Search results for: radiation divergence
84 Glass-Ceramics for Emission in the IR Region
Authors: V. Nikolov, I. Koseva, R. Sole, F. Diaz
Abstract:
Cr4+ doped oxide compounds are particularly preferred active media for solid-state lasers with a wide emission region from 1.1 to 1.6 µm. However, obtaining of single crystals of these compounds is often problematic. An alternative solution of this problem is replacing the single crystals with a transparent glassceramics containing the desired crystalline phase. Germanate compounds, especially Li2MgGeO4, Li2ZnGeO4 and Li2CaGeO4, are suitable for Cr4+ doped glass-ceramics because of their relatively low melting temperature and tetrahedral coordination of all ions. The latter ensures the presence of chromium in the 4+ valence. Cr doped Li2CaGeO4 g lass-ceramic was synthesized by thermal treating using glasses from the Li2O-CaO-GeO2-B2O3 system. Special investigations were carried out for optimizing the initial glasscomposition, as well as the thermal treated conditions. The synthesis of the glass ceramics was accompanied by appropriate characterization methods such as: XRD, TEM, EPR, UVVIS-NIR, emission spectra and time decay as main characteristic for the laser emission. From the systematic studies carried out in the four-component system Li2O-CaO-GeO2-B2O3 for establishing the Li2CaGeO4 crystallization area and suitable thermal treatment conditions, several main conclusions can be drawn: 1. The crystallization region of Li2CaGeO4 is relatively narrow, localized around the stoichiometric composition of the Li2CaGeO4 compound. 2. The presence of the glass former B2O3 strongly supports the obtaining of homogeneous glasses at relatively low temperatures, but it is also the reason for the crystallization of borate phases. 3. The crystallization of glasses during thermal treatment is related to the production of more than one phase and it is correct to speak for crystallization of a main phase and accompanying crystallization of other phases. The crystallization of a given phase is related to changing the composition of the residual glass and creating conditions for the crystallization of other phases. 4. The separate studies show that glass-ceramics with different crystallized phases in different quantitative ratios can be obtained from the same composition of glass playing by the thermal treatment conditions. In other words, the choice of temperature and time of thermal treatment of the glass is an extremely important condition, along with the optimization of the starting glass composition. As a result of the conducted research, an optimal composition of the starting glass and an optimal mode of thermal treatment were selected. Glass-ceramic with a main phase Li2CaGeO4 doped by Cr4+ was obtained. The obtained glass-ceramic possess very good properties containing up to 60 mass% of Li2CaGeO4, with an average size of nanoparticles of 20 nm and with transparency about 70 % relative to the transparency of the parent glass. The emission of the obtained glass-ceramics is in a wide range between 1050 and 1500 nm. The obtained results are the basis for further optimization of the glass-ceramic characteristics to obtain an effective laser-active medium with radiation in the 1.1-1.6 nm range.Keywords: glass, glass-ceramics, multicomponent systems, NIR emission
Procedia PDF Downloads 1983 Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus
Authors: Yesim Tumsek, Erkan Celebi
Abstract:
In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction.Keywords: clay soil, impedance functions, soil-foundation interaction, sub-structure approach, reduced shear modulus
Procedia PDF Downloads 26982 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst
Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba
Abstract:
Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations
Procedia PDF Downloads 32381 Fatigue Influence on the Residual Stress State in Shot Peened Duplex Stainless Steel
Authors: P. D. Pedrosa, J. M. A. Rebello, M. P. Cindra Fonseca
Abstract:
Duplex stainless steels (DSS) exhibit a biphasic microstructure consisting of austenite and delta ferrite. Their high resistance to oxidation, and corrosion, even in H2S containing environments, allied to low cost when compared to conventional stainless steel, are some properties which make this material very attractive for several industrial applications. However, several of these industrial applications imposes cyclic loading to the equipments and in consequence fatigue damage needs to be a concern. A well-known way of improving the fatigue life of a component is by introducing compressive residual stress in its surface. Shot peening is an industrial working process which brings the material directly beneath component surface in a high mechanical compressive state, so inhibiting fatigue crack initiation. However, one must take into account the fact that the cyclic loading itself can reduce and even suppress these residual stresses, thus having undesirable consequences in the process of improving fatigue life by the introduction of compressive residual stresses. In the present work, shot peening was used to introduce residual stresses in several DSS samples. These were thereafter submitted to three different fatigue regimes: low, medium and high cycle fatigue. The evolution of the residual stress during loading were then examined on both surface and subsurface of the samples. It was used the DSS UNS S31803, with microstructure composed of 49% austenite and 51% ferrite. The treatment of shot peening was accomplished by the application of blasting in two Almen intensities of 0.25 and 0.39A. The residual stresses were measured by X-ray diffraction using the double exposure method and a portable equipment with CrK radiation and the (211) diffracting plane for the austenite phase and the (220) plane for the ferrite phase. It is known that residual stresses may arise when two regions of the same material experienced different degrees of plastic deformation. When these regions are separated in respect to each other on a scale that is large compared to the material's microstructure they are called macro stresses. In contrast, microstresses can largely vary over distances which are small comparable to the scale of the material's microstructure and must balance zero between the phases present. In the present work, special attention will be paid to the measurement of residual microstresses. Residual stress measurements were carried out in test pieces submitted to low, medium and high-cycle fatigue, in both longitudinal and transverse direction of the test pieces. It was found that after shot peening, the residual microstress is tensile in the austenite and compressive in the ferrite phases. It was hypothesized that the hardening behavior of the austenite after shot peening was probably due to its higher nitrogen content. Fatigue cycling can effectively change this stress state but this effect was found to be dependent of the shot peening intensity was well as the fatigue range.Keywords: residual stresses, fatigue, duplex steel, shot peening
Procedia PDF Downloads 22880 Smart Irrigation System for Applied Irrigation Management in Tomato Seedling Production
Authors: Catariny C. Aleman, Flavio B. Campos, Matheus A. Caliman, Everardo C. Mantovani
Abstract:
The seedling production stage is a critical point in the vegetable production system. Obtaining high-quality seedlings is a prerequisite for subsequent cropping to occur well and productivity optimization is required. The water management is an important step in agriculture production. The adequate water requirement in horticulture seedlings can provide higher quality and increase field production. The practice of irrigation is indispensable and requires a duly adjusted quality irrigation system, together with a specific water management plan to meet the water demand of the crop. Irrigation management in seedling management requires a great deal of specific information, especially when it involves the use of inputs such as hydrorentering polymers and automation technologies of the data acquisition and irrigation system. The experiment was conducted in a greenhouse at the Federal University of Viçosa, Viçosa - MG. Tomato seedlings (Lycopersicon esculentum Mill) were produced in plastic trays of 128 cells, suspended at 1.25 m from the ground. The seedlings were irrigated by 4 micro sprinklers of fixed jet 360º per tray, duly isolated by sideboards, following the methodology developed for this work. During Phase 1, in January / February 2017 (duration of 24 days), the cultivation coefficient (Kc) of seedlings cultured in the presence and absence of hydrogel was evaluated by weighing lysimeter. In Phase 2, September 2017 (duration of 25 days), the seedlings were submitted to 4 irrigation managements (Kc, timer, 0.50 ETo, and 1.00 ETo), in the presence and absence of hydrogel and then evaluated in relation to quality parameters. The microclimate inside the greenhouse was monitored with the use of air temperature, relative humidity and global radiation sensors connected to a microcontroller that performed hourly calculations of reference evapotranspiration by Penman-Monteith standard method FAO56 modified for the balance of long waves according to Walker, Aldrich, Short (1983), and conducted water balance and irrigation decision making for each experimental treatment. Kc of seedlings cultured on a substrate with hydrogel (1.55) was higher than Kc on a pure substrate (1.39). The use of the hydrogel was a differential for the production of earlier tomato seedlings, with higher final height, the larger diameter of the colon, greater accumulation of a dry mass of shoot, a larger area of crown projection and greater the rate of relative growth. The handling 1.00 ETo promoted higher relative growth rate.Keywords: automatic system; efficiency of water use; precision irrigation, micro sprinkler.
Procedia PDF Downloads 11679 Fabrication of Aluminum Nitride Thick Layers by Modified Reactive Plasma Spraying
Authors: Cécile Dufloux, Klaus Böttcher, Heike Oppermann, Jürgen Wollweber
Abstract:
Hexagonal aluminum nitride (AlN) is a promising candidate for several wide band gap semiconductor compound applications such as deep UV light emitting diodes (UVC LED) and fast power transistors (HEMTs). To date, bulk AlN single crystals are still commonly grown from the physical vapor transport (PVT). Single crystalline AlN wafers obtained from this process could offer suitable substrates for a defect-free growth of ultimately active AlGaN layers, however, these wafers still lack from small sizes, limited delivery quantities and high prices so far.Although there is already an increasing interest in the commercial availability of AlN wafers, comparatively cheap Si, SiC or sapphire are still predominantly used as substrate material for the deposition of active AlGaN layers. Nevertheless, due to a lattice mismatch up to 20%, the obtained material shows high defect densities and is, therefore, less suitable for high power devices as described above. Therefore, the use of AlN with specially adapted properties for optical and sensor applications could be promising for mass market products which seem to fulfill fewer requirements. To respond to the demand of suitable AlN target material for the growth of AlGaN layers, we have designed an innovative technology based on reactive plasma spraying. The goal is to produce coarse grained AlN boules with N-terminated columnar structure and high purity. In this process, aluminum is injected into a microwave stimulated nitrogen plasma. AlN, as the product of the reaction between aluminum powder and the plasma activated N2, is deposited onto the target. We used an aluminum filament as the initial material to minimize oxygen contamination during the process. The material was guided through the nitrogen plasma so that the mass turnover was 10g/h. To avoid any impurity contamination by an erosion of the electrodes, an electrode-less discharge was used for the plasma ignition. The pressure was maintained at 600-700 mbar, so the plasma reached a temperature high enough to vaporize the aluminum which subsequently was reacting with the surrounding plasma. The obtained products consist of thick polycrystalline AlN layers with a diameter of 2-3 cm. The crystallinity was determined by X-ray crystallography. The grain structure was systematically investigated by optical and scanning electron microscopy. Furthermore, we performed a Raman spectroscopy to provide evidence of stress in the layers. This paper will discuss the effects of process parameters such as microwave power and deposition geometry (specimen holder, radiation shields, ...) on the topography, crystallinity, and stress distribution of AlN.Keywords: aluminum nitride, polycrystal, reactive plasma spraying, semiconductor
Procedia PDF Downloads 28178 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina
Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava
Abstract:
The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing
Procedia PDF Downloads 11977 Analytical Solutions of Josephson Junctions Dynamics in a Resonant Cavity for Extended Dicke Model
Authors: S.I.Mukhin, S. Seidov, A. Mukherjee
Abstract:
The Dicke model is a key tool for the description of correlated states of quantum atomic systems, excited by resonant photon absorption and subsequently emitting spontaneous coherent radiation in the superradiant state. The Dicke Hamiltonian (DH) is successfully used for the description of the dynamics of the Josephson Junction (JJ) array in a resonant cavity under applied current. In this work, we have investigated a generalized model, which is described by DH with a frustrating interaction term. This frustrating interaction term is explicitly the infinite coordinated interaction between all the spin half in the system. In this work, we consider an array of N superconducting islands, each divided into two sub-islands by a Josephson Junction, taken in a charged qubit / Cooper Pair Box (CPB) condition. The array is placed inside the resonant cavity. One important aspect of the problem lies in the dynamical nature of the physical observables involved in the system, such as condensed electric field and dipole moment. It is important to understand how these quantities behave with time to define the quantum phase of the system. The Dicke model without frustrating term is solved to find the dynamical solutions of the physical observables in analytic form. We have used Heisenberg’s dynamical equations for the operators and on applying newly developed Rotating Holstein Primakoff (HP) transformation and DH we have arrived at the four coupled nonlinear dynamical differential equations for the momentum and spin component operators. It is possible to solve the system analytically using two-time scales. The analytical solutions are expressed in terms of Jacobi's elliptic functions for the metastable ‘bound luminosity’ dynamic state with the periodic coherent beating of the dipoles that connect the two double degenerate dipolar ordered phases discovered previously. In this work, we have proceeded the analysis with the extended DH with a frustrating interaction term. Inclusion of the frustrating term involves complexity in the system of differential equations and it gets difficult to solve analytically. We have solved semi-classical dynamic equations using the perturbation technique for small values of Josephson energy EJ. Because the Hamiltonian contains parity symmetry, thus phase transition can be found if this symmetry is broken. Introducing spontaneous symmetry breaking term in the DH, we have derived the solutions which show the occurrence of finite condensate, showing quantum phase transition. Our obtained result matches with the existing results in this scientific field.Keywords: Dicke Model, nonlinear dynamics, perturbation theory, superconductivity
Procedia PDF Downloads 13476 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model
Authors: Subham Ghosh, Arnab Nandi
Abstract:
Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.Keywords: activity recognition, antenna, deep-learning, time-frequency
Procedia PDF Downloads 975 The Invaluable Contributions of Radiography and Radiotherapy in Modern Medicine
Authors: Sahar Heidary
Abstract:
Radiography and radiotherapy have emerged as crucial pillars of modern medical practice, revolutionizing diagnostics and treatment for a myriad of health conditions. This abstract highlights the pivotal role of radiography and radiotherapy in favor of healthcare and society. Radiography, a non-invasive imaging technique, has significantly advanced medical diagnostics by enabling the visualization of internal structures and abnormalities within the human body. With the advent of digital radiography, clinicians can obtain high-resolution images promptly, leading to faster diagnoses and informed treatment decisions. Radiography plays a pivotal role in detecting fractures, tumors, infections, and various other conditions, allowing for timely interventions and improved patient outcomes. Moreover, its widespread accessibility and cost-effectiveness make it an indispensable tool in healthcare settings worldwide. On the other hand, radiotherapy, a branch of medical science that utilizes high-energy radiation, has become an integral component of cancer treatment and management. By precisely targeting and damaging cancerous cells, radiotherapy offers a potent strategy to control tumor growth and, in many cases, leads to cancer eradication. Additionally, radiotherapy is often used in combination with surgery and chemotherapy, providing a multifaceted approach to combat cancer comprehensively. The continuous advancements in radiotherapy techniques, such as intensity-modulated radiotherapy and stereotactic radiosurgery, have further improved treatment precision while minimizing damage to surrounding healthy tissues. Furthermore, radiography and radiotherapy have demonstrated their worth beyond oncology. Radiography is instrumental in guiding various medical procedures, including catheter placement, joint injections, and dental evaluations, reducing complications and enhancing procedural accuracy. On the other hand, radiotherapy finds applications in non-cancerous conditions like benign tumors, vascular malformations, and certain neurological disorders, offering therapeutic options for patients who may not benefit from traditional surgical interventions. In conclusion, radiography and radiotherapy stand as indispensable tools in modern medicine, driving transformative improvements in patient care and treatment outcomes. Their ability to diagnose, treat, and manage a wide array of medical conditions underscores their favor in medical practice. As technology continues to advance, radiography and radiotherapy will undoubtedly play an ever more significant role in shaping the future of healthcare, ultimately saving lives and enhancing the quality of life for countless individuals worldwide.Keywords: radiology, radiotherapy, medical imaging, cancer treatment
Procedia PDF Downloads 6974 Bioclimatic Devices in the Historical Rural Building: A Carried out Analysis on Some Rural Architectures in Puglia
Authors: Valentina Adduci
Abstract:
The developing research aims to define in general the criteria of environmental sustainability of rural buildings in Puglia and particularly in the manor farm. The main part of the study analyzes the relationship / dependence between the rural building and the landscape which, after many stratifications, results clearly identified and sometimes also characterized in a positive way. The location of the manor farm, in fact, is often conditioned by the infrastructural network and by the structure of the agricultural landscape. The manor farm, without the constraints due to the urban pattern’s density, was developed in accordance with a logical settlement that gives priority to the environmental aspects. These vernacular architectures are the most valuable example of how our ancestors have planned their dwellings according to nature. The 237 farms, analysis’ object, have been reported in cartography through the GIS system; a symbol has been assigned to each of them to identify the architectural typology and a different color for the historical period of construction. A datasheet template has been drawn up, and it has made possible a deeper understanding of each manor farm. This method provides a faster comparison of the most recurring characters in all the considered buildings, except for those farms which benefited from special geographical conditions, such as proximity to the road network or waterways. Below there are some of the most frequently constants derived from the statistical study of the examined buildings: southeast orientation of the main facade; placement of the sheep pen on the ground tilted and exposed to the south side; larger windowed surface on the south elevation; smaller windowed surface on the north elevation; presence of shielding vegetation near the more exposed elevations to the solar radiation; food storage’s rooms located on the ground floor or in the basement; animal shelter located in north side of the farm; presence of tanks and wells, sometimes combined with a very accurate channeling storm water system; thick layers of masonry walls, inside of which were often obtained hollow spaces to house stairwells or depots for the food storage; exclusive use of local building materials. The research aims to trace the ancient use of bioclimatic constructive techniques in the Apulian rural architecture and to define those that derive from an empirical knowledge and those that respond to an already encoded design. These constructive expedients are especially useful to obtain an effective passive cooling, to promote the natural ventilation and to built ingenious systems for the recovery and the preservation of rainwater and are still found in some of the manor farms analyzed, most of them are, today, in a serious state of neglect.Keywords: bioclimatic devices, farmstead, rural landscape, sustainability
Procedia PDF Downloads 38373 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy
Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla
Abstract:
Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.Keywords: multi-effect distillation, performance ratio, robustness, solar energy
Procedia PDF Downloads 18872 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques
Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo
Abstract:
Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.Keywords: air pollution, air quality modelling, data mining, particulate matter
Procedia PDF Downloads 25871 X-Ray Detector Technology Optimization In CT Imaging
Authors: Aziz Ikhlef
Abstract:
Most of multi-slices CT scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80kVp and 140kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts
Procedia PDF Downloads 27170 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots
Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha
Abstract:
Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.Keywords: biosensor, dopamine, fluorescence, quantum dots
Procedia PDF Downloads 36469 New Insulation Material for Solar Thermal Collectors
Authors: Nabila Ihaddadene, Razika Ihaddadene, Abdelwahaab Betka
Abstract:
1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector.Keywords: clay, insulation material, polystyrene, solar collector, straw
Procedia PDF Downloads 46168 Development of Bilayer Coating System for Mitigating Corrosion of Offshore Wind Turbines
Authors: Adamantini Loukodimou, David Weston, Shiladitya Paul
Abstract:
Offshore structures are subjected to harsh environments. It is documented that carbon steel needs protection from corrosion. The combined effect of UV radiation, seawater splash, and fluctuating temperatures diminish the integrity of these structures. In addition, the possibility of damage caused by floating ice, seaborne debris, and maintenance boats make them even more vulnerable. Their inspection and maintenance when far out in the sea are difficult, risky, and expensive. The most known method of mitigating corrosion of offshore structures is the use of cathodic protection. There are several zones in an offshore wind turbine. In the atmospheric zone, due to the lack of a continuous electrolyte (seawater) layer between the structure and the anode at all times, this method proves inefficient. Thus, the use of protective coatings becomes indispensable. This research focuses on the atmospheric zone. The conversion of commercially available and conventional paint (epoxy) system to an autonomous self-healing paint system via the addition of suitable encapsulated healing agents and catalyst is investigated in this work. These coating systems, which can self-heal when damaged, can provide a cost-effective engineering solution to corrosion and related problems. When the damage of the paint coating occurs, the microcapsules are designed to rupture and release the self-healing liquid (monomer), which then will react in the presence of the catalyst and solidify (polymerization), resulting in healing. The catalyst should be compatible with the system because otherwise, the self-healing process will not occur. The carbon steel substrate will be exposed to a corrosive environment, so the use of a sacrificial layer of Zn is also investigated. More specifically, the first layer of this new coating system will be TSZA (Thermally Sprayed Zn85/Al15) and will be applied on carbon steel samples with dimensions 100 x 150 mm after being blasted with alumina (size F24) as part of the surface preparation. Based on the literature, it corrodes readily, so one additional paint layer enriched with microcapsules will be added. Also, the reaction and the curing time are of high importance in order for this bilayer system of coating to work successfully. For the first experiments, polystyrene microcapsules loaded with 3-octanoyltio-1-propyltriethoxysilane were conducted. Electrochemical experiments such as Electrochemical Impedance Spectroscopy (EIS) confirmed the corrosion inhibiting properties of the silane. The diameter of the microcapsules was about 150-200 microns. Further experiments were conducted with different reagents and methods in order to obtain diameters of about 50 microns, and their self-healing properties were tested in synthetic seawater using electrochemical techniques. The use of combined paint/electrodeposited coatings allows for further novel development of composite coating systems. The potential for the application of these coatings in offshore structures will be discussed.Keywords: corrosion mitigation, microcapsules, offshore wind turbines, self-healing
Procedia PDF Downloads 11467 How Holton’s Thematic Analysis Can Help to Understand Why Fred Hoyle Never Accepted Big Bang Cosmology
Authors: Joao Barbosa
Abstract:
After an intense dispute between the big bang cosmology and its big rival, the steady-state cosmology, some important experimental observations, such as the determination of helium abundance in the universe and the discovery of the cosmic background radiation in the 1960s were decisive for the progressive and wide acceptance of big bang cosmology and the inevitable abandonment of steady-state cosmology. But, despite solid theoretical support and those solid experimental observations favorable to big bang cosmology, Fred Hoyle, one of the proponents of the steady-state and the main opponent of the idea of the big bang (which, paradoxically, himself he baptized), never gave up and continued to fight for the idea of a stationary (or quasi-stationary) universe until the end of his life, even after decades of widespread consensus around the big bang cosmology. We can try to understand this persistent attitude of Hoyle by applying Holton’s thematic analysis to cosmology. Holton recognizes in the scientific activity a dimension that, even unconscious or not assumed, is nevertheless very important in the work of scientists, in implicit articulation with the experimental and the theoretical dimensions of science. This is the thematic dimension, constituted by themata – concepts, methodologies, and hypotheses with a metaphysical, aesthetic, logical, or epistemological nature, associated both with the cultural context and the individual psychology of scientists. In practice, themata can be expressed through personal preferences and choices that guide the individual and collective work of scientists. Thematic analysis shows that big bang cosmology is mainly based on a set of themata consisting of evolution, finitude, life cycle, and change; the cosmology of the steady-state is based on opposite themata: steady-state, infinity, continuous existence, and constancy. The passionate controversy that these cosmological views carried out is part of an old cosmological opposition: the thematic opposition between an evolutionary view of the world (associated with Heraclitus) and a stationary view (associated with Parmenides). Personal preferences seem to have been important in this (thematic) controversy, and the thematic analysis that was developed shows that Hoyle is a very illustrative example of a life-long personal commitment to some themata, in this case to the opposite themata of the big bang cosmology. His struggle against the big bang idea was strongly based on philosophical and even religious reasons – which, in a certain sense and in a Holtonian perspective, is related to thematic preferences. In this personal and persistent struggle, Hoyle always refused the way how some experimental observations were considered decisive in favor of the big bang idea, arguing that the success of this idea is based on sociological and cultural prejudices. This Hoyle’s attitude is a personal thematic attitude, in which the acceptance or rejection of what is presented as proof or scientific fact is conditioned by themata: what is a proof or a scientific fact for one scientist is something yet to be established for another scientist who defends different or even opposites themata.Keywords: cosmology, experimental observations, fred hoyle, interpretation, life-long personal commitment, Themata
Procedia PDF Downloads 16866 X-Ray Detector Technology Optimization in Computed Tomography
Authors: Aziz Ikhlef
Abstract:
Most of multi-slices Computed Tomography (CT) scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This is translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80 kVp and 140 kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts
Procedia PDF Downloads 19465 Single Centre Retrospective Analysis of MR Imaging in Placenta Accreta Spectrum Disorder with Histopathological Correlation
Authors: Frank Dorrian, Aniket Adhikari
Abstract:
The placenta accreta spectrum (PAS), which includes placenta accreta, increta, and percreta, is characterized by the abnormal implantation of placental chorionic villi beyond the decidua basalis. Key risk factors include placenta previa, prior cesarean sections, advanced maternal age, uterine surgeries, multiparity, pelvic radiation, and in vitro fertilization (IVF). The incidence of PAS has increased tenfold over the past 50 years, largely due to rising cesarean rates. PAS is associated with significant peripartum and postpartum hemorrhage. Magnetic resonance imaging (MRI) and ultrasound assist in the evaluation of PAS, enabling a multidisciplinary approach to mitigate morbidity and mortality. This study retrospectively analyzed PAS cases at Royal Prince Alfred Hospital, Sydney, Australia. Using the SAR-ESUR joint consensus statement, seven imaging signs were reassessed for their sensitivity and specificity in predicting PAS, with histopathological correlation. The standardized MRI protocols for PAS at the institution were also reviewed. Data were collected from the picture archiving and communication system (PACS) records from 2010 to July 2024, focusing on cases where MR imaging and confirmed histopathology or operative notes were available. This single-center, observational study provides insights into the reliability of MRI for PAS detection and the optimization of imaging protocols for accurate diagnosis. The findings demonstrate that intraplacental dark bands serve as highly sensitive markers for diagnosing PAS, achieving sensitivities of 88.9%, 85.7%, and 100% for placenta accreta, increta, and percreta, respectively, with a combined specificity of 42.9%. Sensitivity for abnormal vascularization was lower (33.3%, 28.6%, and 50%), with a specificity of 57.1%. The placenta bulge exhibited sensitivities of 55.5%, 57.1%, and 100%, with a specificity of 57.1%. Loss of the T2 hypointense interface had sensitivities of 66.6%, 85.7%, and 100%, with 42.9% specificity. Myometrial thinning showed high sensitivity across PAS conditions (88.9%, 71.4%, and 100%) and a specificity of 57.1%. Bladder wall thinning was sensitive only for placenta percreta (50%) but had a specificity of 100%. Focal exophytic mass displayed variable sensitivity (22.9%, 42.9%, and 100%) with a specificity of 85.7%. These results highlight the diagnostic variability among markers, with intraplacental dark bands and myometrial thinning being useful in detecting abnormal placentation, though they lack high specificity. The literature and the results of our study highlight that while no single feature can definitively diagnose PAS, the presence of multiple features -especially when combined with elevated clinical risk- significantly increases the likelihood of an underlying PAS. A thorough understanding of the range of MRI findings associated with PAS, along with awareness of the clinical significance of each sign, helps the radiologist more accurately diagnose the condition and assist in surgical planning, ultimately improving patient care.Keywords: placenta, accreta, spectrum, MRI
Procedia PDF Downloads 764 Intensive Care Nursing Experience of a Lung Cancer Patient Receiving Palliative
Authors: Huang Wei-Yi
Abstract:
Objective: This article explores the intensive care nursing experience of a terminal lung cancer patient who received palliative care after tracheal intubation. The patient was nearing death, and the family experienced sadness and grief as they faced the patient’s deteriorating condition and impending death. Methods: The patient was diagnosed with lung cancer in 2018 and received chemotherapy and radiation therapy with regular outpatient follow-ups. Due to brain metastasis and recent poor pain control and treatment outcomes, the patient was admitted to the intensive care unit (ICU), where the tracheal tube was removed, and palliative care was initiated. During the care period, a holistic assessment was conducted, addressing the physical, psychological, social, and spiritual aspects of care. Medical records were reviewed, interviews and family meetings were held, and a comprehensive assessment was carried out by the critical care team in collaboration with the palliative care team. The primary nursing issues identified included pain, ineffective breathing patterns, fear of death, and altered tissue perfusion. Results: Throughout the care process, the palliative care nurse, along with the family, utilized listening, caring, companionship, pain management, essential oil massage, distraction, and comfortable positioning to alleviate the patient’s pain and breathing difficulties. The use of Morphine 6mg in 0.9% N/S 50ml IV drip q6h reduced the FLACC pain score from 6 to 3. The patient’s respiratory rate improved from 28 breaths/min to 18-22 breaths/min, and sleep duration increased from 4 to 7 uninterrupted hours. The holistic palliative care approach, coupled with the involvement of the palliative care team, facilitated expressions of gratitude, apologies, and love between the patient and family. Visiting hours were extended, and with the nurse’s assistance, these moments were recorded and shared with the patient’s consent, providing cherished memories for the family. The patient’s end-of-life experience was thus improved, and the family was able to find peace. This case also served to promote the concept of palliative care, ensuring that more patients and families receive high-quality nursing care. Conclusion: When caring for terminal patients, collaboration with the palliative care team, including social workers, clergy, psychologists, and nutritionists, is essential. Involving the family in decision-making and providing opportunities for closeness and expressions of gratitude improve personalized care and enhance the patient's quality of life. Upon transferring to the ward, the patient’s hemodynamic stability was maintained, including SBP 110-130 mmHg, respiratory rate 20-22 breaths/min, and pain score <3. The patient was later discharged and transitioned to home hospice care for ongoing support.Keywords: intensive care, lung cancer, palliative care, ICU
Procedia PDF Downloads 2363 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals
Authors: N. Renuka, R. Ramesh Babu, N. Vijayan
Abstract:
Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer
Procedia PDF Downloads 25462 Ecosystem Modeling along the Western Bay of Bengal
Authors: A. D. Rao, Sachiko Mohanty, R. Gayathri, V. Ranga Rao
Abstract:
Modeling on coupled physical and biogeochemical processes of coastal waters is vital to identify the primary production status under different natural and anthropogenic conditions. About 7, 500 km length of Indian coastline is occupied with number of semi enclosed coastal bodies such as estuaries, inlets, bays, lagoons, and other near shore, offshore shelf waters, etc. This coastline is also rich in wide varieties of ecosystem flora and fauna. Directly/indirectly extensive domestic and industrial sewage enter into these coastal water bodies affecting the ecosystem character and create environment problems such as water quality degradation, hypoxia, anoxia, harmful algal blooms, etc. lead to decline in fishery and other related biological production. The present study is focused on the southeast coast of India, starting from Pulicat to Gulf of Mannar, which is rich in marine diversity such as lagoon, mangrove and coral ecosystem. Three dimensional Massachusetts Institute of Technology general circulation model (MITgcm) along with Darwin biogeochemical module is configured for the western Bay of Bengal (BoB) to study the biogeochemistry over this region. The biogeochemical module resolves the cycling of carbon, phosphorous, nitrogen, silica, iron and oxygen through inorganic, living, dissolved and particulate organic phases. The model domain extends from 4°N-16.5°N and 77°E-86°E with a horizontal resolution of 1 km. The bathymetry is derived from General Bathymetric Chart of the Oceans (GEBCO), which has a resolution of 30 sec. The model is initialized by using the temperature, salinity filed from the World Ocean Atlas (WOA2013) of National Oceanographic Data Centre with a resolution of 0.25°. The model is forced by the surface wind stress from ASCAT and the photosynthetically active radiation from the MODIS-Aqua satellite. Seasonal climatology of nutrients (phosphate, nitrate and silicate) for the southwest BoB region are prepared using available National Institute of Oceanography (NIO) in-situ data sets and compared with the WOA2013 seasonal climatology data. The model simulations with the two different initial conditions viz., WOA2013 and the generated NIO climatology, showed evident changes in the concentration and the evolution of the nutrients in the study region. It is observed that the availability of nutrients is more in NIO data compared to WOA in the model domain. The model simulated primary productivity is compared with the spatially distributed satellite derived chlorophyll data and at various locations with the in-situ data. The seasonal variability of the model simulated primary productivity is also studied.Keywords: Bay of Bengal, Massachusetts Institute of Technology general circulation model, MITgcm, biogeochemistry, primary productivity
Procedia PDF Downloads 14161 Wood as a Climate Buffer in a Supermarket
Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø
Abstract:
Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast
Procedia PDF Downloads 21560 Enhancing of Antibacterial Activity of Essential Oil by Rotating Magnetic Field
Authors: Tomasz Borowski, Dawid Sołoducha, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy
Abstract:
Essential oils (EOs) are fragrant volatile oils obtained from plants. These are used for cooking (for flavor and aroma), cleaning, beauty (e.g., rosemary essential oil is used to promote hair growth), health (e.g. thyme essential oil cures arthritis, normalizes blood pressure, reduces stress on the heart, cures chest infection and cough) and in the food industry as preservatives and antioxidants. Rosemary and thyme essential oils are considered the most eminent herbs based on their history and medicinal properties. They possess a wide range of activity against different types of bacteria and fungi compared with the other oils in both in vitro and in vivo studies. However, traditional uses of EOs are limited due to rosemary and thyme oils in high concentrations can be toxic. In light of the accessible data, the following hypothesis was put forward: Low frequency rotating magnetic field (RMF) increases the antimicrobial potential of EOs. The aim of this work was to investigate the antimicrobial activity of commercial Salvia Rosmarinus L. and Thymus vulgaris L. essential oil from Polish company Avicenna-Oil under Rotating Magnetic Field (RMF) at f = 25 Hz. The self-constructed reactor (MAP) was applied for this study. The chemical composition of oils was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Minimum inhibitory concentrations (MIC) against E. coli were determined for the essential oils. Tested oils in very small concentrations were prepared (from 1 to 3 drops of essential oils per 3 mL working suspensions). From the results of disc diffusion assay and MIC tests, it can be concluded that thyme oil had the highest antibacterial activity against E. coli. Moreover, the study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of tested oils. The extended radiation exposure to RMF at the frequency f= 25 Hz beyond 160 minutes resulted in a significant increase in antibacterial potential against E. coli. Bacteria were killed within 40 minutes in thyme oil in lower tested concentration (1 drop of essential oils per 3 mL working suspension). Rapid decrease (>3 log) of bacteria number was observed with rosemary oil within 100 minutes (in concentration 3 drops of essential oils per 3 mL working suspension). Thus, a method for improving the antimicrobial performance of essential oil in low concentrations was developed. However, it still remains to be investigated how bacteria get killed by the EOs treated by an electromagnetic field. The possible mechanisms relies on alteration in the permeability of ionic channels in ionic channels in the bacterial cell walls that transport in the cells was proposed. For further studies, it is proposed to examine other types of essential oils and other antibiotic-resistant bacteria (ARB), which are causing a serious concern throughout the world.Keywords: rotating magnetic field, rosemary, thyme, essential oils, Escherichia coli
Procedia PDF Downloads 15659 Compositional Influence in the Photovoltaic Properties of Dual Ion Beam Sputtered Cu₂ZnSn(S,Se)₄ Thin Films
Authors: Brajendra S. Sengar, Vivek Garg, Gaurav Siddharth, Nisheka Anadkat, Amitesh Kumar, Shaibal Mukherjee
Abstract:
The optimal band gap (~ 1 to 1.5 eV) and high absorption coefficient ~104 cm⁻¹ has made Cu₂ZnSn(S,Se)₄ (CZTSSe) films as one of the most promising absorber materials in thin-film photovoltaics. Additionally, CZTSSe consists of elements that are abundant and non-toxic, makes it even more favourable. The CZTSSe thin films are grown at 100 to 500ᵒC substrate temperature (Tsub) on Soda lime glass (SLG) substrate by Elettrorava dual ion beam sputtering (DIBS) system by utilizing a target at 2.43x10⁻⁴ mbar working pressure with RF power of 45 W in argon ambient. The chemical composition, depth profiling, structural properties and optical properties of these CZTSSe thin films prepared on SLG were examined by energy dispersive X-ray spectroscopy (EDX, Oxford Instruments), Hiden secondary ion mass spectroscopy (SIMS) workstation with oxygen ion gun of energy up to 5 keV, X-ray diffraction (XRD) (Rigaku Cu Kα radiation, λ=.154nm) and Spectroscopic Ellipsometry (SE, M-2000D from J. A. Woollam Co., Inc). It is observed that from that, the thin films deposited at Tsub=200 and 300°C show Cu-poor and Zn-rich states (i.e., Cu/(Zn + Sn) < 1 and Zn/Sn > 1), which is not the case for films grown at other Tsub. It has been reported that the CZTSSe thin films with the highest efficiency are typically at Cu-poor and Zn-rich states. The values of band gap in the fundamental absorption region of CZTSSe are found to be in the range of 1.23-1.70 eV depending upon the Cu/(Zn+Sn) ratio. It is also observed that there is a decline in optical band gap with the increase in Cu/(Zn+Sn) ratio (evaluated from EDX measurement). Cu-poor films are found to have higher optical band gap than Cu-rich films. The decrease in the band gap with the increase in Cu content in case of CZTSSe films may be attributed to changes in the extent of p-d hybridization between Cu d-levels and (S, Se) p-levels. CZTSSe thin films with Cu/(Zn+Sn) ratio in the range 0.86–1.5 have been successfully deposited using DIBS. Optical band gap of the films is found to vary from 1.23 to 1.70 eV based on Cu/(Zn+Sn) ratio. CZTSe films with Cu/ (Zn+Sn) ratio of .86 are found to have optical band gap close to the ideal band gap (1.49 eV) for highest theoretical conversion efficiency. Thus by tailoring the value of Cu/(Zn+Sn), CZTSSe thin films with the desired band gap could be obtained. Acknowledgment: We are thankful to DIBS, EDX, and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors B. S. S and A. K. acknowledge CSIR, and V. G. acknowledges UGC, India for their fellowships. B. S. S is thankful to DST and IUSSTF for BASE Internship Award. Prof. Shaibal Mukherjee is thankful to DST and IUSSTF for BASE Fellowship and MEITY YFRF award. This work is partially supported by DAE BRNS, DST CERI, and DST-RFBR Project under India-Russia Programme of Cooperation in Science and Technology. We are thankful to Mukul Gupta for SIMS facility equipped at UGC-DAE Indore.Keywords: CZTSSe, DIBS, EDX, solar cell
Procedia PDF Downloads 25058 Evaluation of the Boiling Liquid Expanding Vapor Explosion Thermal Effects in Hassi R'Mel Gas Processing Plant Using Fire Dynamics Simulator
Authors: Brady Manescau, Ilyas Sellami, Khaled Chetehouna, Charles De Izarra, Rachid Nait-Said, Fati Zidani
Abstract:
During a fire in an oil and gas refinery, several thermal accidents can occur and cause serious damage to people and environment. Among these accidents, the BLEVE (Boiling Liquid Expanding Vapor Explosion) is most observed and remains a major concern for risk decision-makers. It corresponds to a violent vaporization of explosive nature following the rupture of a vessel containing a liquid at a temperature significantly higher than its normal boiling point at atmospheric pressure. Their effects on the environment generally appear in three ways: blast overpressure, radiation from the fireball if the liquid involved is flammable and fragment hazards. In order to estimate the potential damage that would be caused by such an explosion, risk decision-makers often use quantitative risk analysis (QRA). This analysis is a rigorous and advanced approach that requires a reliable data in order to obtain a good estimate and control of risks. However, in most cases, the data used in QRA are obtained from the empirical correlations. These empirical correlations generally overestimate BLEVE effects because they are based on simplifications and do not take into account real parameters like the geometry effect. Considering that these risk analyses are based on an assessment of BLEVE effects on human life and plant equipment, more precise and reliable data should be provided. From this point of view, the CFD modeling of BLEVE effects appears as a solution to the empirical law limitations. In this context, the main objective is to develop a numerical tool in order to predict BLEVE thermal effects using the CFD code FDS version 6. Simulations are carried out with a mesh size of 1 m. The fireball source is modeled as a vertical release of hot fuel in a short time. The modeling of fireball dynamics is based on a single step combustion using an EDC model coupled with the default LES turbulence model. Fireball characteristics (diameter, height, heat flux and lifetime) issued from the large scale BAM experiment are used to demonstrate the ability of FDS to simulate the various steps of the BLEVE phenomenon from ignition up to total burnout. The influence of release parameters such as the injection rate and the radiative fraction on the fireball heat flux is also presented. Predictions are very encouraging and show good agreement in comparison with BAM experiment data. In addition, a numerical study is carried out on an operational propane accumulator in an Algerian gas processing plant of SONATRACH company located in the Hassi R’Mel Gas Field (the largest gas field in Algeria).Keywords: BLEVE effects, CFD, FDS, fireball, LES, QRA
Procedia PDF Downloads 18657 A Comparison of Biosorption of Radionuclides Tl-201 on Different Biosorbents and Their Empirical Modelling
Authors: Sinan Yapici, Hayrettin Eroglu
Abstract:
The discharge of the aqueous radionuclides wastes used for the diagnoses of diseases and treatments of patients in nuclear medicine can cause fatal health problems when the radionuclides and its stable daughter component mix with underground water. Tl-201, which is one of the radionuclides commonly used in the nuclear medicine, is a toxic substance and is converted to its stable daughter component Hg-201, which is also a poisonous heavy metal: Tl201 → Hg201 + Gamma Ray [135-167 Kev (12%)] + X Ray [69-83 Kev (88%)]; t1/2 = 73,1 h. The purpose of the present work was to remove Tl-201 radionuclides from aqueous solution by biosorption on the solid bio wastes of food and cosmetic industry as bio sorbents of prina from an olive oil plant, rose residue from a rose oil plant and tea residue from a tea plant, and to make a comparison of the biosorption efficiencies. The effects of the biosorption temperature, initial pH of the aqueous solution, bio sorbent dose, particle size and stirring speed on the biosorption yield were investigated in a batch process. It was observed that the biosorption is a rapid process with an equilibrium time less than 10 minutes for all the bio sorbents. The efficiencies were found to be close to each other and measured maximum efficiencies were 93,30 percent for rose residue, 94,1 for prina and 98,4 for tea residue. In a temperature range of 283 and 313 K, the adsorption decreased with increasing temperature almost in a similar way. In a pH range of 2-10, increasing pH enhanced biosorption efficiency up to pH=7 and then the efficiency remained constant in a similar path for all the biosorbents. Increasing stirring speed from 360 to 720 rpm enhanced slightly the biosorption efficiency almost at the same ratio for all bio sorbents. Increasing particle size decreased the efficiency for all biosorbent; however the most negatively effected biosorbent was prina with a decrease in biosorption efficiency from about 84 percent to 40 with an increase in the nominal particle size 0,181 mm to 1,05 while the least effected one, tea residue, went down from about 97 percent to 87,5. The biosorption efficiencies of all the bio sorbents increased with increasing biosorbent dose in the range of 1,5 to 15,0 g/L in a similar manner. The fit of the experimental results to the adsorption isotherms proved that the biosorption process for all the bio sorbents can be represented best by Freundlich model. The kinetic analysis showed that all the processes fit very well to pseudo second order rate model. The thermodynamics calculations gave ∆G values between -8636 J mol-1 and -5378 for tea residue, -5313 and -3343 for rose residue, and -5701 and -3642 for prina with a ∆H values of -39516 J mol-1, -23660 and -26190, and ∆S values of -108.8 J mol-1 K-1, -64,0, -72,0 respectively, showing spontaneous and exothermic character of the processes. An empirical biosorption model in the following form was derived for each biosorbent as function of the parameters and time, taking into account the form of kinetic model, with regression coefficients over 0.9990 where At is biosorbtion efficiency at any time and Ae is the equilibrium efficiency, t is adsorption period as s, ko a constant, pH the initial acidity of biosorption medium, w the stirring speed as s-1, S the biosorbent dose as g L-1, D the particle size as m, and a, b, c, and e are the powers of the parameters, respectively, E a constant containing activation energy and T the temperature as K.Keywords: radiation, diosorption, thallium, empirical modelling
Procedia PDF Downloads 26556 Positron Emission Tomography Parameters as Predictors of Pathologic Response and Nodal Clearance in Patients with Stage IIIA NSCLC Receiving Trimodality Therapy
Authors: Andrea L. Arnett, Ann T. Packard, Yolanda I. Garces, Kenneth W. Merrell
Abstract:
Objective: Pathologic response following neoadjuvant chemoradiation (CRT) has been associated with improved overall survival (OS). Conflicting results have been reported regarding the pathologic predictive value of positron emission tomography (PET) response in patients with stage III lung cancer. The aim of this study was to evaluate the correlation between post-treatment PET response and pathologic response utilizing novel FDG-PET parameters. Methods: This retrospective study included patients with non-metastatic, stage IIIA (N2) NSCLC cancer treated with CRT followed by resection. All patients underwent PET prior to and after neoadjuvant CRT. Univariate analysis was utilized to assess correlations between PET response, nodal clearance, pCR, and near-complete pathologic response (defined as the microscopic residual disease or less). Maximal standard uptake value (SUV), standard uptake ratio (SUR) [normalized independently to the liver (SUR-L) and blood pool (SUR-BP)], metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured pre- and post-chemoradiation. Results: A total of 44 patients were included for review. Median age was 61.9 years, and median follow-up was 2.6 years. Histologic subtypes included adenocarcinoma (72.2%) and squamous cell carcinoma (22.7%), and the majority of patients had the T2 disease (59.1%). The rate of pCR and near-complete pathologic response within the primary lesion was 28.9% and 44.4%, respectively. The average reduction in SUVmₐₓ was 9.2 units (range -1.9-32.8), and the majority of patients demonstrated some degree of favorable treatment response. SUR-BP and SUR-L showed a mean reduction of 4.7 units (range -0.1-17.3) and 3.5 units (range –1.7-12.6), respectively. Variation in PET response was not significantly associated with histologic subtype, concurrent chemotherapy type, stage, or radiation dose. No significant correlation was found between pathologic response and absolute change in MTV or TLG. Reduction in SUVmₐₓ and SUR were associated with increased rate of pathologic response (p ≤ 0.02). This correlation was not impacted by normalization of SUR to liver versus mediastinal blood pool. A threshold of > 75% decrease in SUR-L correlated with near-complete response, with a sensitivity of 57.9% and specificity of 85.7%, as well as positive and negative predictive values of 78.6% and 69.2%, respectively (diagnostic odds ratio [DOR]: 5.6, p=0.02). A threshold of >50% decrease in SUR was also significantly associated pathologic response (DOR 12.9, p=0.2), but specificity was substantially lower when utilizing this threshold value. No significant association was found between nodal PET parameters and pathologic nodal clearance. Conclusions: Our results suggest that treatment response to neoadjuvant therapy as assessed on PET imaging can be a predictor of pathologic response when evaluated via SUV and SUR. SUR parameters were associated with higher diagnostic odds ratios, suggesting improved predictive utility compared to SUVmₐₓ. MTV and TLG did not prove to be significant predictors of pathologic response but may warrant further investigation in a larger cohort of patients.Keywords: lung cancer, positron emission tomography (PET), standard uptake ratio (SUR), standard uptake value (SUV)
Procedia PDF Downloads 23455 Monitoring the Effect of Doxorubicin Liposomal in VX2 Tumor Using Magnetic Resonance Imaging
Authors: Ren-Jy Ben, Jo-Chi Jao, Chiu-Ya Liao, Ya-Ru Tsai, Lain-Chyr Hwang, Po-Chou Chen
Abstract:
Cancer is still one of the serious diseases threatening the lives of human beings. How to have an early diagnosis and effective treatment for tumors is a very important issue. The animal carcinoma model can provide a simulation tool for the study of pathogenesis, biological characteristics and therapeutic effects. Recently, drug delivery systems have been rapidly developed to effectively improve the therapeutic effects. Liposome plays an increasingly important role in clinical diagnosis and therapy for delivering a pharmaceutic or contrast agent to the targeted sites. Liposome can be absorbed and excreted by the human body, and is well known that no harm to the human body. This study aimed to compare the therapeutic effects between encapsulated (doxorubicin liposomal, LipoDox) and un-encapsulated (doxorubicin, Dox) anti-tumor drugs using Magnetic Resonance Imaging (MRI). Twenty-four New Zealand rabbits implanted with VX2 carcinoma at left thigh were classified into three groups: control group (untreated), Dox-treated group and LipoDox-treated group, 8 rabbits for each group. MRI scans were performed three days after tumor implantation. A 1.5T GE Signa HDxt whole body MRI scanner with a high resolution knee coil was used in this study. After a 3-plane localizer scan was performed, Three-Dimensional (3D) Fast Spin Echo (FSE) T2-Weighted Images (T2WI) was used for tumor volumetric quantification. And Two-Dimensional (2D) spoiled gradient recalled echo (SPGR) dynamic Contrast-enhanced (DCE) MRI was used for tumor perfusion evaluation. DCE-MRI was designed to acquire four baseline images, followed by contrast agent Gd-DOTA injection through the ear vein of rabbits. Afterwards, a series of 32 images were acquired to observe the signals change over time in the tumor and muscle. The MRI scanning was scheduled on a weekly basis for a period of four weeks to observe the tumor progression longitudinally. The Dox and LipoDox treatments were prescribed 3 times in the first week immediately after VX2 tumor implantation. ImageJ was used to quantitate tumor volume and time course signal enhancement on DCE images. The changes of tumor size showed that the growth of VX2 tumors was effectively inhibited for both LipoDox-treated and Dox-treated groups. Furthermore, the tumor volume of LipoDox-treated group was significantly lower than that of Dox-treated group, which implies that LipoDox has better therapeutic effect than Dox. The signal intensity of LipoDox-treated group is significantly lower than that of the other two groups, which implies that targeted therapeutic drug remained in the tumor tissue. This study provides a radiation-free and non-invasive MRI method for therapeutic monitoring of targeted liposome on an animal tumor model.Keywords: doxorubicin, dynamic contrast-enhanced MRI, lipodox, magnetic resonance imaging, VX2 tumor model
Procedia PDF Downloads 457