Search results for: lithium iron phosphate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1616

Search results for: lithium iron phosphate

146 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle

Authors: Yury S. Shpanskiy, Boris V. Kuteev

Abstract:

Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.

Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle

Procedia PDF Downloads 127
145 Diversification of Indonesian Terasi Shrimp (Acetes indicus) Powder as Alternative and Sustainable Food for the Double Burden of Malnutrition

Authors: Galuh Asri Bestari, Hajar Shofiyya

Abstract:

Double burden of malnutrition (DBM) has been a global problem in these last decades occurs in both developed and developing countries. Overweight in adults and stunting among preschool children have dramatically increased and become the main problems of malnutrition that should be solved immediately since they are directly related with the health status and productivity. Reformulation of food product by using the local sea resources called terasi shrimp (Acetes indicus) has a potential possibility in facing the DBM. A study was carried out in Indonesia to determine the acceptability of terasi shrimp powder through sensory evaluation. Terasi shrimps were processed into powder form through sun drying and pounding methods. The powder form was directly added in food as alternative seasonings and tested among stunted and normal preschool children. Meanwhile, a further processing method is given to the shrimp powder tested in overweight and normal-weighed adults. The shrimp powder was mixed with sago flour and formed into balls, then steamed for 15-20 minutes, and finally served as alternative snacks. Based on the sensory evaluation, the shrimp powder has a good acceptance in taste (54%), shape (60%), and color properties (63%), while the shrimp balls has a good acceptance in size (65%), shape (50%), color (48%), taste (40%), and texture (36%). Terasi shrimp powder can be stored for a month in room temperature. In addition, carried out chemical analysis revealed that terasi shrimp (Acetes indicus) has higher percentage of protein, calcium, and iron than other animal sources, but conversely contains zero sodium and very low percentage of fat. Terasi shrimp’s shell also contains a substance called chitosan which acts by forming gels in the intestinal tract to entrap lipids, thus interfering with their absorption. After going through some processing methods, the shrimp powder and balls did not show any significant changes in their nutrient contents. So that, terasi shrimp powder is good to be consumed not only by overweight adults, but also by children to support their optimum growth. Intervention of terasi shrimp powder should be implemented step by step from national up to global governance program to face the DBM.

Keywords: Acetes indicus, alternative food, double burden of malnutrition, sensory evaluation

Procedia PDF Downloads 279
144 Nutritional Value Determination of Different Varieties of Oats and Barley Using Near-Infrared Spectroscopy Method for the Horses Nutrition

Authors: V. Viliene, V. Sasyte, A. Raceviciute-Stupeliene, R. Gruzauskas

Abstract:

In horse nutrition, the most suitable cereal for their rations composition could be defined as oats and barley. Oats have high nutritive value because it provides more protein, fiber, iron and zinc than other whole grains, has good taste, and an activity of stimulating metabolic changes in the body. Another cereal – barley is very similar to oats as a feed except for some characteristics that affect how it is used; however, barley is lower in fiber than oats and is classified as a "heavy" feed. The value of oats and barley grain, first of all is dependent on its composition. Near-infrared spectroscopy (NIRS) has long been considered and used as a significant method in component and quality analysis and as an emerging technology for authenticity applications for cereal quality control. This paper presents the chemical and amino acid composition of different varieties of barley and oats, also digestible energy of different cereals for horses. Ten different spring barley (n = 5) and oats (n = 5) varieties, grown in one location in Lithuania, were assayed for their chemical composition (dry matter, crude protein, crude fat, crude ash, crude fiber, starch) and amino acids content, digestible amino acids and amino acids digestibility. Also, the grains digestible energy for horses was calculated. The oats and barley samples reflectance spectra were measured by means of NIRS using Foss-Tecator DS2500 equipment. The chemical components: fat, crude protein, starch and fiber differed statistically (P<0.05) between the oats and barley varieties. The highest total amino acid content between oats was determined in variety Flamingsprofi (4.56 g/kg) and the lowest – variety Circle (3.57 g/kg), and between barley - respectively in varieties Publican (3.50 g/kg) and Sebastian (3.11 g/kg). The different varieties of oats digestible amino acid content varied from 3.11 g/kg to 4.07 g/kg; barley different varieties varied from 2.59 g/kg to 2.94 g/kg. The average amino acids digestibility of oats varied from 74.4% (Liz) to 95.6% (Fen) and in barley - from 75.8 % (Tre) to 89.6% (Fen). The amount of digestible energy in the analyzed varieties of oats and barley was an average compound 13.74 MJ/kg DM and 14.85 MJ/kg DM, respectively. An analysis of the results showed that different varieties of oats compared with barley are preferable for horse nutrition according to the crude fat, crude fiber, ash and separate amino acids content, but the analyzed barley varieties dominated the higher amounts of crude protein, the digestible Liz amount and higher DE content, and thus, could be recommended for making feed formulation for horses combining oats and barley, taking into account the chemical composition of using cereal varieties.

Keywords: barley, digestive energy, horses, nutritional value, oats

Procedia PDF Downloads 181
143 Insights on the Halal Status of Antineoplastic and Immunomodulating Agents and Nutritional and Dietary Supplements in Malaysia

Authors: Suraiya Abdul Rahman, Perasna M. Varma, Amrahi Buang, Zhari Ismail, Wan Rosalina W. Rosli, Ahmad Rashidi M. Tahir

Abstract:

Background: Muslims has the obligation to ensure that everything they consume including medicines should be halal. With the growing demands for halal medicines in October 2012, Malaysia has launched the world's first Halal pharmaceutical standards called Malaysian Standard MS 2424:2012 Halal Pharmaceuticals-General Guidelines to serve as a basic requirement for halal pharmaceuticals in Malaysia. However, the biggest challenge faced by pharmaceutical companies to comply is finding the origin or source of the ingredients and determine their halal status. Aim: This study aims to determine the halal status of the antineoplastic and immunomodulating agents, and nutritional and dietary supplements by analysing the origin of their active pharmaceutical ingredients (API) and excipients to provide an insight on the common source and halal status of pharmaceutical ingredients and an indication on adjustment required in order to be halal compliance. Method: The ingredients of each product available in a government hospital in central of Malaysia and their sources were determined from the product package leaflets, information obtained from manufacturer, reliable websites and standard pharmaceutical references. The ingredients were categorised as halal, musbooh or haram based on the definition set in MS2424. Results: There were 162 medications included in the study where 123 (76%) were under the antineoplastic and immunomodulating agents group, while 39 (24%) were nutritional and dietary supplements. In terms of the medication halal status, the proportion of halal, musbooh and haram were 40.1% (n=65), 58.6% (n=95) and 1.2% (n=2) respectively. With regards to the API, there were 89 (52%) different active ingredient identified for antineoplastic and immunomodulating agents with the proportion of 89.9% (n=80) halal and 10.1% (n=9) were mushbooh. There were 83 (48%) active ingredient from the nutritional and dietary supplements group with proportion of halal and masbooh were 89.2% (n=74) and 10.8% (n=9) respectively. No haram APIs were identified in all therapeutic classes. There were a total of 176 excipients identified from the products ranges. It was found that majority of excipients are halal with the proportion of halal, masbooh and haram were at 82.4% (n=145), 17% (n=30) and 0.6% (n=1) respectively. With regards of the sources of the excipeints, most of masbooh excipients (76.7%, n = 23) were classified as masbooh because they have multiple possible origin which consist of animals, plant or others. The remaining 13.3% and 10% were classified as masbooh due to their ethanol and land animal origin respectively. The one haram excipient was gelatine of bovine-porcine origin. Masbooh ingredients found in this research were glycerol, tallow, lactose, polysorbate, dibasic sodium phosphate, stearic acid and magnesium stearate. Ethanol, gelatine, glycerol and magnesium stearate were the most common ingredients classified as mushbooh. Conclusion: This study shows that most API and excipients are halal. However the majority of the medicines in these products categories are mushbooh due to certain excipients only, which could be replaced with halal alternative excipients. This insight should encourage the pharmaceutical products manufacturers to go for halal certification to meet the increasing demand for Halal certified medications for the benefit of mankind.

Keywords: antineoplastic and immunomodulation agents, halal pharmaceutical, MS2424, nutritional and dietary supplements

Procedia PDF Downloads 276
142 In-situ and Laboratory Characterization of Fiji Lateritic Soils

Authors: Faijal Ali, Darga Kumar N., Ravikant Singh, Rajnil Lal

Abstract:

Fiji has three major landforms such as plains, low mountains, and hills. The low land soils are formed on beach sand. Fiji soils contain high concentration of iron (III), aluminum oxides and hydroxides. The soil possesses reddish or yellowish colour. The characterization of lateritic soils collected from different locations along the national highway in Viti Levu, Fiji Islands. The research has been carried out mainly to understand the physical and strength properties to assess their suitability for the highway and building construction. In this paper, the field tests such as dynamic cone penetrometer test, field vane shear, field density and laboratory tests such as unconfined compression stress, compaction, grain size analysis and Atterberg limits are conducted. The test results are analyzed and presented. From the results, it is revealed that the soils are having more percentage of silt and clay which is more than 80% and 5 to 15% of fine to medium sand is noticed. The dynamic cone penetrometer results up to 3m depth had similar penetration resistance. For the first 1m depth, the rate of penetration is found 300mm per 3 to 4 blows. In all the sites it is further noticed that the rate of penetration at depths beyond 1.5 m is decreasing for the same number of blows as compared to the top soil. From the penetration resistance measured through dynamic cone penetrometer test, the California bearing ratio and allowable bearing capacities are 4 to 5% and 50 to 100 kPa for the top 1m layer and below 1m these values are increasing. The California bearing ratio of these soils for below 1m depth is in the order of 10% to 20%. The safe bearing capacity of these soils below 1m and up to 3m depth is varying from 150 kPa to 250 kPa. The field vane shear was measured within a depth of 1m from the surface and the values were almost similar varying from 60 kPa to 120 kPa. The liquid limit and plastic limits of these soils are in the range of 40 to 60% and 20 to 25%. Overall it is found that the top 1m soil along the national highway in majority places possess a soft to medium stiff behavior with low to medium bearing capacity as well low California bearing ratio values. It is recommended to ascertain these soils behavior in terms of geotechnical parameters before taking up any construction activity.

Keywords: California bearing ratio, dynamic cone penetrometer test, field vane shear, unconfined compression stress.

Procedia PDF Downloads 167
141 Development and Compositional Analysis of Functional Bread and Biscuit from Soybean, Peas and Rice Flour

Authors: Jean Paul Hategekimana, Bampire Claudine, Niyonsenga Nadia, Irakoze Josiane

Abstract:

Peas, soybeans and rice are crops which are grown in Rwanda and are available in rural and urban local markets and they give contribution in reduction of health problems especially in fighting malnutrition and food insecurity in Rwanda. Several research activities have been conducted on how cereals flour can be mixed with legumes flour for developing baked products which are rich in protein, fiber, minerals as they are found in legumes. However, such activity was not yet well studied in Rwanda. The aim of the present study was to develop bread and biscuit products from peas, soybeans and rice as functional ingredients combined with wheat flour and then analyze the nutritional content and consumer acceptability of new developed products. The malnutrition problem can be reduced by producing bread and biscuits which are rich in protein and are very accessible for every individual. The processing of bread and biscuit were made by taking peas flour, soybeans flour and rice flour mixed with wheat flour and other ingredients then a dough was made followed by baking. For bread, two kind of products were processed, for each product one control and three experimental samples in different three ratios of peas and rice were prepared. These ratios were 95:5, 90:10 and 80:20 for bread from peas and 85:5:10, 80:10:10 and 70:10:20 for bread from peas and rice. For biscuit, two kind of products were also processed, for each product one control sample and three experimental samples in three different ratios were prepared. These ratios are 90:5:5,80:10:10 and 70:10:20 for biscuit from peas and rice and 90:5:5,80:10:10 and 70:10:20 for biscuit from soybean and rice. All samples including the control sample were analyzed for the consumer acceptability (sensory attributes) and nutritional composition. For sensory analysis, bread from of peas and rice flour with wheat flour at ratio 85:5:10 and bread from peas only as functional ingredient with wheat flour at ratio 95:5 and biscuits made from a of soybeans and rice at a ratio 90:5:5 and biscuit made from peas and rice at ratio 90:5:5 were most acceptable compared to control sample and other samples in different ratio. The moisture, protein, fat, fiber and minerals (Sodium and iron.) content were analyzed where bread from peas in all ratios was found to be rich in protein and fiber compare to control sample and biscuit from soybean and rice in all ratios was found to be rich in protein and fiber compare to control sample.

Keywords: bakery products, peas and rice flour, wheat flour, sensory evaluation, proximate composition

Procedia PDF Downloads 34
140 Sedimentological and Petrographical Studies on the Cored samples from Bentiu Formation Muglad Basin

Authors: Yousif M. Makeen

Abstract:

This study presents the results of the sedimentological and petrographical analyses on the cored samples from the Bentiu Formation. The cored intervals consist of thick beds of sandstone, which are sometimes intercalated with beds of fine-grained sandstone and, in a minor case, with a siltstone bed. Detailed sedimentological facies analysis revealed the presence of six facies types, which can be clarified in order of their great percentage occurrences as follows: (i) Massive sandstone, (ii) Planar cross-bedded sandstone, (iii) Trough cross-bedded sandstone, (iv) Fine laminated sandstone (v) Fine laminated siltstone and (vi) Horizontally parted sandstone. The petrographical analyses under the plane polarized microscope and the scanning electron microscope (SEM) for the sandstone lithofacies types that exist within the cored intervals allowed classifying these lithofacies into Kaolinitic Subfeldspathic Arenites. Among the detrital components, quartz grains are the most abundant (mainly monocrystalline quartz), followed by feldspars, micas, detrital and authigenic clays, and carbonaceous debris. However, traces of lithic fragments, iron oxides and heavy minerals were observed in some of the analyzed samples, where they occur in minor amounts. Kaolinite is present mainly as an authigenic component in most of the analyzed samples, while quartz overgrowths occur in variable amounts in most of the investigated samples. Carbonates (calcite & siderite) are present in considerable amounts. The grain roundness in most of the investigated sandstone samples ranges from well-rounded to round, and, in fewer samples, is sub-angular to angular. Most of the sandstone samples are moderately compacted and display point, concavo-convex and long grain contacts, whereas the sutured grain contacts, which reflect a higher degree of compaction, are relatively observed in lesser amounts, while the float grain contact has also been observed in minor quantity. Pore types in the analyzed samples are dominantly primary and secondary interparticle forms. Point-counted porosity values range from 19.6% to 30%. Average pore sizes are highly variable and range from 20 to 350 microns. Pore interconnectivity ranges from good to very good.

Keywords: sandstone, sedimentological facies, porosity, quartz overgrowths

Procedia PDF Downloads 12
139 Dietary Patterns and Adherence to the Mediterranean Diet among Breast Cancer Female Patients in Lebanon: A Cross-Sectional Study

Authors: Yasmine Aridi, Lara Nasreddine, Maya Khalil, Arafat Tfayli, Anas Mugharbel, Farah Naja

Abstract:

Breast cancer is the most commonly diagnosed cancer site among women worldwide and the second most common cause of cancer mortality. Breast cancer rates differ vastly between geographical areas, countries, and within the same country. In Lebanon, the proportion of breast cancer to all other sites of tumor is 38.2%; these rates are still lower than those observed worldwide, but remain the highest among Arab countries. Studies and evidence based reviews show a strong association between breast cancer development and prognosis and dietary habits, specifically the Mediterranean diet (MD). As such, the aim of this study is to examine dietary patterns and adherence to the MD among a sample of 182 breast cancer female patients in Beirut, Lebanon. Subjects were recruited from two major hospitals; a private medical center and a public hospital. All subjects were administered two questionnaires: socio- demographics and Mediterranean diet adherence. Five Mediterranean scores were calculated: MS, MSDPS, PMDI, PREDIMED and DDS. The mean age of the participants was 53.78 years. The overall adherence to the Mediterranean diet (MD) was low since the sample means of 3 out of the 5 calculated scores were less than the scores’ medians. Given that 4 out of the 5 Mediterranean scores significantly varied between the recruitment sites, women in the private medical center were found to adhere more to the MD. Our results also show that the majority of the sample population’s intakes are exceeding the recommendations for total and saturated fat, while meeting the requirements for fiber, EPA, DHA and Linolenic Acid. Participants in the private medical center were consuming significantly more calories, carbohydrates, fiber, sugar, Lycopene, Calcium, Iron and Folate and less fat. After conducting multivariate linear regression analyses, the following significant results were observed: positive associations between MD (CPMDI, PREDIMED) and monthly income & current state of health, while negative associations between MD (MSDPS, PREDIMED) and age & employment status. Our findings indicated a low overall adherence to the MD and identified factors associated with it; which suggests a need to address dietary habits among BC patients in Lebanon, specifically encouraging them to adhere to their traditional Mediterranean diet.

Keywords: Adherence, Breast cancer, Dietary patterns, Mediterranean diet, Nutrition

Procedia PDF Downloads 392
138 Nano-Sized Iron Oxides/ZnMe Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts for Degrading Specific Pharmaceutical Agents

Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja

Abstract:

Persistent organic pollutant discharged by various industries or urban regions into the aquatic ecosystems represent a serious threat to fauna and human health. The endocrine disrupting compounds are known to have toxic effects even at very low values of concentration. The anti-inflammatory agent Ibuprofen is an endocrine disrupting compound and is considered as model pollutant in the present study. The use of light energy to accomplish the latest requirements concerning wastewater discharge demands highly-performant and robust photo-catalysts. Many efforts have been paid to obtain efficient photo-responsive materials. Among the promising photo-catalysts, layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents Fe(II) self-supported on ZnMeLDHs (Me =Al3+, Fe3+) as novel efficient photo-catalysts for Fenton-like catalysis. The co-precipitation method was used to prepare ZnAlLDH, ZnFeAlLDH and ZnCrLDH (Zn2+/Me3+ = 2 molar ratio). Fe(II) was self-supported on the LDHs matrices by using the reconstruction method, at two different values of weight concentration. X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM) were used to investigate the structural, textural, and micromorphology of the catalysts. The Fe(II)/ZnMeLDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively. The results point out that the embedment Fe(II) into ZnFeAlLDH and ZnCrLDH lead to a slight enhancement of ibuprofen degradation by light irradiation, whereas in case of ZnAlLDH, the degradation process is relatively low. A remarkable enhancement of ibuprofen degradation was found in the case of Fe(II)/ZnMeLDHs by photo-Fenton process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: layered double hydroxide, heterogeneous Fenton, micropollutant, photocatalysis

Procedia PDF Downloads 266
137 Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy

Authors: Lina Paola Orozco Marin, Yuliet Montoya Osorio, John Bustamante Osorno

Abstract:

Ischemic events can culminate in acute myocardial infarction by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cell therapy seeks to replace these injured or necrotic cells by transplanting healthy and functional cells. The therapeutic alternatives proposed by tissue engineering and cardiovascular regenerative medicine are the use of biomaterials to mimic the native extracellular medium, which is full of proteins, proteoglycans, and glycoproteins. The selected biomaterials must provide structural support to the encapsulated cells to avoid their migration and death in the host tissue. In this context, the present research work focused on developing a natural thermosensitive hydrogel, its physical and chemical characterization, and the determination of its biocompatibility in vitro. The hydrogel was developed by mixing hydrolyzed bovine and porcine collagen at 2% w/v, chitosan at 2.5% w/v, and beta-glycerolphosphate at 8.5% w/w and 10.5% w/w in magnetic stirring at 4°C. Once obtained, the thermosensitivity and gelation time were determined, incubating the samples at 37°C and evaluating them through the inverted tube method. The morphological characterization of the hydrogels was carried out through scanning electron microscopy. Chemical characterization was carried out employing infrared spectroscopy. The biocompatibility was determined using the MTT cytotoxicity test according to the ISO 10993-5 standard for the hydrogel’s precursors using the fetal human ventricular cardiomyocytes cell line RL-14. The RL-14 cells were also seeded on the top of the hydrogels, and the supernatants were subculture at different periods to their observation under a bright field microscope. Four types of thermosensitive hydrogels were obtained, which differ in their composition and concentration, called A1 (chitosan/bovine collagen/beta-glycerolphosphate 8.5%w/w), A2 (chitosan/porcine collagen/beta-glycerolphosphate 8.5%), B1 (chitosan/bovine collagen/beta-glycerolphosphate 10.5%) and B2 (chitosan/porcine collagen/beta-glycerolphosphate 10.5%). A1 and A2 had a gelation time of 40 minutes, and B1 and B2 had a gelation time of 30 minutes at 37°C. Electron micrographs revealed a three-dimensional internal structure with interconnected pores for the four types of hydrogels. This facilitates the exchange of nutrients, oxygen, and the exit of metabolites, allowing to preserve a microenvironment suitable for cell proliferation. In the infrared spectra, it was possible to observe the interaction that occurs between the amides of polymeric compounds with the phosphate groups of beta-glycerolphosphate. Finally, the biocompatibility tests indicated that cells in contact with the hydrogel or with each of its precursors are not affected in their proliferation capacity for a period of 16 days. These results show the potential of the hydrogel to increase the cell survival rate in the cardiac cell therapies under investigation. Moreover, the results lay the foundations for its characterization and biological evaluation in both in vitro and in vivo models.

Keywords: cardiac cell therapy, cardiac ischemia, natural polymers, thermosensitive hydrogel

Procedia PDF Downloads 164
136 Halloysite Based Adsorbents for Removing Pollutants from Water Reservoirs

Authors: Agata Chelminska, Joanna Goscianska

Abstract:

The rapid growth of the world’s population and the resulting economic development have had an enormous influence on the environment. Multiple industrial processes generate huge amounts of wastewater containing dangerous substances, most of which are discharged into water bodies. These contaminants include pharmaceuticals and synthetic dyes. Regardless of the presence of wastewater treatment plants, a lot of pollutants cannot be easily eliminated by well-known technologies. Hence, more effective methods of removing resistant chemicals are being developed. Due to cost-effectiveness as well as the availability of a wide range of adsorbents, a large interest in the adsorption process as an alternative way of water purification has been observed. Clay minerals, e.g., halloysite, are one of the most researched natural adsorbents because of their availability, non-toxicity, high specific surface area, porosity, layered structure, and low cost. The negatively charged surface makes them ideal for binding cations and organic compounds. Halloysite can be subjected to modifications which enhance its adsorptive properties. The aim of the presented research was to apply pure and modified halloysite in removing particular pollutants (tetracycline, tartrazine, and phosphates) from aqueous solutions. Halloysite was modified with alcoholic and aqueous solutions of hexadecyltrimethylammonium bromide (CTAB) and urea in different concentrations and subsequently impregnated with lanthanum(III) chloride. Acidic and basic oxygen groups located on the surface of all materials were determined. Moreover, the adsorbents obtained were characterized by X-ray diffraction, low-temperature nitrogen adsorption, scanning, and transmission electron microscopy. The effectiveness of samples in tetracycline, tartrazine, and phosphates adsorption from the liquid phase was then studied in order to determine their potential application in eliminating contaminants from water reservoirs. Modifiers’ employment enabled obtaining materials that possess better adsorption properties, which makes them useful for removing various pollutants from water. Modifying the pure halloysite with CTAB and urea solutions and impregnating LaCl₃ led to the formation of acidic and basic oxygen functional groups on the surface. Their amount increases with an increasing percentage of lanthanum content. The acid-base properties of materials, as well as the type of functional groups that appear on their surface, have a significant influence on their sorption capacities towards antibiotics, dyes, and phosphate(V) anions. The selected contaminants adsorb onto the halloysite studied following the Langmuir type isotherm. The thermodynamic study indicated that the adsorption was a spontaneous and exothermic process. The adsorption equilibrium was rapidly attained after 120 min of contact time. Research showed that synthesized materials based on halloysite may be applied as adsorbents for antibiotics, organic dyes, and PO₄³- ions which are difficult to eliminate.

Keywords: adsorption processes, halloysite, minerals, water reservoirs pollutants

Procedia PDF Downloads 152
135 CO₂ Capture by Membrane Applied to Steel Production Process

Authors: Alexandra-Veronica Luca, Letitia Petrescu

Abstract:

Steel production is a major contributor to global warming potential. An average value of 1.83 tons of CO₂ is emitted for every ton of steel produced, resulting in over 3.3 Mt of CO₂ emissions each year. The present paper is focused on the investigation and comparison of two O₂ separation methods and two CO₂ capture technologies applicable to iron and steel industry. The O₂ used in steel production comes from an Air Separation Unit (ASU) using distillation or from air separation using membranes. The CO₂ capture technologies are represented by a two-stage membrane separation process and the gas-liquid absorption using methyl di-ethanol amine (MDEA). Process modelling and simulation tools, as well as environmental tools, are used in the present study. The production capacity of the steel mill is 4,000,000 tones/year. In order to compare the two CO₂ capture technologies in terms of efficiency, performance, and sustainability, the following cases have been investigated: Case 1: steel production using O₂ from ASU and no CO₂ capture; Case 2: steel production using O₂ from ASU and gas-liquid absorption for CO₂ capture; Case 3: steel production using O₂ from ASU and membranes for CO₂ capture; Case 4: steel production using O₂ from membrane separation method and gas-liquid absorption for CO₂ capture and Case-5: steel production using membranes for air separation and CO₂ capture. The O₂ separation rate obtained in the distillation technology was about 96%, and about 33% in the membrane technology. Similarly, the O₂ purity resulting in the conventional process (i.e. distillation) is higher compared to the O₂ purity obtained in the membrane unit (e.g., 99.50% vs. 73.66%). The air flow-rate required for membrane separation is about three times higher compared to the air flow-rate for cryogenic distillation (e.g., 549,096.93 kg/h vs. 189,743.82 kg/h). A CO₂ capture rate of 93.97% was obtained in the membrane case, while the CO₂ capture rate for the gas-liquid absorption was 89.97%. A quantity of 6,626.49 kg/h CO₂ with a purity of 95.45% is separated from the total 23,352.83 kg/h flue-gas in the membrane process, while with absorption of 6,173.94 kg/h CO₂ with a purity of 98.79% is obtained from 21,902.04 kg/h flue-gas and 156,041.80 kg/h MDEA is recycled. The simulation results, performed using ChemCAD process simulator software, lead to the conclusion that membrane-based technology can be a suitable alternative for CO₂ removal for steel production. An environmental evaluation using Life Cycle Assessment (LCA) methodology was also performed. Considering the electricity consumption, the performance, and environmental indicators, Case 3 can be considered the most effective. The environmental evaluation, performed using GaBi software, shows that membrane technology can lead to lower environmental emissions if membrane production is based on benzene derived from toluene hydrodealkilation and chlorine and sodium hydroxide are produced using mixed technologies.

Keywords: CO₂ capture, gas-liquid absorption, Life Cycle Assessment, membrane separation, steel production

Procedia PDF Downloads 264
134 Vineyard Soils of Karnataka - Characterization, Classification and Soil Site Suitability Evaluation

Authors: Harsha B. R., K. S. Anil Kumar

Abstract:

Land characterization, classification, and soil suitability evaluation of grapes-growing pedons were assessed at fifteen taluks covering four agro climatic zones of Karnataka. Study on problems and potentials of grapes cultivation in selected agro-climatic zones was carried out along with the plant sample analysis. Twenty soil profiles were excavated as study site based on the dominance of area falling under grapes production and existing spatial variability of soils. The detailed information of profiles and horizon wise soil samples were collected to study the morphological, physical, chemical, and fertility characteristics. Climatic analysis and water retention characteristics of soils of major grapes-growing areas were also done. Based on the characterisation and classification study, it was revealed that soils of Doddaballapur (Bangalore Blue and Wine grapes), Bangalore North (GKVK Farm, Rajankunte, and IIHR Farm), Devanahalli, Magadi, Hoskote, Chikkaballapur (Dilkush and Red globe), Yelaburga, Hagari Bommanahalli, Bagalkot (UHS farm) and Indi fall under the soil order Alfisol. Vijaypur pedon of northern dry zone was keyed out as Vertisols whereas, Jamkhandi and Athani as Inceptisols. Properties of Aridisols were observed in B. Bagewadi (Manikchaman and Thompson Seedless) and Afzalpur. Soil fertility status and its mapping using GIS technique revealed that all the nutrients were found to be in adequate range except nitrogen, potassium, zinc, iron, and boron, which indicated the need for application along with organic matter to improve the SOC status. Varieties differed among themselves in yield and plant nutrient composition depending on their age, climatic, soil, and management requirements. Bangalore North (GKVK farm) and Jamkhandi are having medium soil organic carbon stocks of 6.21 and 6.55 kg m⁻³, respectively. Soils of Bangalore North (Rajankunte) were highly suitable (S1) for grapes cultivation. Under northern Karnataka, Vijayapura, B. Bagewadi, Indi, and Afzalpur vineyards were good performers despite the limitations of fertility and free lime content.

Keywords: land characterization, suitability, soil orders, soil organic carbon stock

Procedia PDF Downloads 85
133 Nutritional Status of Food Insecure Students, UWC

Authors: E. C. Swart, E. Kunneke

Abstract:

Background: Disparities in food security exist between communities and households across the country, reflecting continuing social and economic inequalities. The purpose of this study was to investigate the presence of food insecurity amongst UWC students. Method: Cross-sectional study recruited 200 students via email and cellphone from an ICS generated list of randomly selected students aged 18-25. Data collection took place during the first two weeks of term 3. Individual appointments were made with consenting participants and conducted in English by trained BSc Dietetics students. Data was analysed using SPSS. The hunger scale used by Stats SA (October 2010) was used. Dietary intake was assessed using a single 24hr recall. Results: Sixty-three percent of the students reported that they do experience some food insecurity whilst 14.5% reported to go hungry due to inadequate access to food. Coping mechanisms during periods of food insecurity include: Asking a friend, neighbour, family member (40%); Borrow (15%); Steal (none); Casual jobs (12%). Anthropometric status of students did not differ statistically significantly by food security status. A statistically significantly greater proportion of Xhosa speaking students reported inadequate money for food. Students residing in residences off campus appear to be least food secure in terms of money available and limiting food intake, whilst those residing at home are less food insecure. Similar proportions of students who receive bursaries or whose parents are paying reported going hungry whilst those who supports themselves never goes hungry. Mean nutrient intake during the previous 24 hours of students who reported inadequate resources to buy food, who eat less due to inadequate resources and who goes hungry only differed statistically significantly for Vitamin B (go hungry) and for fibre (money shortage). In general the nutrient intake is lower for those who reported to eat less and go hungry except for added sugar, vitamin A and folate (go hungry), and energy, fibre, iron, riboflavin and folate (eat less). For students who reported to have inadequate money to buy food, the mean nutrient intake was higher except for calcium and thiamin. The mean body mass index of this group of students was also higher even though the difference was not statistically significant. Conclusion: Hunger is present on campus however a single 24hr recall did not confirm statistically significant lower nutrient intakes for students who reported different levels of food insecurity.

Keywords: anthropometry, dietary intake, nutritional status, students

Procedia PDF Downloads 346
132 Investigation of the Role of Lipoprotein a rs10455872 Gene Polymorphism in Childhood Obesity

Authors: Mustafa M. Donma, Ayşen Haksayar, Bahadır Batar, Buse Tepe, Birol Topçu, Orkide Donma

Abstract:

Childhood obesity is an ever-increasing health problem. The Association of obesity with severe chronic diseases such as diabetes and cardiovascular diseases makes the problem life-threatening. Aside from psychological, societal and metabolic factors, genetic polymorphisms have gained importance concerning etiology in recent years. The aim of this study was to evaluate the relationship between rs10455872 gene polymorphism in the Lipoprotein (a) locus and the development of childhood obesity. This was a prospective study carried out according to the Helsinki Declarations. The study protocol was approved by the Institutional Ethics Committee. This study was supported by Tekirdag Namik Kemal University Rectorate, Scientific Research Projects Coordination Unit. Project No: NKUBAP.02.TU.20.278. A total of 180 children (103 obese (OB) and 77 healthy), aged 6-18 years, without any acute or chronic disease, participated in the study. Two different groups were created: OB and healthy control. Each group was divided into two further groups depending on the nature of the polymorphism. Anthropometric measurements were taken during the detailed physical examination. Laboratory tests and TANITA measurements were performed. For the statistical evaluations, SPSS version 28.0 was used. A P-value smaller than 0.05 was the statistical significance degree. The distribution of lipoprotein (a) rs10455872 gene polymorphism did not differ between OB and healthy children. Children with AG genotype in both OB and control groups had lower body mass index (BMI), diagnostic obesity notation model assessment index (DONMA II), body fat ratio (BFR), C-reactive protein (CRP), and metabolic syndrome index (MetS index) values compared to children with normal AA genotype. In the OB group, serum iron, vitamin B12, hemoglobin, MCV, and MCH values were found to be higher in the AG genotype group than those of children with the normal AA genotype. A significant correlation was found between the MetS index and BFR among OB children with normal homozygous genotype. MetS index increased as BFR increased in this group. However, such a correlation was not observed in the OB group with heterozygous AG genotype. To the best of our knowledge, the association of lipoprotein (a) rs10455872 gene polymorphism with the etiology of childhood obesity has not been studied yet. Therefore, this study was the first report suggesting polymorphism with AG genotype as a good risk factor for obesity.

Keywords: child, gene polymorphism, lipoprotein (a), obesity, rs10455872

Procedia PDF Downloads 37
131 Dietary Factors Contributing to Osteoporosis among Postmenopausal Women in Riyadh Armed Forces Hospital

Authors: Rabab Makki

Abstract:

Bone mineral density and bone metabolism are affected by various factors such as genetic, endocrine, mechanical and nutritional. Our understanding of nutritional influences on bone health is limited because most studies have focused on calcium. This study investigated the dietary factors which are likely t contribute to Osteoporosis in Saudi post-menopausal women, and correlated it with BMD. This is a case controlled study involved 36 postmenopausal Saudi females selected from the Orthopedics and osteoporosis outpatient clinics, and 25 postmenopausal Saudi females as controls from the primary clinic of Military Hospital in Riyadh. The women were diagnosed as osteoporotic based on the BMD measurement at any site (left femur neck, right femur neck, left total hip or right total hip or spine). Both the controls and the Osteoporotics were over 50 years of age and BMI between 31-34 kg/m2 had 2nd degree obesity, and were not free from other problems such as diabetes, hypertension, etc. Subjects (osteoporotics and controls) were interviewed to called data on demographic characterstics, medical history, dietary intake anthropometry (height and weight) bone mineral density. Blood samples were collected from subjects (Osteoporotics and controls). Analysis of serum calcium, vitamin D, phosphate were done at the main laboratory at Military Hospital Riyadh, by the laboratory technician while BMD was determined at the department of Nuclear Medicine by an expert technician and results were interpreted by radiologist.Data on frequency of consumption of animal food (meat, eggs, poultry and fish) and diary foods (milk, yogurt, cheese) of osteoporotic was less than control. In spite of the low intake there was no association with BMD.In general, the vegetables and fruits were consumed less by the osteoporotics than control. The only fruit which had shown a significant positive correlation is banana with right and left hip BMD total probably due to high potassium and minerals content which likely to prevent bone resorption. Mataziz vegetables combination of wheat showed a significant positive correlation with the same site (total right and left hip). Both osteoporotics abd controls were consuming table sugar. (But the sweet intake showed a significant negative correlation with left neck femur BMD, suggesting sucrose increase urinary calcium loss. Both osteoporotic and controls were consuming Arabic coffee. A negative significant correlation between intake of Arabic coffee and BMD of right neck femur of osteoporosis patient was observed. It could be suggested that increased intake of fruits and vegetables, might promote bone density while high intake of coffee and sugars might affect bone density, no significant correlation was observed between BMD at any site and diary product. We can say the major risk factors are inadequate nutrition. Further studies are needed among Saudi population to confirm these results.

Keywords: osteoporosi, Saudia Arabia, Riyadh Armed Forces, postmenopausal women

Procedia PDF Downloads 384
130 Management of Nutrition Education in Spa Resorts in Poland

Authors: Joanna Wozniak-Holecka, Sylwia Jaruga-Sekowska

Abstract:

There are 45 statutory spa and treatment areas in Poland, and the demand for spa and treatment services increases year by year. Within each type of spa treatment facilities, nutritional education services are provided. During spa treatment, the patient learns the principles of rational nutrition and applied diet therapy. It should help him develop proper eating habits, which will also follow at home. However, the nutrition education system of spa resort patients should be considered as very imperfect and requiring a definite systemic correction. It has, at the same time, a wide human and infrastructure base, which guarantees to obtain positive reinforcement in the scope of undertaken activities and management. Unfortunately, this advantage is not fully used. The aim of the project was to assess the quality of implemented nutritional education and to assess the diet of patients in spa treatment entities from a nationwide perspective. The material for the study was data obtained as part of an in-depth interview conducted among nutrition department managers (25 interviews) and a survey addressed to patients (600 questionnaires) of a selected group of spa resorts from across the country about the implementation of nutritional education in institutions. Also, decade menus for the basic diet, easily digestible diet and diet with limitation of easily digestible carbohydrates (a total of 1,120 menus) were obtained for the study. Almost 2/3 of respondents (73.2%) were overweight or obese, but only 32.8% decided on an easily digestible or low-energy diet during the treatment. Most of the surveyed patients rated the nutrition in spa resorts as satisfactory. Classes on nutrition education were carried out mainly by a dietitian (65% of meetings), the other educators were doctors and nurses. The meetings (95%) were of a group nature and lasted only 30 minutes on average. The subjects of the classes concerned the principles of proper nutrition and composition of meals, a nutrition pyramid and a diet adapted to a given disease. The assessed menus did not meet the nutrition standards and, therefore, did not provide patients with the correct quality of nutrition. The norm of protein, fat, vitamin A, B12, phosphorus, iron and sodium was exceeded, while vitamin D, folic acid, magnesium and zinc were not enough than recommended. The study allowed to conclude that there is a large discrepancy between the recommendations presented during the nutrition education classes and the quality of diet implemented in the examined institutions. The project may contribute to the development of effective educational tools in nutrition, especially about a specific group of chronically ill patients.

Keywords: diet, management, nutritional education, spa resort

Procedia PDF Downloads 122
129 Benefits of Monitoring Acid Sulfate Potential of Coffee Rock (Indurated Sand) across Entire Dredge Cycle in South East Queensland

Authors: S. Albert, R. Cossu, A. Grinham, C. Heatherington, C. Wilson

Abstract:

Shipping trends suggest increasing vessel size and draught visiting Australian ports highlighting potential challenges to port infrastructure and requiring optimization of shipping channels to ensure safe passage for vessels. The Port of Brisbane in Queensland, Australia has an 80 km long access shipping channel which vessels must transit 15 km of relatively shallow coffee rock (generic class of indurated sands where sand grains are bound within an organic clay matrix) outcrops towards the northern passage in Moreton Bay. This represents a risk to shipping channel deepening and maintenance programs as the dredgeability of this material is more challenging due to its high cohesive strength compared with the surrounding marine sands and potential higher acid sulfate risk. In situ assessment of acid sulfate sediment for dredge spoil control is an important tool in mitigating ecological harm. The coffee rock in an anoxic undisturbed state does not pose any acid sulfate risk, however when disturbed via dredging it’s vital to ensure that any present iron sulfides are either insignificant or neutralized. To better understand the potential risk we examined the reduction potential of coffee rock across the entire dredge cycle in order to accurately portray the true outcome of disturbed acid sulfate sediment in dredging operations in Moreton Bay. In December 2014 a dredge trial was undertaken with a trailing suction hopper dredger. In situ samples were collected prior to dredging revealed acid sulfate potential above threshold guidelines which could lead to expensive dredge spoil management. However, potential acid sulfate risk was then monitored in the hopper and subsequent discharge, both showing a significant reduction in acid sulfate potential had occurred. Additionally, the acid neutralizing capacity significantly increased due to the inclusion of shell fragments (calcium carbonate) from the dredge target areas. This clearly demonstrates the importance of assessing potential acid sulfate risk across the entire dredging cycle and highlights the need to carefully evaluate sources of acidity.

Keywords: acid sulfate, coffee rock, indurated sand, dredging, maintenance dredging

Procedia PDF Downloads 338
128 Leukocyte Transcriptome Analysis of Patients with Obesity-Related High Output Heart Failure

Authors: Samantha A. Cintron, Janet Pierce, Mihaela E. Sardiu, Diane Mahoney, Jill Peltzer, Bhanu Gupta, Qiuhua Shen

Abstract:

High output heart failure (HOHF) is characterized a high output state resulting from an underlying disease process and is commonly caused by obesity. As obesity levels increase, more individuals will be at risk for obesity-related HOHF. However, the underlying pathophysiologic mechanisms of obesity-related HOHF are not well understood and need further research. The aim of the study was to describe the differences in leukocyte transcriptomes of morbidly obese patients with HOHF and those with non-HOHF. In this cross-sectional study, the study team collected blood samples, demographics, and clinical data of six patients with morbid obesity and HOHF and six patients with morbid obesity and non-HOHF. The study team isolated the peripheral blood leukocyte RNA and applied stranded total RNA sequencing. Differential gene expression was calculated, and Ingenuity Pathway Analysis software was used to interpret the canonical pathways, functional changes, upstream regulators, and mechanistic and causal networks that were associated with the significantly different leukocyte transcriptomes. The study team identified 116 differentially expressed genes; 114 were upregulated, and 2 were downregulated in the HOHF group (Benjamini-Hochberg adjusted p-value ≤ 0.05 and log2(fold-change) of ±1). The differentially expressed genes were involved with cell proliferation, mitochondrial function, erythropoiesis, erythrocyte stability, and apoptosis. The top upregulated canonical pathways associated with differentially expressed genes were autophagy, adenosine monophosphate-activated protein kinase signaling, and senescence pathways. Upstream regulator GATA Binding Protein 1 (GATA1) and a network associated with nuclear factor kappa-light chain-enhancer of activated B cells (NF-kB) were also identified based on the different leukocyte transcriptomes of morbidly obese patients with HOHF and non-HOHF. To the author’s best knowledge, this is the first study that reported the differential gene expression in patients with obesity-related HOHF and demonstrated the unique pathophysiologic mechanisms underlying the disease. Further research is needed to determine the role of cellular function and maintenance, inflammation, and iron homeostasis in obesity-related HOHF.

Keywords: cardiac output, heart failure, obesity, transcriptomics

Procedia PDF Downloads 21
127 The Role of Nickel on the High-Temperature Corrosion of Modell Alloys (Stainless Steels) before and after Breakaway Corrosion at 600°C: A Microstructural Investigation

Authors: Imran Hanif, Amanda Persdotter, Sedigheh Bigdeli, Jesper Liske, Torbjorn Jonsson

Abstract:

Renewable fuels such as biomass/waste for power production is an attractive alternative to fossil fuels in order to achieve a CO₂ -neutral power generation. However, the combustion results in the release of corrosive species. This puts high demands on the corrosion resistance of the alloys used in the boiler. Stainless steels containing nickel and/or nickel containing coatings are regarded as suitable corrosion resistance material especially in the superheater regions. However, the corrosive environment in the boiler caused by the presence of water vapour and reactive alkali very rapidly breaks down the primary protection, i.e., the Cr-rich oxide scale formed on stainless steels. The lifetime of the components, therefore, relies on the properties of the oxide scale formed after breakaway, i.e., the secondary protection. The aim of the current study is to investigate the role of varying nickel content (0–82%) on the high-temperature corrosion of model alloys with 18% Cr (Fe in balance) in the laboratory mimicking industrial conditions at 600°C. The influence of nickel is investigated on both the primary protection and especially the secondary protection, i.e., the scale formed after breakaway, during the oxidation/corrosion process in the dry O₂ (primary protection) and more aggressive environment such as H₂O, K₂CO₃ and KCl (secondary protection). All investigated alloys experience a very rapid loss of the primary protection, i.e., the Cr-rich (Cr, Fe)₂O₃, and the formation of secondary protection in the aggressive environments. The microstructural investigation showed that secondary protection of all alloys has a very similar microstructure in all more aggressive environments consisting of an outward growing iron oxide and inward growing spinel-oxide (Fe, Cr, Ni)₃O₄. The oxidation kinetics revealed that it is possible to influence the protectiveness of the scale formed after breakaway (secondary protection) through the amount of nickel in the alloy. The difference in oxidation kinetics of the secondary protection is linked to the microstructure and chemical composition of the complex spinel-oxide. The detailed microstructural investigations were carried out using the extensive analytical techniques such as electron back scattered diffraction (EBSD), energy dispersive X-rays spectroscopy (EDS) via the scanning and transmission electron microscopy techniques and results are compared with the thermodynamic calculations using the Thermo-Calc software.

Keywords: breakaway corrosion, EBSD, high-temperature oxidation, SEM, TEM

Procedia PDF Downloads 117
126 Inclusion Body Refolding at High Concentration for Large-Scale Applications

Authors: J. Gabrielczyk, J. Kluitmann, T. Dammeyer, H. J. Jördening

Abstract:

High-level expression of proteins in bacteria often causes production of insoluble protein aggregates, called inclusion bodies (IB). They contain mainly one type of protein and offer an easy and efficient way to get purified protein. On the other hand, proteins in IB are normally devoid of function and therefore need a special treatment to become active. Most refolding techniques aim at diluting the solubilizing chaotropic agents. Unfortunately, optimal refolding conditions have to be found empirically for every protein. For large-scale applications, a simple refolding process with high yields and high final enzyme concentrations is still missing. The constructed plasmid pASK-IBA63b containing the sequence of fructosyltransferase (FTF, EC 2.4.1.162) from Bacillus subtilis NCIMB 11871 was transformed into E. coli BL21 (DE3) Rosetta. The bacterium was cultivated in a fed-batch bioreactor. The produced FTF was obtained mainly as IB. For refolding experiments, five different amounts of IBs were solubilized in urea buffer with protein concentration of 0.2-8.5 g/L. Solubilizates were refolded with batch or continuous dialysis. The refolding yield was determined by measuring the protein concentration of the clear supernatant before and after the dialysis. Particle size was measured by dynamic light scattering. We tested the solubilization properties of fructosyltransferase IBs. The particle size measurements revealed that the solubilization of the aggregates is achieved at urea concentration of 5M or higher and confirmed by absorption spectroscopy. All results confirm previous investigations that refolding yields are dependent upon initial protein concentration. In batch dialysis, the yields dropped from 67% to 12% and 72% to 19% for continuous dialysis, in relation to initial concentrations from 0.2 to 8.5 g/L. Often used additives such as sucrose and glycerol had no effect on refolding yields. Buffer screening indicated a significant increase in activity but also temperature stability of FTF with citrate/phosphate buffer. By adding citrate to the dialysis buffer, we were able to increase the refolding yields to 82-47% in batch and 90-74% in the continuous process. Further experiments showed that in general, higher ionic strength of buffers had major impact on refolding yields; doubling the buffer concentration increased the yields up to threefold. Finally, we achieved corresponding high refolding yields by reducing the chamber volume by 75% and the amount of buffer needed. The refolded enzyme had an optimal activity of 12.5±0.3 x104 units/g. However, detailed experiments with native FTF revealed a reaggregation of the molecules and loss in specific activity depending on the enzyme concentration and particle size. For that reason, we actually focus on developing a process of simultaneous enzyme refolding and immobilization. The results of this study show a new approach in finding optimal refolding conditions for inclusion bodies at high concentrations. Straightforward buffer screening and increase of the ionic strength can optimize the refolding yield of the target protein by 400%. Gentle removal of chaotrope with continuous dialysis increases the yields by an additional 65%, independent of the refolding buffer applied. In general time is the crucial parameter for successful refolding of solubilized proteins.

Keywords: dialysis, inclusion body, refolding, solubilization

Procedia PDF Downloads 275
125 Strontium and Selenium Doped Bioceramic Incorporated Hydrogel for Faster Apatite Growth and Bone Regeneration Applications

Authors: Nonita Sarin, K.J.Singh, Anuj Kumar, Davinder Singh

Abstract:

Polymeric 3D hydrogels have pivotal role in bone tissue regeneration applications. Hydrogels behave similar to the living tissues because they have large water imbibing capacity in swollen state and adjust their shape according to the tissues during tissue formation after implantation. On the other hand, hydrogels are very soft, fragile and lack mechanical strength. Incorporation of bioceramics can improve mechanical strength. Furthermore, bioceramics synthesized by sol gel technique may enhance the apatite formation and degradation rates which can lead to the increase in faster rates for new bone and tissue regeneration. Simulated body fluid (SBF) induces the poly-condensation of silanol groups which leads to formation of silica matrix and provide active sites for the precipitation of Ca2+ and PO43- ions to form apatite layer which is similar to mineral form of bone. Therefore, authors have synthesized bioceramic incorporated Polyacrylamide-carboxymethylcellulose hydrogels by free radical polymerization and bioceramic compositions of xSrO-(36-x)CaO-45SiO2-ySeO3-(12-y)P2O5-7MgO (where x=0,4 and y=0,2 mol%) were synthesized by sol gel technique. Bioceramics incorporated in polymer matrix induces quicker apatite formation during immersion in SBF by raising the pH with the release of alkaline ions during ion exchange process and the apatite formation takes place in alkaline medium. The behavior of samples PABC-0 (without bioceramics) and PABC-20 (with 20 wt% bioceramics) were evaluated by X-Ray Diffraction and FTIR. In term of bioactivity, it was observed that PABC-20 has shown hydroxyapatite (HA) formation on 1st day of immersion whereas, PABC-0 was shown apatite formation on 7th day of immersion in SBF. The rapid rate of HA growth on 1st day of immersion in SBF signifies easy regeneration of damaged bone tissues. Degradation studies have been undertaken in Phosphate Buffer Saline and PABC-20 exhibited slower degradation rate up to 9%as compared to PABC-0 up to 18%. Slower degradation rate is suitable for new tissue regeneration and cell attachment. Also, Zeta potential studies have been employed to check the surface charge and it has been observed that samples carry negative charge when immersed in SBF. In addition, the swelling test of the samples have been performed and relative swelling ratio % observed for PABC-0 is 607% and PABC-20 is 305%. This indicates that the incorporation of bioceramics leads to the filling up of the voids in between the polymer matrix which in result reduces porosity and increase the mechanical strength by filling the voids. The porosity of PABC-0 is 84% and PABC-20 is 72%. PABC-20 sample demonstrates that bioceramics incorporation reduce the porosity and improves mechanical strength. Also, maximum in vitro cell viability up to 98% with MG63 cell line has been observed which indicate that the bioceramic incorporated hydrogel(PABC-20) provide the alkaline medium which is suitable environment for cell growth.

Keywords: hydrogels, hydroxyapatite, MG63 cell line, zeta potential

Procedia PDF Downloads 115
124 Extraction of Scandium (Sc) from an Ore with Functionalized Nanoporous Silicon Adsorbent

Authors: Arezoo Rahmani, Rinez Thapa, Juha-Matti Aalto, Petri Turhanen, Jouko Vepsalainen, Vesa-PekkaLehto, Joakim Riikonen

Abstract:

Production of Scandium (Sc) is a complicated process because Sc is found only in low concentrations in ores and the concentration of Sc is very low compared with other metals. Therefore, utilization of typical extraction processes such as solvent extraction is problematic in scandium extraction. The Adsorption/desorption method can be used, but it is challenging to prepare materials, which have good selectivity, high adsorption capacity, and high stability. Therefore, efficient and environmentally friendly methods for Sc extraction are needed. In this study, the nanoporous composite material was developed for extracting Sc from an Sc ore. The nanoporous composite material offers several advantageous properties such as large surface area, high chemical and mechanical stability, fast diffusion of the metals in the material and possibility to construct a filter out of the material with good flow-through properties. The nanoporous silicon material was produced by first stabilizing the surfaces with a silicon carbide layer and then functionalizing the surface with bisphosphonates that act as metal chelators. The surface area and porosity of the material were characterized by N₂ adsorption and the morphology was studied by scanning electron microscopy (SEM). The bisphosphonate content of the material was studied by thermogravimetric analysis (TGA). The concentration of metal ions in the adsorption/desorption experiments was measured with inductively coupled plasma mass spectrometry (ICP-MS). The maximum capacity of the material was 25 µmol/g Sc at pH=1 and 45 µmol/g Sc at pH=3, obtained from adsorption isotherm. The selectivity of the material towards Sc in artificial solutions containing several metal ions was studied at pH one and pH 3. The result shows good selectivity of the nanoporous composite towards adsorption of Sc. Scandium was less efficiently adsorbed from solution leached from the ore of Sc because of excessive amounts of iron (Fe), aluminum (Al) and titanium (Ti) which disturbed the adsorption process. For example, the concentration of Fe was more than 4500 ppm, while the concentration of Sc was only three ppm, approximately 1500 times lower. Precipitation methods were developed to lower the concentration of the metals other than Sc. Optimal pH for precipitation was found to be pH 4. The concentration of Fe, Al and Ti were decreased by 99, 70, 99.6%, respectively, while the concentration of Sc decreased only 22%. Despite the large reduction in the concentration of other metals, more work is needed to further increase the relative concentration of Sc compared with other metals to efficiently extract it using the developed nanoporous composite material. Nevertheless, the developed material may provide an affordable, efficient and environmentally friendly method to extract Sc on a large scale.

Keywords: adsorption, nanoporous silicon, ore solution, scandium

Procedia PDF Downloads 122
123 Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode

Authors: Sai Snehitha Yadavalli, K. Sruthi, Swati Ghosh Acharyya

Abstract:

Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used.

Keywords: cadmium, cobalt, electrochemical sensing, glassy carbon electrodes, heavy metal Ions, Iron, lead, polyvinyl chloride, potentiostat, square wave anodic stripping voltammetry

Procedia PDF Downloads 73
122 The Impact of Roof Thermal Performance on the Indoor Thermal Comfort in a Natural Ventilated Building Envelope in Hot Climatic Climates

Authors: J. Iwaro, A. Mwasha, K. Ramsubhag

Abstract:

Global warming has become a threat of our time. It poses challenges to the existence of beings on earth, the built environment, natural environment and has made a clear impact on the level of energy and water consumption. As such, increase in the ambient temperature increases indoor and outdoor temperature level of the buildings which brings about the use of more energy and mechanical air conditioning systems. In addition, in view of the increased modernization and economic growth in the developing countries, a significant amount of energy is being used, especially those with hot climatic conditions. Since modernization in developing countries is rising rapidly, more pressure is being placed on the buildings and energy resources to satisfy the indoor comfort requirements. This paper presents a sustainable passive roof solution as a means of reducing energy cooling loads for satisfying human comfort requirements in a hot climate. As such, the study based on the field study data discusses indoor thermal roof design strategies for a hot climate by investigating the impacts of roof thermal performance on indoor thermal comfort in naturally ventilated building envelope small scaled structures. In this respect, the traditional concrete flat roof, corrugated galvanised iron roof and pre-painted standing seam roof were used. The experiment made used of three identical small scale physical models constructed and sited on the roof of a building at the University of the West Indies. The results show that the utilization of insulation in traditional roofing systems will significantly reduce heat transfer between the internal and ambient environment, thus reducing the energy demand of the structure and the relative carbon footprint of a structure per unit area over its lifetime. Also, the application of flat slab concrete roofing system showed the best performance as opposed to the metal roof sheeting alternative systems. In addition, it has been shown experimentally through this study that a sustainable passive roof solution such as insulated flat concrete roof in hot dry climate has a better cooling strength that can provide building occupant with a better thermal comfort, conducive indoor conditions and energy efficiency.

Keywords: building envelope, roof, energy consumption, thermal comfort

Procedia PDF Downloads 249
121 Enzymatic Determination of Limonene in Red Clover Genotypes

Authors: Andrés Quiroz, Emilio Hormazabal, Ana Mutis, Fernando Ortega, Manuel Chacón-Fuentes, Leonardo Parra

Abstract:

Red clover (Trifolium pratense L.) is an important forage species in temperate regions of the world. The main limitation of this species worldwide is a lack of persistence related to the high mortality of plants due to a complex of biotic and abiotic factors, determining a life span of two or three seasons. Because of the importance of red clover in Chile, a red clover breeding program was started at INIA Carillanca Research Center in 1989, with the main objective of improving the survival of plants, forage yield, and persistence. The main selection criteria for selecting new varieties have been based on agronomical parameters and biotic factors. The main biotic factor associated with red clover mortality in Chile is Hylastinus obscurus (Coleoptera: Curculionidae). Both larval and adults feed on the roots, causing weakening and subsequent death of clover plants. Pesticides have not been successful for controlling infestations of this root borer. Therefore, alternative strategies for controlling this pest are a high priority for red clover producers. Currently, the role of semiochemical in the interaction between H. obscurus and red clover plants has been widely studied for our group. Specifically, from the red clover foliage has been identified limonene is eliciting repellency from the root borer. Limonene is generated in the plant from two independent biosynthetic pathways, the mevalonic acid, and deoxyxylulose pathway. Mevalonate pathway enzymes are localized in the cytosol, whereas the deoxyxylulose phosphate pathway enzymes are found in plastids. In summary, limonene can be determinated by enzymatic bioassay using GPP as substrate and by limonene synthase expression. Therefore, the main objective of this work was to study genetic variation of limonene in material provided by INIA´s Red Clover breeding program. Protein extraction was carried out homogenizing 250 mg of leave tissue and suspended in 6 mL of extraction buffer (PEG 1500, PVP-30, 20 mM MgCl2 and antioxidants) and stirred on ice for 20 min. After centrifugation, aliquots of 2.5 mL were desalted on PD-10 columns, resulting in a final volume of 3.5 mL. Protein determination was performed according to Bradford with BSA as a standard. Monoterpene synthase assays were performed with 50 µL of protein extracts transferred into gas-tight 2 mL crimp seal vials after addition of 4 µL MgCl₂ and 41 µL assay buffer. The assay was started by adding 5 µL of a GPP solution. The mixture was incubated for 30 min at 40 °C. Biosynthesized limonene was quantified in a GC equipped with a chiral column and using synthetic R and S-limonene standards. The enzymatic the production of R and S-limonene from different Superqueli-Carillanca genotypes is shown in this work. Preliminary results showed significant differences in limonene content among the genotypes analyzed. These results constitute an important base for selecting genotypes with a high content of this repellent monoterpene towards H. obscurus.

Keywords: head space, limonene enzymatic determination, red clover, Hylastinus obscurus

Procedia PDF Downloads 240
120 Nanoparticles Modification by Grafting Strategies for the Development of Hybrid Nanocomposites

Authors: Irati Barandiaran, Xabier Velasco-Iza, Galder Kortaberria

Abstract:

Hybrid inorganic/organic nanostructured materials based on block copolymers are of considerable interest in the field of Nanotechnology, taking into account that these nanocomposites combine the properties of polymer matrix and the unique properties of the added nanoparticles. The use of block copolymers as templates offers the opportunity to control the size and the distribution of inorganic nanoparticles. This research is focused on the surface modification of inorganic nanoparticles to reach a good interface between nanoparticles and polymer matrices which hinders the nanoparticle aggregation. The aim of this work is to obtain a good and selective dispersion of Fe3O4 magnetic nanoparticles into different types of block copolymers such us, poly(styrene-b-methyl methacrylate) (PS-b-PMMA), poly(styrene-b-ε-caprolactone) (PS-b-PCL) poly(isoprene-b-methyl methacrylate) (PI-b-PMMA) or poly(styrene-b-butadiene-b-methyl methacrylate) (SBM) by using different grafting strategies. Fe3O4 magnetic nanoparticles have been surface-modified with polymer or block copolymer brushes following different grafting methods (grafting to, grafting from and grafting through) to achieve a selective location of nanoparticles into desired domains of the block copolymers. Morphology of fabricated hybrid nanocomposites was studied by means of atomic force microscopy (AFM) and with the aim to reach well-ordered nanostructured composites different annealing methods were used. Additionally, nanoparticle amount has been also varied in order to investigate the effect of the nanoparticle content in the morphology of the block copolymer. Nowadays different characterization methods were using in order to investigate magnetic properties of nanometer-scale electronic devices. Particularly, two different techniques have been used with the aim of characterizing synthesized nanocomposites. First, magnetic force microscopy (MFM) was used to investigate qualitatively the magnetic properties taking into account that this technique allows distinguishing magnetic domains on the sample surface. On the other hand, magnetic characterization by vibrating sample magnetometer and superconducting quantum interference device. This technique demonstrated that magnetic properties of nanoparticles have been transferred to the nanocomposites, exhibiting superparamagnetic behavior similar to that of the maghemite nanoparticles at room temperature. Obtained advanced nanostructured materials could found possible applications in the field of dye-sensitized solar cells and electronic nanodevices.

Keywords: atomic force microscopy, block copolymers, grafting techniques, iron oxide nanoparticles

Procedia PDF Downloads 240
119 Synergistic Studies of Liposomes of Clove and Cinnamon Oil in Oral Health Care

Authors: Sandhya Parameswaran, Prajakta Dhuri

Abstract:

Despite great improvements in health care, the world oral health report states that dental problems still persist, particularly among underprivileged groups in both developing and developed countries. Dental caries and periodontal diseases are identified as the most important oral health problems globally. Acidic foods and beverages can affect natural teeth, and chronic exposure often leads to the development of dental erosion, abrasion, and decay. In recent years, there has been an increased interest toward essential oils. These are secondary metabolites and possess antibacterial, antifungal and antioxidant properties. Essential oils are volatile and chemically unstable in the presence of air, light, moisture and high temperature. Hence many novel methods like a liposomal encapsulation of oils have been introduced to enhance the stability and bioavailability. This research paper focuses on two essential oils, clove and cinnamon oil. Clove oil was obtained from Syzygium aromaticum Linn using clavengers apparatus. It contains eugenol and β caryophyllene. Cinnamon oil, from the barks of Cinnamomum cassia, contains cinnamaldehyde, The objective of the current research was to develop a liposomal carrier system containing clove and cinnamon oil and study their synergistic activity against dental pathogens when formulated as a gel. Methodology: The essential oil were first tested for their antimicrobial activity against dental pathogens, Lactobacillus acidophillus (MTCC No. 10307, MRS broth) and Streptococcus Mutans (MTCC No .890, Brain Heart Infusion agar). The oils were analysed by UV spectroscopy for eugenol and cinnamaldehyde content. Standard eugenol was linear between 5ppm to 25ppm at 282nm and standard cinnamaldehde from 1ppm to 5pmm at 284nm. The concentration of eugenol in clove oil was found to be 62.65 % w/w, and that of cinnamaldehyde was found to be 5.15%s w/w. The oils were then formulated into liposomes. Liposomes were prepared by thin film hydration method using Phospholipid, Cholesterol, and other oils dissolved in a chloroform methanol (3:1) mixture. The organic solvent was evaporated in a rotary evaporator above lipid transition temperature. The film was hydrated with phosphate buffer (pH 5.5).The various batches of liposomes were characterized and compared for their size, loading rate, encapsulation efficiency and morphology. The prepared liposomes when evaluated for entrapment efficiency showed 65% entrapment for clove and 85% for cinnamon oil. They were also tested for their antimicrobial activity against dental pathogens and their synergistic activity studied. Based on the activity and the entrapment efficiency the amount of liposomes required to prepare 1gm of the gel was calculated. The gel was prepared using a simple ointment base and contained 0.56% of cinnamon and clove liposomes. A simultaneous method of analysis for eugenol and cinnamaldehyde.was then developed using HPLC. The prepared gels were then studied for their stability as per ICH guidelines. Conclusion: It was found that liposomes exhibited spherical shaped vesicles and protected the essential oil from degradation. Liposomes, therefore, constitute a suitable system for encapsulation of volatile, unstable essential oil constituents.

Keywords: cinnamon oil, clove oil, dental caries, liposomes

Procedia PDF Downloads 161
118 Assessment of Groundwater Quality in Karakulam Grama Panchayath in Thiruvananthapuram, Kerala State, South India

Authors: D. S. Jaya, G. P. Deepthi

Abstract:

Groundwater is vital to the livelihoods and health of the majority of the people since it provides almost the entire water resource for domestic, agricultural and industrial uses. Groundwater quality comprises the physical, chemical, and bacteriological qualities. The present investigation was carried out to determine the physicochemical and bacteriological quality of the ground water sources in the residential areas of Karakulam Grama Panchayath in Thiruvananthapuram district, Kerala state in India. Karakulam is located in the eastern suburbs of Thiruvananthapuram city. The major drinking water source of the residents in the study area are wells. The present study aims to assess the portability and irrigational suitability of groundwater in the study area. The water samples were collected from randomly selected dug wells and bore wells in the study area during post monsoon and pre-monsoon seasons of the year 2014 after a preliminary field survey. The physical, chemical and bacteriological parameters of the water samples were analysed following standard procedures. The concentration of heavy metals (Cd, Pb, and Mn) in the acid digested water samples were determined by using an Atomic Absorption Spectrophotometer. The results showed that the pH of well water samples ranged from acidic to the alkaline level. In the majority of well water samples ( > 54%) the iron and magnesium content were found high in both the seasons studied, and the values were above the permissible limits of WHO drinking water quality standards. Bacteriological analyses showed that 63% of the wells were contaminated with total coliforms in both the seasons studied. Irrigational suitability of groundwater was assessed by determining the chemical indices like Sodium Percentage (%Na), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Permeability Index (PI), and the results indicate that the well water in the study area is good for irrigation purposes. Therefore, the study reveals the degradation of drinking water quality groundwater sources in Karakulam Grama Panchayath in Thiruvananthapuram District, Kerala in terms of its chemical and bacteriological characteristics and is not potable without proper treatment. In the study, more than 1/3rd of the wells tested were positive for total coliforms, and the bacterial contamination may pose threats to public health. The study recommends the need for periodic well water quality monitoring in the study area and to conduct awareness programs among the residents.

Keywords: bacteriological, groundwater, irrigational suitability, physicochemical, portability

Procedia PDF Downloads 242
117 Biomaterials Solutions to Medical Problems: A Technical Review

Authors: Ashish Thakur

Abstract:

This technical paper was written in view of focusing the biomaterials and its various applications in modern industries. Author tires to elaborate not only the medical, infect plenty of application in other industries. The scope of the research area covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. Biomaterials are invariably in contact with living tissues. Thus, interactions between the surface of a synthetic material and biological environment must be well understood. This paper reviews the benefits and challenges associated with surface modification of the metals in biomedical applications. The paper also elaborates how the surface characteristics of metallic biomaterials, such as surface chemistry, topography, surface charge, and wettability, influence the protein adsorption and subsequent cell behavior in terms of adhesion, proliferation, and differentiation at the biomaterial–tissue interface. The chapter also highlights various techniques required for surface modification and coating of metallic biomaterials, including physicochemical and biochemical surface treatments and calcium phosphate and oxide coatings. In this review, the attention is focused on the biomaterial-associated infections, from which the need for anti-infective biomaterials originates. Biomaterial-associated infections differ markedly for epidemiology, aetiology and severity, depending mainly on the anatomic site, on the time of biomaterial application, and on the depth of the tissues harbouring the prosthesis. Here, the diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials. In addition to this, chapter introduces nanomedicine and the use of both natural and synthetic polymeric biomaterials, focuses on specific current polymeric nanomedicine applications and research, and concludes with the challenges of nanomedicine research. Infection is currently regarded as the most severe and devastating complication associated to the use of biomaterials. Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. Polymeric nanomaterial-based therapeutics plays a key role in the field of medicine in treatment areas such as drug delivery, tissue engineering, cancer, diabetes, and neurodegenerative diseases. Advantages in the use of polymers over other materials for nanomedicine include increased functionality, design flexibility, improved processability, and, in some cases, biocompatibility.

Keywords: nanomedicine, tissue, infections, biomaterials

Procedia PDF Downloads 240