Search results for: local interconnect network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9827

Search results for: local interconnect network

8357 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia PDF Downloads 157
8356 Cuban's Supply Chains Development Model: Qualitative and Quantitative Impact on Final Consumers

Authors: Teresita Lopez Joy, Jose A. Acevedo Suarez, Martha I. Gomez Acosta, Ana Julia Acevedo Urquiaga

Abstract:

Current trends in business competitiveness indicate the need to manage businesses as supply chains and not in isolation. The use of strategies aimed at maximum satisfaction of customers in a network and based on inter-company cooperation; contribute to obtaining successful joint results. In the Cuban economic context, the development of productive linkages to achieve integrated management of supply chains is considering a key aspect. In order to achieve this jump, it is necessary to develop acting capabilities in the entities that make up the chains through a systematic procedure that allows arriving at a management model in consonance with the environment. The objective of the research focuses on: designing a model and procedure for the development of integrated management of supply chains in economic entities. The results obtained are: the Model and the Procedure for the Development of the Supply Chains Integrated Management (MP-SCIM). The Model is based on the development of logistics in the network actors, the joint work between companies, collaborative planning and the monitoring of a main indicator according to the end customers. The application Procedure starts from the well-founded need for development in a supply chain and focuses on training entrepreneurs as doers. The characterization and diagnosis is done to later define the design of the network and the relationships between the companies. It takes into account the feedback as a method of updating the conditions and way to focus the objectives according to the final customers. The MP-SCIM is the result of systematic work with a supply chain approach in companies that have consolidated as coordinators of their network. The cases of the edible oil chain and explosives for construction sector reflect results of more remarkable advances since they have applied this approach for more than 5 years and maintain it as a general strategy of successful development. The edible oil trading company experienced a jump in sales. In 2006, the company started the analysis in order to define the supply chain, apply diagnosis techniques, define problems and implement solutions. The involvement of the management and the progressive formation of performance capacities in the personnel allowed the application of tools according to the context. The company that coordinates the explosives chain for construction sector shows adequate training with independence and opportunity in the face of different situations and variations of their business environment. The appropriation of tools and techniques for the analysis and implementation of proposals is a characteristic feature of this case. The coordinating entity applies integrated supply chain management to its decisions based on the timely training of the necessary action capabilities for each situation. Other cases of study and application that validate these tools are also detailed in this paper, and they highlight the results of generalization in the quantitative and qualitative improvement according to the final clients. These cases are: teaching literature in universities, agricultural products of local scope and medicine supply chains.

Keywords: integrated management, logistic system, supply chain management, tactical-operative planning

Procedia PDF Downloads 154
8355 Managerial Advice-Seeking and Supply Chain Resilience: A Social Capital Perspective

Authors: Ethan Nikookar, Yalda Boroushaki, Larissa Statsenko, Jorge Ochoa Paniagua

Abstract:

Given the serious impact that supply chain disruptions can have on a firm's bottom-line performance, both industry and academia are interested in supply chain resilience, a capability of the supply chain that enables it to cope with disruptions. To date, much of the research has focused on the antecedents of supply chain resilience. This line of research has suggested various firm-level capabilities that are associated with greater supply chain resilience. A consensus has emerged among researchers that supply chain flexibility holds the greatest potential to create resilience. Supply chain flexibility achieves resilience by creating readiness to respond to disruptions with little cost and time by means of reconfiguring supply chain resources to mitigate the impacts of the disruption. Decisions related to supply chain disruptions are made by supply chain managers; however, the role played by supply chain managers' reference networks has been overlooked in the supply chain resilience literature. This study aims to understand the impact of supply chain managers on their firms' supply chain resilience. Drawing on social capital theory and social network theory, this paper proposes a conceptual model to explore the role of supply chain managers in developing the resilience of supply chains. Our model posits that higher level of supply chain managers' embeddedness in their reference network is associated with increased resilience of their firms' supply chain. A reference network includes individuals from whom supply chain managers seek advice on supply chain related matters. The relationships between supply chain managers' embeddedness in reference network and supply chain resilience are mediated by supply chain flexibility.

Keywords: supply chain resilience, embeddedness, reference networks, social capitals

Procedia PDF Downloads 229
8354 A New Internal Architecture Based On Feature Selection for Holonic Manufacturing System

Authors: Jihan Abdulazeez Ahmed, Adnan Mohsin Abdulazeez Brifcani

Abstract:

This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine data set, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.

Keywords: artificial neural network, bees algorithm, feature selection, Holon

Procedia PDF Downloads 457
8353 An Assessment of Drainage Network System in Nigeria Urban Areas using Geographical Information Systems: A Case Study of Bida, Niger State

Authors: Yusuf Hussaini Atulukwu, Daramola Japheth, Tabitit S. Tabiti, Daramola Elizabeth Lara

Abstract:

In view of the recent limitations faced by the township concerning poorly constructed and in some cases non - existence of drainage facilities that resulted into incessant flooding in some parts of the community poses threat to life,property and the environment. The research seeks to address this issue by showing the spatial distribution of drainage network in Bida Urban using Geographic information System techniques. Relevant features were extracted from existing Bida based Map using un-screen digitization and x, y, z, data of existing drainages were acquired using handheld Global Positioning System (GPS). These data were uploaded into ArcGIS 9.2, software, and stored in the relational database structure that was used to produce the spatial data drainage network of the township. The result revealed that about 40 % of the drainages are blocked with sand and refuse, 35 % water-logged as a result of building across erosion channels and dilapidated bridges as a result of lack of drainage along major roads. The study thus concluded that drainage network systems in Bida community are not in good working condition and urgent measures must be initiated in order to avoid future disasters especially with the raining season setting in. Based on the above findings, the study therefore recommends that people within the locality should avoid dumping municipal waste within the drainage path while sand blocked or weed blocked drains should be clear by the authority concerned. In the same vein the authority should ensured that contract of drainage construction be awarded to professionals and all the natural drainages caused by erosion should be addressed to avoid future disasters.

Keywords: drainage network, spatial, digitization, relational database, waste

Procedia PDF Downloads 335
8352 Applied Bayesian Regularized Artificial Neural Network for Up-Scaling Wind Speed Profile and Distribution

Authors: Aghbalou Nihad, Charki Abderafi, Saida Rahali, Reklaoui Kamal

Abstract:

Maximize the benefit from the wind energy potential is the most interest of the wind power stakeholders. As a result, the wind tower size is radically increasing. Nevertheless, choosing an appropriate wind turbine for a selected site require an accurate estimate of vertical wind profile. It is also imperative from cost and maintenance strategy point of view. Then, installing tall towers or even more expensive devices such as LIDAR or SODAR raises the costs of a wind power project. Various models were developed coming within this framework. However, they suffer from complexity, generalization and lacks accuracy. In this work, we aim to investigate the ability of neural network trained using the Bayesian Regularization technique to estimate wind speed profile up to height of 100 m based on knowledge of wind speed lower heights. Results show that the proposed approach can achieve satisfactory predictions and proof the suitability of the proposed method for generating wind speed profile and probability distributions based on knowledge of wind speed at lower heights.

Keywords: bayesian regularization, neural network, wind shear, accuracy

Procedia PDF Downloads 504
8351 Integrating Heritage Conservation and Sustainable Development: The Role of Buffer Zones in Safeguarding the Tentative World Heritage Sites and Empowering Local Communities in India

Authors: Shweta Vardia

Abstract:

The 2021 decision by the World Heritage Center to align buffer zones with the 2015 Strategy for Sustainable Development marks a significant advancement in the protection of cultural and natural heritage sites. Buffer zones play a critical role in preserving the outstanding universal value, authenticity, and integrity of heritage sites, shielding them from threats such as urbanization, industrialization, and tourism. The 2015 Strategy emphasizes the integration of culture and heritage into sustainable development policies, highlighting the importance of community participation, traditional knowledge, and effective management in the conservation of heritage sites. This paper examines the implications of this strategic alignment for tentative World Heritage Sites in India. It explores how buffer zones can serve as tools for sustainable tourism, economic growth, and environmental protection while also addressing the socio-economic needs of local communities. By adopting a people-centered approach, the study underscores the need for active community involvement in heritage conservation, recognizing local residents as long-term custodians of cultural heritage. The role of buffer zones in promoting sustainable livelihoods, enhancing resilience to environmental changes, and fostering a sense of belonging among communities is also discussed. The challenges associated with buffer zones, including restrictive boundaries, unclear legislative frameworks, and potential disconnection from sociocultural contexts, are critically analyzed. The paper advocates for a holistic and integrated approach to buffer zone management, ensuring that policies are not only theoretically sound but also practically feasible. It concludes by emphasizing the need for collaborative efforts among conservation professionals, local communities, and policymakers to achieve sustainable development goals that respect both the heritage site's integrity and the well-being of surrounding populations.

Keywords: buffer zones, India, local communities, urbanization, world heritage sites

Procedia PDF Downloads 33
8350 EU Border Externalisation in Conflict Zones: Living at and Migrating Across the Iran-Turkey Border

Authors: Karolína Augustovaá

Abstract:

Turkey’s eastern borders have been at the center of criticism by the European Commission who condemns restrictions against Kurdish civilians as the result of Turkey’s military operations against terrorist organizations (namely PKK). Yet, the Commission has launched economic and political support for numerous military projects along the Iran-Turkey border to fight cross-border crime (namely “illegal” migration) along its external borders. Whilst border externalization has been extensively examined in the EU’s wide neighborhood, its analysis from the ground in conflict zones is emerging. The existing analysis also rarely considers the impact of external border management beyond international migration - on the local context and its people. However, tough externalization policies at borders, where local wars are fought, are fundamental to scrutinize as they invite us to question the effects of EU’s migration management on diverse communities navigating their life along external borders. To fill this research lacunae, this article examines intersections between the local military operations and international (EU-Turkey) migration management at the Turkey’s border with Iran and questions their impact on the everyday struggles of people living at and migrating across the border. To do so, it applies critical feminist and military literature to border studies. Methodologically, the article draws upon ethnographic research in Van (Eastern Turkey), using participant observations and interviews with sixty participants. This article argues that the EU’s externalization policies add to the violence generated by the local militarized conflict and eventually (re-)produce it in the forms of push-backs and physical violence against people who daily cross the border irregularly for their physical/economic survival. By doing so, I suggest that (inter)national fears of terrorism and migration inter-sect, materialize and affect everyday sites of diverse racialized groups living at and moving across external borders, such as international migrants (Afghans) and the local residents (Kurds) at the Turkey-Iran border. This article highlights the need to analyze the local border context in tandem with international migration management in the EU’s wider neighborhood to understand how conflict and violence evolves there.

Keywords: european union border externalization, eastern turkey, migration, conflict, kurdish question

Procedia PDF Downloads 204
8349 A Policy Review on the Transitional Period from MDGs to SDGs: Experience from the Local Economy of Tigrai Regional State of Ethiopia

Authors: Tewele Gerlase Haile

Abstract:

Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. The global development landscape underwent a transformative shift in 2015 as the international community pivoted from the MDGs to the more ambitious and comprehensive SDGs. The NDGs were a set of eight international development goals established by the United Nations in 2000, with the aim of improving the lives of people around the world by 2015. SDGs are a continuation of the MDGs. Unlike on the other development goals, progress on eradication of extreme hunger and poverty (MDG 1) has been slow at a continental level. The implementation of the MDGs was uneven: some countries have already achieved many of them, while the others have not started any of them yet. With its Poverty Reduction Strategic Papers (PRSPs), Ethiopia has been given special attention to the first MDG since 1993. The Ethiopian government was actively engaged in anti-poverty political campaign leaving other agendas as secondary issues. Poverty in Ethiopia progressively reduced over the years; it was 44.2% in 2000, 38.7% in 2007, 29.6 % in 2011, and it is projected to further reduce to 16.7% by the end of 2020. The long-term impact of war on the sustainability and effectiveness of SDG-related initiatives in post-conflict regions, particularly in how local governance and community resilience are affected. This could involve exploring how war interrupts progress, which specific SDGs are most vulnerable, and what strategies might mitigate these impacts. Reviewing a transitional period enables policy makers to align global or national development goals into local development goals with an uninterrupted policy continuity. The existing literature on development economics often neglects the importance of reviewing the transitional period of consecutive global development goals in a local or regional perspective. Reviewing a transitional period enables policy makers to align global or national development goals into local development goals with an uninterrupted policy continuity. Using a Policy Coherence for Development (PCD) approach as analytical tool, this paper is intended to retrospectively review what happened to the local economy of Tigrai Regional State during the transitional period from MDGs (2000-2015) to SDGs (2015-2030). Taking a retrospective facts and observations into account, policy discontinuity is witnessed in Tigrai following the dissolution of the EPRDF that followed with a terrible war that claimed about a million human lives and worth of over a hundred Billion US dollars economic costs. The unhealthy political reform caused not only a terrible war but also breaks the promising SDGs. Unlike other regional states, Tigrai left unprivileged to translate the ambitious SDGs into its local development policies.

Keywords: local development, political reform, war, MDGs, SDGs, Ethiopia, tigrai

Procedia PDF Downloads 21
8348 Application of Artificial Neural Network and Background Subtraction for Determining Body Mass Index (BMI) in Android Devices Using Bluetooth

Authors: Neil Erick Q. Madariaga, Noel B. Linsangan

Abstract:

Body Mass Index (BMI) is one of the different ways to monitor the health of a person. It is based on the height and weight of the person. This study aims to compute for the BMI using an Android tablet by obtaining the height of the person by using a camera and measuring the weight of the person by using a weighing scale or load cell. The height of the person was estimated by applying background subtraction to the image captured and applying different processes such as getting the vanishing point and applying Artificial Neural Network. The weight was measured by using Wheatstone bridge load cell configuration and sending the value to the computer by using Gizduino microcontroller and Bluetooth technology after the amplification using AD620 instrumentation amplifier. The application will process the images and read the measured values and show the BMI of the person. The study met all the objectives needed and further studies will be needed to improve the design project.

Keywords: body mass index, artificial neural network, vanishing point, bluetooth, wheatstone bridge load cell

Procedia PDF Downloads 325
8347 Promotion of a Healthy City by Medical Plants

Authors: Ana M. G. Sperandio, Adriana A. C. Rosa, Jussara C. Guarnieri

Abstract:

This study consists of a research of the Post Occupancy Assessment (POA) of Medicinal Gardens' project of Urban Social Center’s square, in the city of 'Santa Barbara d'Oeste', located in the interior of Sao Paulo, Brazil. In view of the fact that community gardens, as well as medicinal gardens, are based on innumerable functions. The addition to the pedagogical function rescues people from their origins through (re)contact with the land, as a vehicle for social integration. Bearing in mind the project has the potential to fight hunger among the low-income population, to treat some diseases, also works as a strategy of environmental recovery especially of idle land. Such as very often only accumulate weeds and garbage, and therefore, must be considered in the Municipal Master Plan for the activity to be regulated. Objective: Identify on implantation the medicinal plants' value and principles for the promotion of a healthy city. Methodology: Application of the walkthrough, where it is possible to affirm that this instrument has three routes: one officer applied within the urban social center and two complementary ones, one being about 3 miles and the other being almost 5,5 miles. Results: Through a dialogical course, one can observe the benefits that the community medicinal gardens bring to the local population. In addition, it is consistent with the proposal for the community to be enabled to access collective care with home orientations that rescue the local and regional culture making the physical environment. This project aims at promoting more pleasant and inclusive through the actions of the caregiver, local leadership and the co-participation of local government. Although with the aim of increasing the supply value and improving the living conditions of social groups and interrelationship. Conclusion: This type of urban intervention, which articulates social participation, rescue of medicinal cultures and local knowledge, intersectoriality, social inclusion, among other premises connected with health promotion, and the city presents a potential for reverberation of practices in social networks with the objective of meeting the healthy city strategies.

Keywords: healthy city, healthy urban planning, medicinal gardens, social participation

Procedia PDF Downloads 148
8346 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network

Procedia PDF Downloads 132
8345 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities

Authors: Salman Naseer

Abstract:

One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.

Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission

Procedia PDF Downloads 144
8344 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions

Authors: Jian Li

Abstract:

The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.

Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase

Procedia PDF Downloads 87
8343 Transmission Line Protection Challenges under High Penetration of Renewable Energy Sources and Proposed Solutions: A Review

Authors: Melake Kuflom

Abstract:

European power networks involve the use of multiple overhead transmission lines to construct a highly duplicated system that delivers reliable and stable electrical energy to the distribution level. The transmission line protection applied in the existing GB transmission network are normally independent unit differential and time stepped distance protection schemes, referred to as main-1 & main-2 respectively, with overcurrent protection as a backup. The increasing penetration of renewable energy sources, commonly referred as “weak sources,” into the power network resulted in the decline of fault level. Traditionally, the fault level of the GB transmission network has been strong; hence the fault current contribution is more than sufficient to ensure the correct operation of the protection schemes. However, numerous conventional coal and nuclear generators have been or about to shut down due to the societal requirement for CO2 emission reduction, and this has resulted in a reduction in the fault level on some transmission lines, and therefore an adaptive transmission line protection is required. Generally, greater utilization of renewable energy sources generated from wind or direct solar energy results in a reduction of CO2 carbon emission and can increase the system security and reliability but reduces the fault level, which has an adverse effect on protection. Consequently, the effectiveness of conventional protection schemes under low fault levels needs to be reviewed, particularly for future GB transmission network operating scenarios. The proposed paper will evaluate the transmission line challenges under high penetration of renewable energy sources andprovides alternative viable protection solutions based on the problem observed. The paper will consider the assessment ofrenewable energy sources (RES) based on a fully rated converter technology. The DIgSILENT Power Factory software tool will be used to model the network.

Keywords: fault level, protection schemes, relay settings, relay coordination, renewable energy sources

Procedia PDF Downloads 208
8342 Genetic Evaluation of Locally Flock Sheep in Gabaraka Village

Authors: Salim Omar Raoof

Abstract:

This study was conducted in a private local sheep herd at Gabaraka village-Kirkuk-Iraq. Analysis of 77 ewes recorded and 7 Rams of local sheep presented in Gabaraka village farm plain, the age of ewes ranged between (2-4) years. The aim of this study is to investigate the genetic and non-genetic factors (type of birth, sex, and age of dam) affecting daily milk yield (DMY), birth weight (BW), weaning weight (WW) and Gain characteristics of local sheep raised under Iraq conditions, and it also aims at estimating heritability’s, BLUP. The overall mean of daily milk yield, (BW), (WW), and gain. Was 444.15gm,4.92kg,43.08kg, and 38.16kg, respectively. The results showed there was a significant effect of the type of birth and sex on (BW) and (WW). Also, the age of the dam had a significant effect on daily milk yield (BW), (WW), and gain. Generally, the estimate of heritability of DMP, BWT, WWT, and Gain tend to be 0.22, 0.17, 0.27, and 0.22, respectively. The breeding value (BLUP) for rams ranged between (-0.1684 to 0.188), (-0.205 to 0.310), and ( -0.0171 to 0.029) according to growth traits of Lambs BW, WW, and Gain, respectively. It concluded that the selection of ewes and rams at the population level in planned selection schemes is based on BLUP value and heritability.

Keywords: locally sheep, milk yield, Genetic parameters, BLUP value

Procedia PDF Downloads 80
8341 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 73
8340 Strategies to Improve Coastal and Marine Tourism Sustainability in Gqeberha, South Africa

Authors: Mihlali Mbangeni, Lynn C. Jonas, Rosemary Matikiti-Manyevere

Abstract:

Coastal and marine tourism is considered among the most rapidly developing subsectors of tourism. That has enabled coastal and marine environments to gain popularity and economically contribute to coastal regions globally. However, in coastal regions of developing cities such as Gqeberha, South Africa, pollution, specifically plastics and waste from ships, are among the prominent challenges in these areas. Thus, there is a need for the management and planning of sustainability in coastal and marine tourism. As a result, the study evaluates the effectiveness of the current sustainability strategies and highlights the barriers and challenges faced by the coastal region. This study made use of the interpretivist paradigm following a qualitative research approach when collecting data. This was done by conducting semi-structured interviews with local government officials, coastal and marine tourism business top managers, as well as ocean economy-related non-profit organization operators through a purposive sampling method. The study employed content analysis to analyse the interview transcripts using a computer-aided qualitative data analysis software that is Atlas.ti. The research findings present current coastal and marine tourism strategies used, such as local government having quarterly meetings with the private sector promoting collaboration between the two entities. A further measure discovered was non-profit organisations conducting educational talks, workshops, and visiting schools to educate pupils within the coastal region about pollution and sustainability. Current challenges experienced in the implementation of sustainability practices include a lack of awareness, low visibility of the local government in promoting sustainability within the regions, and poor participation of the local community in activities such as beach clean-ups. Recommendations for strategies are to equip decision-makers with knowledge and skills to make informed decisions that are inclusive. Furthermore, local community participation should be encouraged through providing incentives. Local government may also be encouraged to allocate adequate resources to assist non-profit organisations’ efforts towards sustainability. A further recommendation would be for coastal and marine tourism businesses to encourage them to create partnerships as well as collaborate with each other instead of competing in their sustainability efforts. The sharing of information about the sustainability of coastal and marine tourism between non-profit organisations, coastal and marine tourism businesses, local government as well as academia through research publications and ensured implementation, as well as evaluation, can contribute towards the sustainability of Gqeberha’s coastal and marine tourism products.

Keywords: coastal and marine tourism threats, coastal and marine tourism trends, strategies for coastal and marine tourism sustainability, sustainability

Procedia PDF Downloads 24
8339 Optimum Tuning Capacitors for Wireless Charging of Electric Vehicles Considering Variation in Coil Distances

Authors: Muhammad Abdullah Arafat, Nahrin Nowrose

Abstract:

Wireless charging of electric vehicles is becoming more and more attractive as large amount of power can now be transferred to a reasonable distance using magnetic resonance coupling method. However, proper tuning of the compensation network is required to achieve maximum power transmission. Due to the variation of coil distance from the nominal value as a result of change in tire condition, change in weight or uneven road condition, the tuning of the compensation network has become challenging. In this paper, a tuning method has been described to determine the optimum values of the compensation network in order to maximize the average output power. The simulation results show that 5.2 percent increase in average output power is obtained for 10 percent variation in coupling coefficient using the optimum values without the need of additional space and electro-mechanical components. The proposed method is applicable to both static and dynamic charging of electric vehicles.

Keywords: coupling coefficient, electric vehicles, magnetic resonance coupling, tuning capacitor, wireless power transfer

Procedia PDF Downloads 199
8338 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 518
8337 A Low Power Consumption Routing Protocol Based on a Meta-Heuristics

Authors: Kaddi Mohammed, Benahmed Khelifa D. Benatiallah

Abstract:

A sensor network consists of a large number of sensors deployed in areas to monitor and communicate with each other through a wireless medium. The collected routing data in the network consumes most of the energy of the sensor nodes. For this purpose, multiple routing approaches have been proposed to conserve energy resource at the sensors and to overcome the challenges of its limitation. In this work, we propose a new low energy consumption routing protocol for wireless sensor networks based on a meta-heuristic methods. Our protocol is to operate more fairly energy when routing captured data to the base station.

Keywords: WSN, routing, energy, heuristic

Procedia PDF Downloads 344
8336 Influence Activities in Destination, Destination Marketing, and Loyalty through Environmental Preservation toward Satisfaction at the Tourist Destinations in East Java, Indonesia

Authors: Christina Esti Susanti

Abstract:

This study aimed to determine the effect Activities in marketing, Destination Marketing, and Environmental preservation loyalty through satisfaction at tourist destination in East Java, Indonesia. In this study population used is Surabaya citizens who had visited tourist destination in East Java, Indonesia. Characteristics of a sample of respondents in this study are: a minimum age of 17 years, and ever came in tourist destination in East Java, Indonesia with each destination more than 1 visits. Total sample 316 respondents. Data analysis tools which is used in this study is a structural equation modeling. Based on the analysis, the results of this study can be concluded that the hypothesis 1, 2, 5, and 6 are proposed in this study was rejected because not significant. The hypotheses are: (1) Activities in destination have influence which is positive effect on satisfaction in the tourist destination in East Java, Indonesia, (2) Destination marketing have influence which is positive effect on satisfaction in the tourist destination in East Java, Indonesia, (3) Activities in destination have influence which is positive effect towards loyalty through satisfaction in a tourist destination in East Java, Indonesia. (4) Destination marketing have influence which is positive effect on loyalty through satisfaction in a tourist destination in East Java, Indonesia. While the hypothesis 3, 4, and 7, is received. The hypotheses are: (1) Environmental preservation have influence which is positive effect and significant on satisfaction in the tourist destination in East Java, Indonesia. (2) Satisfaction have influence which is positive effect and significant on loyalty to the tourist destination in East Java, Indonesia. (3) Environmental preservation have influence which is positive effect and significant on loyalty through satisfaction in a tourist destination in East Java, Indonesia. Practical advice submitted to the management of tourist destinations, especially in the 10 areas where research was conducted for more attention to the condition of the physical environment to be around tourist spots / attractions, namely: the condition of roads, water supply conditions, the condition of drainage / sanitation, and the condition waste more seriously. Based on the proposal, the manager of a tourist destination seems to be working closely with the local municipal sanitation departments, local water companies local city and town local public works departments to jointly manage a tourist destination considering regional tourism is one of the region's assets and become one sources of local revenue (PAD) is vital.

Keywords: activities in marketing, destination amarketing, environmental preservation, satisfaction, loyalty

Procedia PDF Downloads 554
8335 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation

Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders

Abstract:

Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.

Keywords: digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas

Procedia PDF Downloads 273
8334 Annual August Meetings as a Stimulator for Female Empowerment: Case Study Udi Local Government Area of Enugu State, Nigeria

Authors: Nneka Evelyn Udeh

Abstract:

Women’s economic participation and empowerment are fundamental to strengthening women’s rights and enabling women to have control over their lives and exert influence in the society. The economic empowerment of women is a prerequisite for sustainable development, pro-poor growth and the achievement of all the millennium development Goals (MDGs). For women to be in development they need to be empowered morally, socially, economically, and financially and this is why women in Udi Local Government Area of Nigeria meet every August, the eighth month of the year to discuss matters relating to the pursuit of women empowerment, community welfare, and national development. This exploratory study depicts how annual august meetings serve as a stimulator for female empowerment with a case study Udi Local Government area of Enugu state, Nigeria. The paper finds that ‘August Meeting’ is a regular annual occurrence in Udi Local Government Area, Enugu State, Nigeria particularly for married women and is designed to better the lot of women, the child, family, the church, and the Community. Through this forum, with its seminars and workshops, women have the opportunity to learn everything about womanhood and how to chart new courses of action and sources of empowerment. The gathering gives women the opportunity to be integrated into their community development projects, and having women as stakeholders and not mere observers helps guarantee a speedy and steady community and overall national development progress. Funds are raised for community development projects through annual dues, levies, donations, fines, sales, income from money-yielding ventures, endowment and investiture. Annual August meeting also known as ‘Mothers Summit’ is indeed a powerful stimulator for female empowerment. Support and invigoration of this women initiative is essential for sustainable emancipation of female gender, not just in Udi Local Government Area of Nigeria but globally.

Keywords: women empowerment, annual august meeting, Udi Lga, mothers' summit, stimulator, emancipation, sustainability, community welfare, national development, millennium development goal

Procedia PDF Downloads 359
8333 Crop Recommendation System Using Machine Learning

Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar

Abstract:

With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.

Keywords: crop recommendation, precision agriculture, crop, machine learning

Procedia PDF Downloads 19
8332 Contribution of Algerians Local Materials on the Compressive Strengths of Concrete: Experimental and Numerical Study

Authors: Mohamed Lyes Kamel Khouadjia, Bouzidi Mezghiche

Abstract:

The evolution in the civil engineering and carried out more consumption of aggregates and particularly the sand. Due to the depletion of natural reserves of sand, it is necessary to focus on the use of local materials such as crushed sand, river sand and dune sand, mineral additions. The aim of this work is to improve the state of knowledge on the compressive strengths of crushed sands with several mixtures (dune sand, river sand, pozzolan, and slag). The obtained results were compared with numerical results obtained with the software Béton Lab Pro 3.

Keywords: crushed sand, river sand, dune sand, pouzzolan, slag, compressive strengths, Béton Lab Pro 3

Procedia PDF Downloads 326
8331 A Study of Behavioral Phenomena Using an Artificial Neural Network

Authors: Yudhajit Datta

Abstract:

Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.

Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story

Procedia PDF Downloads 381
8330 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network

Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi

Abstract:

Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.

Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication

Procedia PDF Downloads 452
8329 Modelling and Optimisation of Floating Drum Biogas Reactor

Authors: L. Rakesh, T. Y. Heblekar

Abstract:

This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.

Keywords: biogas, floating drum reactor, neural network model, optimization

Procedia PDF Downloads 143
8328 Subjective Quality Assessment for Impaired Videos with Varying Spatial and Temporal Information

Authors: Muhammad Rehan Usman, Muhammad Arslan Usman, Soo Young Shin

Abstract:

The new era of digital communication has brought up many challenges that network operators need to overcome. The high demand of mobile data rates require improved networks, which is a challenge for the operators in terms of maintaining the quality of experience (QoE) for their consumers. In live video transmission, there is a sheer need for live surveillance of the videos in order to maintain the quality of the network. For this purpose objective algorithms are employed to monitor the quality of the videos that are transmitted over a network. In order to test these objective algorithms, subjective quality assessment of the streamed videos is required, as the human eye is the best source of perceptual assessment. In this paper we have conducted subjective evaluation of videos with varying spatial and temporal impairments. These videos were impaired with frame freezing distortions so that the impact of frame freezing on the quality of experience could be studied. We present subjective Mean Opinion Score (MOS) for these videos that can be used for fine tuning the objective algorithms for video quality assessment.

Keywords: frame freezing, mean opinion score, objective assessment, subjective evaluation

Procedia PDF Downloads 495