Search results for: interpolated error shifting
846 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation
Authors: Mohammad Anwar, Shah Waliullah
Abstract:
This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model
Procedia PDF Downloads 68845 A Probabilistic Theory of the Buy-Low and Sell-High for Algorithmic Trading
Authors: Peter Shi
Abstract:
Algorithmic trading is a rapidly expanding domain within quantitative finance, constituting a substantial portion of trading volumes in the US financial market. The demand for rigorous and robust mathematical theories underpinning these trading algorithms is ever-growing. In this study, the author establishes a new stock market model that integrates the Efficient Market Hypothesis and the statistical arbitrage. The model, for the first time, finds probabilistic relations between the rational price and the market price in terms of the conditional expectation. The theory consequently leads to a mathematical justification of the old market adage: buy-low and sell-high. The thresholds for “low” and “high” are precisely derived using a max-min operation on Bayes’s error. This explicit connection harmonizes the Efficient Market Hypothesis and Statistical Arbitrage, demonstrating their compatibility in explaining market dynamics. The amalgamation represents a pioneering contribution to quantitative finance. The study culminates in comprehensive numerical tests using historical market data, affirming that the “buy-low” and “sell-high” algorithm derived from this theory significantly outperforms the general market over the long term in four out of six distinct market environments.Keywords: efficient market hypothesis, behavioral finance, Bayes' decision, algorithmic trading, risk control, stock market
Procedia PDF Downloads 72844 Image Features Comparison-Based Position Estimation Method Using a Camera Sensor
Authors: Jinseon Song, Yongwan Park
Abstract:
In this paper, propose method that can user’s position that based on database is built from single camera. Previous positioning calculate distance by arrival-time of signal like GPS (Global Positioning System), RF(Radio Frequency). However, these previous method have weakness because these have large error range according to signal interference. Method for solution estimate position by camera sensor. But, signal camera is difficult to obtain relative position data and stereo camera is difficult to provide real-time position data because of a lot of image data, too. First of all, in this research we build image database at space that able to provide positioning service with single camera. Next, we judge similarity through image matching of database image and transmission image from user. Finally, we decide position of user through position of most similar database image. For verification of propose method, we experiment at real-environment like indoor and outdoor. Propose method is wide positioning range and this method can verify not only position of user but also direction.Keywords: positioning, distance, camera, features, SURF(Speed-Up Robust Features), database, estimation
Procedia PDF Downloads 350843 Design of a Low Cost Programmable LED Lighting System
Authors: S. Abeysekera, M. Bazghaleh, M. P. L. Ooi, Y. C. Kuang, V. Kalavally
Abstract:
Smart LED-based lighting systems have significant advantages over traditional lighting systems due to their capability of producing tunable light spectrums on demand. The main challenge in the design of smart lighting systems is to produce sufficient luminous flux and uniformly accurate output spectrum for sufficiently broad area. This paper outlines the programmable LED lighting system design principles of design to achieve the two aims. In this paper, a seven-channel design using low-cost discrete LEDs is presented. Optimization algorithms are used to calculate the number of required LEDs, LEDs arrangements and optimum LED separation distance. The results show the illumination uniformity for each channel. The results also show that the maximum color error is below 0.0808 on the CIE1976 chromaticity scale. In conclusion, this paper considered the simulation and design of a seven-channel programmable lighting system using low-cost discrete LEDs to produce sufficient luminous flux and uniformly accurate output spectrum for sufficiently broad area.Keywords: light spectrum control, LEDs, smart lighting, programmable LED lighting system
Procedia PDF Downloads 187842 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level
Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar
Abstract:
Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.Keywords: machine learning, hydro-gravimetry, ground water level, predictive model
Procedia PDF Downloads 127841 Modelling the Long Rune of Aggregate Import Demand in Libya
Authors: Said Yousif Khairi
Abstract:
Being a developing economy, imports of capital, raw materials and manufactories goods are vital for sustainable economic growth. In 2006, Libya imported LD 8 billion (US$ 6.25 billion) which composed of mainly machinery and transport equipment (49.3%), raw material (18%), and food products and live animals (13%). This represented about 10% of GDP. Thus, it is pertinent to investigate factors affecting the amount of Libyan imports. An econometric model representing the aggregate import demand for Libya was developed and estimated using the bounds test procedure, which based on an unrestricted error correction model (UECM). The data employed for the estimation was from 1970–2010. The results of the bounds test revealed that the volume of imports and its determinants namely real income, consumer price index and exchange rate are co-integrated. The findings indicate that the demand for imports is inelastic with respect to income, index price level and The exchange rate variable in the short run is statistically significant. In the long run, the income elasticity is elastic while the price elasticity and the exchange rate remains inelastic. This indicates that imports are important elements for Libyan economic growth in the long run.Keywords: import demand, UECM, bounds test, Libya
Procedia PDF Downloads 362840 Experimental and Numerical Investigation on Delaminated Composite Plate
Authors: Sreekanth T. G., Kishorekumar S., Sowndhariya Kumar J., Karthick R., Shanmugasuriyan S.
Abstract:
Composites are increasingly being used in industries due to their unique properties, such as high specific stiffness and specific strength, higher fatigue and wear resistances, and higher damage tolerance capability. Composites are prone to failures or damages that are difficult to identify, locate, and characterize due to their complex design features and complicated loading conditions. The lack of understanding of the damage mechanism of the composites leads to the uncertainties in the structural integrity and durability. Delamination is one of the most critical failure mechanisms in laminated composites because it progressively affects the mechanical performance of fiber-reinforced polymer composite structures over time. The identification and severity characterization of delamination in engineering fields such as the aviation industry is critical for both safety and economic concerns. The presence of delamination alters the vibration properties of composites, such as natural frequencies, mode shapes, and so on. In this study, numerical analysis and experimental analysis were performed on delaminated and non-delaminated glass fiber reinforced polymer (GFRP) plate, and the numerical and experimental analysis results were compared, and error percentage has been found out.Keywords: composites, delamination, natural frequency, mode shapes
Procedia PDF Downloads 108839 Adult Learners’ Code-Switching in the EFL Classroom: An Analysis of Frequency and Type of Code-Switching
Authors: Elizabeth Patricia Beck
Abstract:
Stepping into various English as foreign language classrooms, one will see some fundamental similarities. There will likely be groups of students working collaboratively, possibly sitting at tables together. They will be using a set coursebook or photocopies of materials developed by publishers or the teacher. The teacher will be carefully monitoring students’ behaviour and progress. The teacher will also likely be insisting that the students only speak English together, possibly having implemented a complex penalty and award systems to encourage this. This is communicative language teaching and it is commonly how foreign languages are taught around the world. Recently, there has been much interest in the codeswitching behaviour of learners in foreign or second language classrooms. It is a significant topic as it relates to second language acquisition theory, language teaching training and policy, and student expectations and classroom practice. Generally in an English as a foreign language context, an ‘English Only’ policy is the norm. This is based on historical factors, socio-political influence and theories surrounding language learning. The trend, however, is shifting and, based on these same factors, a re-examination of language use in the foreign language classroom is taking place. This paper reports the findings of an examination into the codeswitching behaviour of learners with a shared native language in an English classroom. Specifically, it addresses the question of classroom code-switching by adult learners in the EFL classroom during student-to-student, spoken interaction. Three generic categories of code switching are proposed based on published research and classroom practice. Italian adult learners at three levels were observed and patterns of language use were identified, recorded and analysed using the proposed categories. After observations were completed, a questionnaire was distributed to the students focussing on attitudes and opinions around language choice in the EFL classroom, specifically, the usefulness of L1 for specific functions in the classroom. The paper then investigates the relationship between learners’ foreign language proficiency and the frequency and type of code-switching that they engaged in, and the relationship between learners’ attitudes to classroom code-switching and their behaviour. Results show that code switching patterns underwent changes as the students’ level of English language proficiency improved, and that students’ attitudes towards code-switching generally correlated with their behaviour with some exceptions, however. Finally, the discussion focusses on the details of the language produced in observation, possible influencing factors that may affect the frequency and type of code switching that took place, and additional influencing factors that may affect students’ attitudes towards code switching in the foreign language classroom. An evaluation of the limitations of this study is offered and some suggestions are made for future research in this field of study.Keywords: code-switching, EFL, second language aquisition, adult learners
Procedia PDF Downloads 277838 Survival Analysis Based Delivery Time Estimates for Display FAB
Authors: Paul Han, Jun-Geol Baek
Abstract:
In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model
Procedia PDF Downloads 544837 M-Machine Assembly Scheduling Problem to Minimize Total Tardiness with Non-Zero Setup Times
Authors: Harun Aydilek, Asiye Aydilek, Ali Allahverdi
Abstract:
Our objective is to minimize the total tardiness in an m-machine two-stage assembly flowshop scheduling problem. The objective is an important performance measure because of the fact that the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. In the literature, the problem is considered with zero setup times which may not be realistic and appropriate for some scheduling environments. Considering separate setup times from processing times increases machine utilization by decreasing the idle time and reduces total tardiness. We propose two new algorithms and adapt four existing algorithms in the literature which are different versions of simulated annealing and genetic algorithms. Moreover, a dominance relation is developed based on the mathematical formulation of the problem. The developed dominance relation is incorporated in our proposed algorithms. Computational experiments are conducted to investigate the performance of the newly proposed algorithms. We find that one of the proposed algorithms performs significantly better than the others, i.e., the error of the best algorithm is less than those of the other algorithms by minimum 50%. The newly proposed algorithm is also efficient for the case of zero setup times and performs better than the best existing algorithm in the literature.Keywords: algorithm, assembly flowshop, scheduling, simulation, total tardiness
Procedia PDF Downloads 333836 A Stochastic Volatility Model for Optimal Market-Making
Authors: Zubier Arfan, Paul Johnson
Abstract:
The electronification of financial markets and the rise of algorithmic trading has sparked a lot of interest from the mathematical community, for the market making-problem in particular. The research presented in this short paper solves the classic stochastic control problem in order to derive the strategy for a market-maker. It also shows how to calibrate and simulate the strategy with real limit order book data for back-testing. The ambiguity of limit-order priority in back-testing is dealt with by considering optimistic and pessimistic priority scenarios. The model, although it does outperform a naive strategy, assumes constant volatility, therefore, is not best suited to the LOB data. The Heston model is introduced to describe the price and variance process of the asset. The Trader's constant absolute risk aversion utility function is optimised by numerically solving a 3-dimensional Hamilton-Jacobi-Bellman partial differential equation to find the optimal limit order quotes. The results show that the stochastic volatility market-making model is more suitable for a risk-averse trader and is also less sensitive to calibration error than the constant volatility model.Keywords: market-making, market-microsctrucure, stochastic volatility, quantitative trading
Procedia PDF Downloads 152835 Tracking Filtering Algorithm Based on ConvLSTM
Authors: Ailing Yang, Penghan Song, Aihua Cai
Abstract:
The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention
Procedia PDF Downloads 180834 Exploring the Entrepreneur-Function in Uncertainty: Towards a Revised Definition
Authors: Johan Esbach
Abstract:
The entrepreneur has traditionally been defined through various historical lenses, emphasising individual traits, risk-taking, speculation, innovation and firm creation. However, these definitions often fail to address the dynamic nature of the modern entrepreneurial functions, which respond to unpredictable uncertainties and transition to routine management as certainty is achieved. This paper proposes a revised definition, positioning the entrepreneur as a dynamic function rather than a human construct, that emerges to address specific uncertainties in economic systems, but fades once uncertainty is resolved. By examining historical definitions and its limitations, including the works of Cantillon, Say, Schumpeter, and Knight, this paper identifies a gap in literature and develops a generalised definition for the entrepreneur. The revised definition challenges conventional thought by shifting focus from static attributes such as alertness, traits, firm creation, etc., to a dynamic role that includes reliability, adaptation, scalability, and adaptability. The methodology of this paper employs a mixed approach, combining theoretical analysis and case study examination to explore the dynamic nature of the entrepreneurial function in relation to uncertainty. The selection of case studies includes companies like Airbnb, Uber, Netflix, and Tesla, as these firms demonstrate a clear transition from entrepreneurial uncertainty to routine certainty. The data from the case studies is then analysed qualitatively, focusing on the patterns of entrepreneurial function across the selected companies. These results are then validated using quantitative analysis, derived from an independent survey. The primary finding of the paper will validate the entrepreneur as a dynamic function rather than a static, human-centric role. In considering the transition from uncertainty to certainty in companies like Airbnb, Uber, Netflix, and Tesla, the study shows that the entrepreneurial function emerges explicitly to address market, technological, or social uncertainties. Once these uncertainties are resolved and a certainty in the operating environment is established, the need for the entrepreneurial function ceases, giving way to routine management and business operations. The paper emphasises the need for a definitive model that responds to the temporal and contextualised nature of the entrepreneur. In adopting the revised definition, the entrepreneur is positioned to play a crucial role in the reduction of uncertainties within economic systems. Once the uncertainties are addressed, certainty is manifested in new combinations or new firms. Finally, the paper outlines policy implications for fostering environments that enables the entrepreneurial function and transition theory.Keywords: dynamic function, uncertainty, revised definition, transition
Procedia PDF Downloads 24833 Development of Perovskite Quantum Dots Light Emitting Diode by Dual-Source Evaporation
Authors: Antoine Dumont, Weiji Hong, Zheng-Hong Lu
Abstract:
Light emitting diodes (LEDs) are steadily becoming the new standard for luminescent display devices because of their energy efficiency and relatively low cost, and the purity of the light they emit. Our research focuses on the optical properties of the lead halide perovskite CsPbBr₃ and its family that is showing steadily improving performances in LEDs and solar cells. The objective of this work is to investigate CsPbBr₃ as an emitting layer made by physical vapor deposition instead of the usual solution-processed perovskites, for use in LEDs. The deposition in vacuum eliminates any risk of contaminants as well as the necessity for the use of chemical ligands in the synthesis of quantum dots. Initial results show the versatility of the dual-source evaporation method, which allowed us to create different phases in bulk form by altering the mole ratio or deposition rate of CsBr and PbBr₂. The distinct phases Cs₄PbBr₆, CsPbBr₃ and CsPb₂Br₅ – confirmed through XPS (x-ray photoelectron spectroscopy) and X-ray diffraction analysis – have different optical properties and morphologies that can be used for specific applications in optoelectronics. We are particularly focused on the blue shift expected from quantum dots (QDs) and the stability of the perovskite in this form. We already obtained proof of the formation of QDs through our dual source evaporation method with electron microscope imaging and photoluminescence testing, which we understand is a first in the community. We also incorporated the QDs in an LED structure to test the electroluminescence and the effect on performance and have already observed a significant wavelength shift. The goal is to reach 480nm after shifting from the original 528nm bulk emission. The hole transport layer (HTL) material onto which the CsPbBr₃ is evaporated is a critical part of this study as the surface energy interaction dictates the behaviour of the QD growth. A thorough study to determine the optimal HTL is in progress. A strong blue shift for a typically green emitting material like CsPbBr₃ would eliminate the necessity of using blue emitting Cl-based perovskite compounds and could prove to be more stable in a QD structure. The final aim is to make a perovskite QD LED with strong blue luminescence, fabricated through a dual-source evaporation technique that could be scalable to industry level, making this device a viable and cost-effective alternative to current commercial LEDs.Keywords: material physics, perovskite, light emitting diode, quantum dots, high vacuum deposition, thin film processing
Procedia PDF Downloads 162832 Real Time Implementation of Efficient DFIG-Variable Speed Wind Turbine Control
Authors: Fayssal Amrane, Azeddine Chaiba, Bruno Francois
Abstract:
In this paper, design and experimental study based on Direct Power Control (DPC) of DFIG is proposed for Stand-alone mode in Variable Speed Wind Energy Conversion System (VS-WECS). The proposed IDPC method based on robust IP (Integral-Proportional) controllers in order to control the Rotor Side Converter (RSC) by the means of the rotor current d-q axes components (Ird* and Irq*) of Doubly Fed Induction Generator (DFIG) through AC-DC-AC converter. The implementation is realized using dSPACE dS1103 card under Sub and Super-synchronous operations (means < and > of the synchronous speed “1500 rpm”). Finally, experimental results demonstrate that the proposed control using IP provides improved dynamic responses, and decoupled control of the wind turbine has driven DFIG with high performances (good reference tracking, short response time and low power error) despite for sudden variation of wind speed and rotor references currents.Keywords: Direct Power Control (DPC), Doubly fed induction generator (DFIG), Wind Energy Conversion System (WECS), Experimental study.
Procedia PDF Downloads 126831 Enhancing a Recidivism Prediction Tool with Machine Learning: Effectiveness and Algorithmic Fairness
Authors: Marzieh Karimihaghighi, Carlos Castillo
Abstract:
This work studies how Machine Learning (ML) may be used to increase the effectiveness of a criminal recidivism risk assessment tool, RisCanvi. The two key dimensions of this analysis are predictive accuracy and algorithmic fairness. ML-based prediction models obtained in this study are more accurate at predicting criminal recidivism than the manually-created formula used in RisCanvi, achieving an AUC of 0.76 and 0.73 in predicting violent and general recidivism respectively. However, the improvements are small, and it is noticed that algorithmic discrimination can easily be introduced between groups such as national vs foreigner, or young vs old. It is described how effectiveness and algorithmic fairness objectives can be balanced, applying a method in which a single error disparity in terms of generalized false positive rate is minimized, while calibration is maintained across groups. Obtained results show that this bias mitigation procedure can substantially reduce generalized false positive rate disparities across multiple groups. Based on these results, it is proposed that ML-based criminal recidivism risk prediction should not be introduced without applying algorithmic bias mitigation procedures.Keywords: algorithmic fairness, criminal risk assessment, equalized odds, recidivism
Procedia PDF Downloads 152830 Walmart Sales Forecasting using Machine Learning in Python
Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad
Abstract:
Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error
Procedia PDF Downloads 149829 Machine Learning Approach for Mutation Testing
Authors: Michael Stewart
Abstract:
Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing
Procedia PDF Downloads 201828 Medial Temporal Tau Predicts Memory Decline in Cognitively Unimpaired Elderly
Authors: Angela T. H. Kwan, Saman Arfaie, Joseph Therriault, Zahra Azizi, Firoza Z. Lussier, Cecile Tissot, Mira Chamoun, Gleb Bezgin, Stijn Servaes, Jenna Stevenon, Nesrine Rahmouni, Vanessa Pallen, Serge Gauthier, Pedro Rosa-Neto
Abstract:
Alzheimer’s disease (AD) can be detected in living people using in vivo biomarkers of amyloid-β (Aβ) and tau, even in the absence of cognitive impairment during the preclinical phase. [¹⁸F]-MK-6420 is a high affinity positron emission tomography (PET) tracer that quantifies tau neurofibrillary tangles, but its ability to predict cognitive changes associated with early AD symptoms, such as memory decline, is unclear. Here, we assess the prognostic accuracy of baseline [18F]-MK-6420 tau PET for predicting longitudinal memory decline in asymptomatic elderly individuals. In a longitudinal observational study, we evaluated a cohort of cognitively normal elderly participants (n = 111) from the Translational Biomarkers in Aging and Dementia (TRIAD) study (data collected between October 2017 and July 2020, with a follow-up period of 12 months). All participants underwent tau PET with [¹⁸F]-MK-6420 and Aβ PET with [¹⁸F]-AZD-4694. The exclusion criteria included the presence of head trauma, stroke, or other neurological disorders. There were 111 eligible participants who were chosen based on the availability of Aβ PET, tau PET, magnetic resonance imaging (MRI), and APOEε4 genotyping. Among these participants, the mean (SD) age was 70.1 (8.6) years; 20 (18%) were tau PET positive, and 71 of 111 (63.9%) were women. A significant association between baseline Braak I-II [¹⁸F]-MK-6240 SUVR positivity and change in composite memory score was observed at the 12-month follow-up, after correcting for age, sex, and years of education (Logical Memory and RAVLT, standardized beta = -0.52 (-0.82-0.21), p < 0.001, for dichotomized tau PET and -1.22 (-1.84-(-0.61)), p < 0.0001, for continuous tau PET). Moderate cognitive decline was observed for A+T+ over the follow-up period, whereas no significant change was observed for A-T+, A+T-, and A-T-, though it should be noted that the A-T+ group was small.Our results indicate that baseline tau neurofibrillary tangle pathology is associated with longitudinal changes in memory function, supporting the use of [¹⁸F]-MK-6420 PET to predict the likelihood of asymptomatic elderly individuals experiencing future memory decline. Overall, [¹⁸F]-MK-6420 PET is a promising tool for predicting memory decline in older adults without cognitive impairment at baseline. This is of critical relevance as the field is shifting towards a biological model of AD defined by the aggregation of pathologic tau. Therefore, early detection of tau pathology using [¹⁸F]-MK-6420 PET provides us with the hope that living patients with AD may be diagnosed during the preclinical phase before it is too late.Keywords: alzheimer’s disease, braak I-II, in vivo biomarkers, memory, PET, tau
Procedia PDF Downloads 78827 Next-Generation Lunar and Martian Laser Retro-Reflectors
Authors: Simone Dell'Agnello
Abstract:
There are laser retroreflectors on the Moon and no laser retroreflectors on Mars. Here we describe the design, construction, qualification and imminent deployment of next-generation, optimized laser retroreflectors on the Moon and on Mars (where they will be the first ones). These instruments are positioned by time-of-flight measurements of short laser pulses, the so-called 'laser ranging' technique. Data analysis is carried out with PEP, the Planetary Ephemeris Program of CfA (Center for Astrophysics). Since 1969 Lunar Laser Ranging (LLR) to Apollo/Lunokhod laser retro-reflector (CCR) arrays supplied accurate tests of General Relativity (GR) and new gravitational physics: possible changes of the gravitational constant Gdot/G, weak and strong equivalence principle, gravitational self-energy (Parametrized Post Newtonian parameter beta), geodetic precession, inverse-square force-law; it can also constraint gravitomagnetism. Some of these measurements also allowed for testing extensions of GR, including spacetime torsion, non-minimally coupled gravity. LLR has also provides significant information on the composition of the deep interior of the Moon. In fact, LLR first provided evidence of the existence of a fluid component of the deep lunar interior. In 1969 CCR arrays contributed a negligible fraction of the LLR error budget. Since laser station range accuracy improved by more than a factor 100, now, because of lunar librations, current array dominate the error due to their multi-CCR geometry. We developed a next-generation, single, large CCR, MoonLIGHT (Moon Laser Instrumentation for General relativity high-accuracy test) unaffected by librations that supports an improvement of the space segment of the LLR accuracy up to a factor 100. INFN also developed INRRI (INstrument for landing-Roving laser Retro-reflector Investigations), a microreflector to be laser-ranged by orbiters. Their performance is characterized at the SCF_Lab (Satellite/lunar laser ranging Characterization Facilities Lab, INFN-LNF, Frascati, Italy) for their deployment on the lunar surface or the cislunar space. They will be used to accurately position landers, rovers, hoppers, orbiters of Google Lunar X Prize and space agency missions, thanks to LLR observations from station of the International Laser Ranging Service in the USA, in France and in Italy. INRRI was launched in 2016 with the ESA mission ExoMars (Exobiology on Mars) EDM (Entry, descent and landing Demonstration Module), deployed on the Schiaparelli lander and is proposed for the ExoMars 2020 Rover. Based on an agreement between NASA and ASI (Agenzia Spaziale Italiana), another microreflector, LaRRI (Laser Retro-Reflector for InSight), was delivered to JPL (Jet Propulsion Laboratory) and integrated on NASA’s InSight Mars Lander in August 2017 (launch scheduled in May 2018). Another microreflector, LaRA (Laser Retro-reflector Array) will be delivered to JPL for deployment on the NASA Mars 2020 Rover. The first lunar landing opportunities will be from early 2018 (with TeamIndus) to late 2018 with commercial missions, followed by opportunities with space agency missions, including the proposed deployment of MoonLIGHT and INRRI on NASA’s Resource Prospectors and its evolutions. In conclusion, we will extend significantly the CCR Lunar Geophysical Network and populate the Mars Geophysical Network. These networks will enable very significantly improved tests of GR.Keywords: general relativity, laser retroreflectors, lunar laser ranging, Mars geodesy
Procedia PDF Downloads 272826 Interlingual Interference in Students’ Writing
Authors: Zakaria Khatraoui
Abstract:
Interlanguage has transcendentally capitalized its central role over a considerable metropolitan landscape. Either academically driven or pedagogically oriented, Interlanguage has principally floated as important than ever before. It academically probes theoretical and linguistic issues in the turf and further malleably flows from idea to reality to vindicate a bridging philosophy between theory and educational rehearsal. Characteristically, the present research grants a prolifically developed theoretical framework that is conversely sustained by empirical teaching practices, along with teasing apart the narrowly confined implementation. The focus of this interlingual study is placed stridently on syntactic errors projected in students’ writing as performance. To attain this endeavor, the paper appropriates qualitatively a plethora of focal methodological choices sponsored by a solid design. The steadily undeniable ipso facto to be examined is the creative sense of syntactic errors unequivocally endorsed by the tangible dominance of cognitively intralingual errors over linguistically interlingual ones. Subsequently, this paper attempts earnestly to highlight transferable implications worth indicating both theoretical and pedagogically professional principles. In particular, results are fundamentally relative to the scholarly community in a multidimensional sense to recommend actions of educational value.Keywords: interlanguage, interference, error, writing
Procedia PDF Downloads 75825 Structural Equation Modeling Semiparametric Truncated Spline Using Simulation Data
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
SEM analysis is a complex multivariate analysis because it involves a number of exogenous and endogenous variables that are interconnected to form a model. The measurement model is divided into two, namely, the reflective model (reflecting) and the formative model (forming). Before carrying out further tests on SEM, there are assumptions that must be met, namely the linearity assumption, to determine the form of the relationship. There are three modeling approaches to path analysis, including parametric, nonparametric and semiparametric approaches. The aim of this research is to develop semiparametric SEM and obtain the best model. The data used in the research is secondary data as the basis for the process of obtaining simulation data. Simulation data was generated with various sample sizes of 100, 300, and 500. In the semiparametric SEM analysis, the form of the relationship studied was determined, namely linear and quadratic and determined one and two knot points with various levels of error variance (EV=0.5; 1; 5). There are three levels of closeness of relationship for the analysis process in the measurement model consisting of low (0.1-0.3), medium (0.4-0.6) and high (0.7-0.9) levels of closeness. The best model lies in the form of the relationship X1Y1 linear, and. In the measurement model, a characteristic of the reflective model is obtained, namely that the higher the closeness of the relationship, the better the model obtained. The originality of this research is the development of semiparametric SEM, which has not been widely studied by researchers.Keywords: semiparametric SEM, measurement model, structural model, reflective model, formative model
Procedia PDF Downloads 43824 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform
Authors: Ashagrie Getnet Flattie
Abstract:
Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.Keywords: LTE, MIMO, path loss, UAV
Procedia PDF Downloads 279823 Regionalization of IDF Curves with L-Moments for Storm Events
Authors: Noratiqah Mohd Ariff, Abdul Aziz Jemain, Mohd Aftar Abu Bakar
Abstract:
The construction of Intensity-Duration-Frequency (IDF) curves is one of the most common and useful tools in order to design hydraulic structures and to provide a mathematical relationship between rainfall characteristics. IDF curves, especially those in Peninsular Malaysia, are often built using moving windows of rainfalls. However, these windows do not represent the actual rainfall events since the duration of rainfalls is usually prefixed. Hence, instead of using moving windows, this study aims to find regionalized distributions for IDF curves of extreme rainfalls based on storm events. Homogeneity test is performed on annual maximum of storm intensities to identify homogeneous regions of storms in Peninsular Malaysia. The L-moment method is then used to regionalized Generalized Extreme Value (GEV) distribution of these annual maximums and subsequently. IDF curves are constructed using the regional distributions. The differences between the IDF curves obtained and IDF curves found using at-site GEV distributions are observed through the computation of the coefficient of variation of root mean square error, mean percentage difference and the coefficient of determination. The small differences implied that the construction of IDF curves could be simplified by finding a general probability distribution of each region. This will also help in constructing IDF curves for sites with no rainfall station.Keywords: IDF curves, L-moments, regionalization, storm events
Procedia PDF Downloads 529822 Changing MBA Identities: Using Critical Reflection inside and out in Finding a New Narrative
Authors: Keith Schofield, Leigh Morland
Abstract:
Storytelling is an established means of leadership and management development and is also considered a form of leadership of self and others in its own right. This study focuses on the utility of storytelling in the development of management narratives in an MBA programme; sources include programme participants as well as international recruiters, whose voices are often only heard in terms of economic contribution and globalisation. For many MBA candidates, the return to study requires the development of a new identity which complements their professional identity; each candidate has their own journey and expectations, the use of story can enable candidates to explore their aspirations and assumptions and give voice to previously unspoken ideas. For international recruitment, the story of market development and change must be captured if MBAs are to remain fit for purpose. If used effectively, story acts as a form of critical reflection that can inform the learning journeys of individuals, emerging identities as well as the ongoing design and development of programmes. The landscape of management education is shifting; the MBA begins to attract a different kind of candidate, some are younger than before, others are seeking validation for their existing work practices, yet more are entrepreneurial and wish to capitalise on an institutional experience to further their career. There is a shift in context, creating uncertainty and ambiguity for programme managers and recruiters, thus requiring institutions to create a new MBA narrative. This study utilises Lego SeriousPlay as the means to engaging programme participants and international agents in telling the story of their MBA. We asked MBA participants to tell the story of their leadership and management aspirations and compare these to stories of their development journeys, allowing for critical reflection of their respective development gaps. We asked international recruiters, who act as university agents and promote courses in the student’s country of origin, to explore their mental models of MBA candidates and their learning agenda. The purpose of this process was to explore the agent’s perception of the MBA programme and to articulate the student journey from a recruitment perspective. The paper’s unique contribution is in combining these stories in order to explore the assumptions that determine programme design. Data drawn from reflective statements together with images of Lego ‘builds’ created the opportunity for reflection between the mental models of these groups. Findings will inform the design of the MBA journey and experience; we review the extent to which the changing identities of learners are congruent with programme design. Data from international recruiters also determines the extent to which marketing and recruitment strategies identify with would be candidates.Keywords: critical reflection, programme management, recruitment, storytelling
Procedia PDF Downloads 226821 Unlocking Intergenerational Abortion Stories in Gardiennes By Fanny Cabon
Authors: Lou Gargouri
Abstract:
This paper examines how Fanny Cabon's solo performance, Gardiennes (2018) strategically crafts empathetic witnessing through the artist's vocal and physical embodiment of her female ancestors' testimonies, dramatizing the cyclical inheritance of reproductive trauma across generations. Drawing on affect theory and the concept of ethical co-presence, we argue that Cabon's raw voicing of illegal abortions, miscarriages, and abuse through her shape-shifting presence generates an intimate energy loop with the audience. This affective resonance catalyzes recognition of historical injustices, consecrating each singular experience while building collective solidarity. Central to Cabon's political efficacy is her transparent self-revelation through intimate impersonation, which fosters identification with diverse characters as interconnected subjects rather than objectified others. Her solo form transforms the isolation often associated with women's marginalization into radical inclusion, repositioning them from victims to empowered survivors. Comparative analysis with other contemporary works addressing abortion rights illuminates how Gardiennes subverts the traditional medical and clerical gazes that have long governed women's bodies. Ultimately, we contend Gardiennes models the potential of solo performance to harness empathy as a subversive political force. Cabon's theatrical alchemy circulates the effects of injustice through the ethical co-presence of performer and spectator, forging intersubjective connections that reframe marginalized groups traditionally objectified within dominant structures of patriarchal power. In dramatizing how the act of witnessing another's trauma can generate solidarity and galvanize resistance, Cabon's work demonstrates the role of embodied performance in catalyzing social change through the recuperation of women's voices and lived experiences. This paper thus aims to contribute to the emerging field of feminist solo performance criticism by illuminating how Cabon's innovative dramaturgy bridges the personal and the political. Her strategic mobilization of intimacy, identification, and co-presence offers a model for how the affective dynamics of autobiographical performance can be harnessed to confront gendered oppression and imagine more equitable futures. Gardiennes invites us to consider how the circulation of empathy through ethical spectatorship can foster the collective alliances necessary for advancing the unfinished project of women's liberation.Keywords: gender and sexuality studies, solo performance, trauma studies, affect theory
Procedia PDF Downloads 67820 Shift from Distance to In-Person Learning of Indigenous People’s Schools during the COVID 19 Pandemic: Gains and Challenges
Authors: May B. Eclar, Romeo M. Alip, Ailyn C. Eay, Jennifer M. Alip, Michelle A. Mejica, Eloy C.eclar
Abstract:
The COVID-19 pandemic has significantly changed the educational landscape of the Philippines. The groups affected by these changes are the poor and those living in the Geographically Isolated and Depressed Areas (GIDA), such as the Indigenous Peoples (IP). This was heavily experienced by the ten IP schools in Zambales, a province in the country. With this in mind, plus other factors relative to safety, the Schools Division of Zambales selected these ten schools to conduct the pilot implementation of in-person classes two (2) years after the country-wide school closures. This study aimed to explore the lived experiences of the school heads of the first ten Indigenous People’s (IP) schools that shifted from distance learning to limited in-person learning. These include the challenges met and the coping mechanism they set to overcome the challenges. The study is linked to experiential learning theory as it focuses on the idea that the best way to learn things is by having experiences). It made use of qualitative research, specifically phenomenology. All the ten school heads from the IP schools were chosen as participants in the study. Afterward, participants underwent semi-structured interviews, both individual and focus group discussions, for triangulation. Data were analyzed through thematic analysis. As a result, the study found that most IP schools did not struggle to convince parents to send their children back to school as they downplay the pandemic threat due to their geographical location. The parents struggled the most during modular learning since many of them are either illiterate, too old to teach their children, busy with their lands, or have too many children to teach. Moreover, there is a meager vaccination rate in the ten barangays where the schools are located because of local beliefs. In terms of financial needs, school heads did not find it difficult even though funding is needed to adjust the schools to the new normal because of the financial support coming from the central office. Technical assistance was also provided to the schools by division personnel. Teachers also welcomed the idea of shifting back to in-person classes, and minor challenges were met but were solved immediately through various mechanisms. Learning losses were evident since most learners struggled with essential reading, writing, and counting skills. Although the community has positively received the conduct of in-person classes, the challenges these IP schools have been experiencing pre-pandemic were also exacerbated due to the school closures. It is therefore recommended that constant monitoring and provision of support must continue to solve other challenges the ten IP schools are still experiencing due to in-person classesKeywords: In-person learning, indigenous peoples, phenomenology, philippines
Procedia PDF Downloads 111819 Algorithms Minimizing Total Tardiness
Authors: Harun Aydilek, Asiye Aydilek, Ali Allahverdi
Abstract:
The total tardiness is a widely used performance measure in the scheduling literature. This performance measure is particularly important in situations where there is a cost to complete a job beyond its due date. The cost of scheduling increases as the gap between a job's due date and its completion time increases. Such costs may also be penalty costs in contracts, loss of goodwill. This performance measure is important as the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. The problem is addressed in the literature, however, it has been assumed zero setup times. Even though this assumption may be valid for some environments, it is not valid for some other scheduling environments. When setup times are treated as separate from processing times, it is possible to increase machine utilization and to reduce total tardiness. Therefore, non-zero setup times need to be considered as separate. A dominance relation is developed and several algorithms are proposed. The developed dominance relation is utilized in the proposed algorithms. Extensive computational experiments are conducted for the evaluation of the algorithms. The experiments indicated that the developed algorithms perform much better than the existing algorithms in the literature. More specifically, one of the newly proposed algorithms reduces the error of the best existing algorithm in the literature by 40 percent.Keywords: algorithm, assembly flowshop, dominance relation, total tardiness
Procedia PDF Downloads 355818 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)
Procedia PDF Downloads 114817 Minimum-Fuel Optimal Trajectory for Reusable First-Stage Rocket Landing Using Particle Swarm Optimization
Authors: Kevin Spencer G. Anglim, Zhenyu Zhang, Qingbin Gao
Abstract:
Reusable launch vehicles (RLVs) present a more environmentally-friendly approach to accessing space when compared to traditional launch vehicles that are discarded after each flight. This paper studies the recyclable nature of RLVs by presenting a solution method for determining minimum-fuel optimal trajectories using principles from optimal control theory and particle swarm optimization (PSO). This problem is formulated as a minimum-landing error powered descent problem where it is desired to move the RLV from a fixed set of initial conditions to three different sets of terminal conditions. However, unlike other powered descent studies, this paper considers the highly nonlinear effects caused by atmospheric drag, which are often ignored for studies on the Moon or on Mars. Rather than optimizing the controls directly, the throttle control is assumed to be bang-off-bang with a predetermined thrust direction for each phase of flight. The PSO method is verified in a one-dimensional comparison study, and it is then applied to the two-dimensional cases, the results of which are illustrated.Keywords: minimum-fuel optimal trajectory, particle swarm optimization, reusable rocket, SpaceX
Procedia PDF Downloads 278