analysis of Thermal Performance of Building Envelope Types over Time

Authors: Aram Yeretzian, Yaser Abunnasr, Zahraa Makki, Betina Abi Habib

Abstract:

Developments in architectural building typologies that are informed by prevalent construction techniques and socio-cultural practices generate different adaptations in the building envelope. While different building envelope types exhibit different climate responsive passive strategies, the individual and comparative thermal performance analysis resulting from these technologies is yet to be understood. This research aims to develop this analysis by selecting three building envelope types from three distinct building traditions by measuring the heat transmission in the city of Beirut. The three typical residential buildings are selected from the 1920s, 1940s, and 1990s within the same street to ensure similar climatic and urban conditions. Climatic data loggers are installed inside and outside of the three locations to measure indoor and outdoor temperatures, relative humidity, and heat flow. The analysis of the thermal measurements is complemented by site surveys on window opening, lighting, and occupancy in the three selected locations and research on building technology from the three periods. Apart from defining the U-value of the building envelopes, the collected data will help evaluate the indoor environments with respect to the thermal comfort zone. This research, thus, validates and contextualizes the role of building technologies in relation to climate responsive design.

Keywords: architecture, wall construction, envelope performance, thermal comfort

Procedia PDF Downloads 223
1618 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia

Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan

Abstract:

In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.

Keywords: cushion coarse-grained sediments (CCS), expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale

Procedia PDF Downloads 300
1617 High Temperature Properties of Diffusion Brazed Joints of in 939 Ni-Base Superalloy

Authors: Hyunki Kang, Hi Won Jeong

Abstract:

The gas turbine operates for a long period of time under harsh, cyclic conditions of high temperature and pressure, where high turbine inlet temperature (TIT) can range from 1273 to 1873K. Therefore, Ni-base superalloys such as IN738, IN939, Rene 45, Rene 71, Rene 80, Mar M 247, CM 247, and CMSX-4 with excellent mechanical properties and resistance to creep, corrosion and oxidation at high temperatures are indeed used. Among the alloying additions for these alloys, aluminum (Al) and titanium (Ti) form gamma prime and enhance the high-temperature properties. However, when crack-damaged high-temperature turbine components such as blade and vane are repaired by fusion welding, they cause cracks. For example, when arc welding is applied to certain superalloys that contain Al and Ti with more than 3 wt.% and T3.5 wt%, respectively, such as IN738, IN939, Rene 80, Mar M 247, and CM 247, aging cracks occur. Therefore, repair technologies using diffusion brazing, which has less heat input into the base material, are being developed. Analysis of microstructural evolution of the brazed joints with a base metal of IN 939 Ni-base superalloy using brazing different filler metals was also carried out using X-ray diffraction, OEM, SEM-EDS, and EPMA. Stress rupture and high-temperature tensile strength properties were also measured to analyze the effects of different brazing heat cycles. The boron amount in the diffusion-affected zone (DAZ) was decreased towards the base metal and the formation of borides at grain boundaries was detected through EPMA.

Keywords: gas turbine, diffusion brazing, superalloy, gas turbine repair

Procedia PDF Downloads 36
1616 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison

Authors: B. S. Abdelwahed, B. B. Belkassem

Abstract:

Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.

Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance

Procedia PDF Downloads 454
1615 Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers: Lysimetric Experiment

Authors: Lukáš Plošek, Jaroslav Hynšt, Jaroslav Záhora, Jakub Elbl, Antonín Kintl, Ivana Charousová, Silvia Kovácsová

Abstract:

Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water. This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty-one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because loss of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass. The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water.

Keywords: nitrogen, compost, biomass production, lysimeter

Procedia PDF Downloads 336
1614 Comparison of Different Techniques to Estimate Surface Soil Moisture

Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini

Abstract:

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Keywords: artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil

Procedia PDF Downloads 351
1613 Nonlinear Analysis with Failure Using the Boundary Element Method

Authors: Ernesto Pineda Leon, Dante Tolentino Lopez, Janis Zapata Lopez

Abstract:

The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of the Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior is calculated taken into account the uncertainty in mechanical and geometrical properties. The problem is developed in two dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the Von Misses criteria is used. To solve the non-linear equations an incremental method is employed. The results show a relatively small failure probability for the ranges of loads between 0.6 and 1.0. However, for values between 1.0 and 2.5, the probability of failure increases significantly. Consequently, for load bigger than 2.5 the plate failure is a safe event. The results are compared to those that were found in the literature and the agreement is good.

Keywords: boundary element method, failure, plasticity, probability

Procedia PDF Downloads 293
1612 Effect of Postweld Soaking Temperature on Mechanical Properties of AISI 1018 Steel Plate Welded in Aqueous Environment

Authors: Yahaya Taiwo, Adedayo M. Segun

Abstract:

This study investigated the effect of postweld soaking temperature on mechanical properties of AISI 1018 steel plate welded in aqueous environment. Pairs of 90 x 70 x 12 mm, AISI 1018 steel plates were welded with weld zone beyond distance 10 mm from weld centerline immersed in a water jacket at 25°C. The welded specimens were tempered at temperature of 200, 300, 400, 500 and 600°C for 1.5 hours. Tensile, hardness and toughness tests at distances 15, 30, 45 and 60 mm from the weld centreline with micro structural evaluation were carried out. The results show that the aqueous environment as-weld sample exhibited higher hardness and tensile strength values of 45.3 HV and 448.12 N/mm2 respectively while the hardness and tensile strength of aqueous environment postweld heat treated samples were 44.9 HV and 378.98 N/mm2. This revealed 0.82% and 15.4% reduction in hardness and strength respectively. The metallographic tests showed that the postweld heat treated AISI 1018 steel micro structure contained tempered martensite with ferritic structure and precipitation of carbides. Postweld heat treatment produced materials of lower hardness and improved toughness.

Keywords: air weld samples, aqueous environment weld samples, soaking temperature, water jacket

Procedia PDF Downloads 324
1611 Estimating Soil Erosion Using Universal Soil Loss Equation and Gis in Algash Basin

Authors: Issamaldin Mohammed, Ahmed Abdalla, Hatim Elobied

Abstract:

Soil erosion is globally known for adverse effects on social, environmental and economical aspects which directly or indirectly influence the human life. The area under study suffers from problems like water quality, river and agricultural canals bed rise due to high sediment load brought by Algash River from upstream (Eritrea high land), the current study utilized from remote sensing and Geographical Information System (GIS) to estimate the annual soil loss using Universal Soil Loss Equation (USLE). The USLE is widely used over the world which basically relies on rainfall erosivity factor (R), soil erodibility factor (K), topographic factor (LS), cover management factor (C) and support practice factor (P). The result of the study showed high soil loss in the study area, this result was illustrated in a form of map presenting the spatial distribution of soil loss amounts which classified into seven zones ranging from very slight zone (less than 2 ton/ha.year) to very severe (100-500 ton/ha.year), also the total soil loss from the whole study area was found to be 32,916,840.87 ton/ha.year. These kinds of results will help the experts of land management to give a priority for the severely affected zones to be tackled in an appropriate way.

Keywords: Geographical Information System, remote sensing, sedimentation, soil loss

Procedia PDF Downloads 281
1610 Information and Communication Technologies-Based Urban Spaces: From Planning and Design to Implementation

Authors: Yountaik Leem, Kwang Woo Nam, Sang Ho Lee, Tae Heon Moon

Abstract:

As to the development of the capitalist economy, local governments put their focuses on economic growth and quality of life including the management of declined urban area. Together with the rapid advances in ICTs (information and communication technologies) Korean government tried to adapt ICTs to urban spaces to catch these two goals. Ubiquitous city, concept introduced by Mark Weiser in 1988, is a kind of ICTs based urban space which can provide IT services anytime and anywhere. This paper introduces the experience of developing ICTs-based urban planning and it’s implementation process and discusses the effect of the R&D based U-City test-bed project. For a community center of a residential zone in a newly developing city, spatial problems and citizen’s needs were identified to plan IT-based urban services. The paper also describes the structure and functions of Community O/S (COS) as an IT platform which controls data and urban devices such as media facades and U-poles. Not only one-way information but also Interactive services were included. Public creating activities using this platform also added –CO2 emission management and citizen making safety map, etc. The effects of the comprehensive U-City planning in S/W, H/W and human-ware were discussed on the case study of similar individual projects.

Keywords: ICTs-based urban planning, implementation, public IT service, U-City

Procedia PDF Downloads 309
1609 Sintering of Functionally Graded WC-TiC-Co Cemented Carbides

Authors: Stella Sten, Peter Hedström, Joakim Odqvist, Susanne Norgren

Abstract:

Two functionally graded cemented carbide samples have been produced by local addition of Titanium carbide (TiC) to a pressed Tungsten carbide and Cobalt, WC-10 wt% Co, green body prior to sintering, with the aim of creating a gradient in both composition and grain size in the as-sintered component. The two samples differ only by the in-going WC particle size, where one sub-micron and one coarse WC particle size have been chosen for comparison. The produced sintered samples had a gradient, thus a non-homogenous structure. The Titanium (Ti), Cobalt (Co), and Carbon (C) concentration profiles have been investigated using SEM-EDS and WDS; in addition, the Vickers hardness profile has been measured. Moreover, the Ti concentration profile has been simulated using DICTRA software and compared with experimental results. The concentration and hardness profiles show a similar trend for both samples. Ti and C levels decrease, as expected from the area of TiC application, whereas Co increases towards the edge of the samples. The non-homogenous composition affects the number of stable phases and WC grain size evolution. The sample with finer in-going WC grain size shows a shorter gamma (γ) phase zone and a larger difference in WC grain size compared to the coarse-grained sample. Both samples show, independent of the composition, the presence of abnormally large grains.

Keywords: cemented carbide, functional gradient material, grain growth, sintering

Procedia PDF Downloads 82