Search results for: five-phase asynchronous machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2938

Search results for: five-phase asynchronous machine

1468 Gesture-Controlled Interface Using Computer Vision and Python

Authors: Vedant Vardhan Rathour, Anant Agrawal

Abstract:

The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.

Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks

Procedia PDF Downloads 12
1467 Predicting Personality and Psychological Distress Using Natural Language Processing

Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi

Abstract:

Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).

Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality

Procedia PDF Downloads 79
1466 Two-Stage Flowshop Scheduling with Unsystematic Breakdowns

Authors: Fawaz Abdulmalek

Abstract:

The two-stage flowshop assembly scheduling problem is considered in this paper. There are more than one parallel machines at stage one and an assembly machine at stage two. The jobs will be processed into the flowshop based on Johnson rule and two extensions of Johnson rule. A simulation model of the two-stage flowshop is constructed where both machines at stage one are subject to random failures. Three simulation experiments will be conducted to test the effect of the three job ranking rules on the makespan. Johnson Largest heuristic outperformed both Johnson rule and Johnson Smallest heuristic for two performed experiments for all scenarios where each experiments having five scenarios.

Keywords: flowshop scheduling, random failures, johnson rule, simulation

Procedia PDF Downloads 339
1465 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 73
1464 The Use of Flipped Classroom as a Teaching Method in a Professional Master's Program in Network, in Brazil

Authors: Carla Teixeira, Diana Azevedo, Jonatas Bessa, Maria Guilam

Abstract:

The flipped classroom is a blended learning modality that combines face-to-face and virtual activities of self-learning, mediated by digital information and communication technologies, which reverses traditional teaching approaches and presents, as a presupposition, the previous study of contents by students. In the following face-to-face activities, the contents are discussed, producing active learning. This work aims to describe the systematization process of the use of flipped classrooms as a method to develop complementary national activities in PROFSAÚDE, a professional master's program in the area of public health, offered as a distance learning course, in the network, in Brazil. The complementary national activities were organized with the objective of strengthening and qualifying students´ learning process. The network gathers twenty-two public institutions of higher education in the country. Its national coordination conducted a survey to detect complementary educational needs, supposed to improve the formative process and align important content sums for the program nationally. The activities were organized both asynchronously, making study materials available in Google classrooms, and synchronously in a tele presential way, organized on virtual platforms to reach the largest number of students in the country. The asynchronous activities allowed each student to study at their own pace and the synchronous activities were intended for deepening and reflecting on the themes. The national team identified some professors' areas of expertise, who were contacted for the production of audiovisual content such as video classes and podcasts, guidance for supporting bibliographic materials and also to conduct synchronous activities together with the technical team. The contents posted in the virtual classroom were organized by modules and made available before the synchronous meeting; these modules, in turn, contain “pills of experience” that correspond to reports of teachers' experiences in relation to the different themes. In addition, activity was proposed, with questions aimed to expose doubts about the contents and a learning challenge, as a practical exercise. Synchronous activities are built with different invited teachers, based on the participants 'discussions, and are the forum where teachers can answer students' questions, providing feedback on the learning process. At the end of each complementary activity, an evaluation questionnaire is available. The responses analyses show that this institutional network experience, as pedagogical innovation, provides important tools to support teaching and research due to its potential in the participatory construction of learning, optimization of resources, the democratization of knowledge and sharing and strengthening of practical experiences on the network. One of its relevant aspects was the thematic diversity addressed through this method.

Keywords: active learning, flipped classroom, network education experience, pedagogic innovation

Procedia PDF Downloads 159
1463 'You’re Not Alone': Peer Feedback Practices for Cross-Cultural Writing Classrooms and Centers

Authors: Cassandra Branham, Danielle Farrar

Abstract:

As writing instructors and writing center administrators at a large research university with a significant population of English language learners (ELLs), we are interested in how peer feedback pedagogy can be effectively translated for writing center purposes, as well as how various modes of peer feedback can enrich the learning experiences of L1 and L2 writers in these spaces. Although peer feedback is widely used in classrooms and centers, instructor, student, and researcher opinions vary in respect to its effectiveness. We argue that peer feedback - traditional and digital, synchronous and asynchronous - is an indispensable element for both classrooms and centers and emphasize that it should occur with both L1 and L2 students to further develop an array of reading and writing skills. We also believe that further understanding of the best practices of peer feedback in such cross-cultural spaces, like the classroom and center, can optimize the benefits of peer feedback. After a critical review of the literature, we implemented an embedded tutoring program in our university’s writing center in collaboration with its First-Year Composition (FYC) program and Language Institute. The embedded tutoring program matches a graduate writing consultant with L1 and L2 writers enrolled in controlled-matriculation composition courses where ELLs make up at least 50% of each class. Furthermore, this program is informed by what we argue to be some best practices of peer feedback for both classroom and center purposes, including expectation-based training through rubrics, modeling effective feedback, hybridizing traditional and digital modes of feedback, recognizing the significance the body in composition (what we call writer embodiment), and maximizing digital technologies to exploit extended cognition. After conducting surveys and follow-up interviews with students, instructors, and writing consultants in the embedded tutoring program, we found that not only did students see an increased value in peer feedback, but also instructors saw an improvement in both writing style and critical thinking skills. Our L2 participants noted improvements in language acquisition while our L1 students recognized a broadening of their worldviews. We believe that both L1 and L2 students developed self-efficacy and agency in their identities as writers because they gained confidence in their abilities to offer feedback, as well as in the legitimacy of feedback they received from peers. We also argue that these best practices situate novice writers as experts, as writers become a valued and integral part of the revision process with their own and their peers’ papers. Finally, the use of iPads in embedded tutoring recovered the importance of the body and its senses in writing; the highly sensory feedback from these multi-modal sessions that offer audio and visual input underscores the significant role both the body and mind play in compositional practices. After beginning with a brief review of the literature that sparked this research, this paper will discuss the embedded tutoring program in detail, report on the results of the pilot program, and will conclude with a discussion of the pedagogical implications that arise from this research for both classroom and center.

Keywords: English language learners, peer feedback, writing center, writing classroom

Procedia PDF Downloads 402
1462 Grid Computing for Multi-Objective Optimization Problems

Authors: Aouaouche Elmaouhab, Hassina Beggar

Abstract:

Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.

Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing

Procedia PDF Downloads 486
1461 Innovations and Challenges: Multimodal Learning in Cybersecurity

Authors: Tarek Saadawi, Rosario Gennaro, Jonathan Akeley

Abstract:

There is rapidly growing demand for professionals to fill positions in Cybersecurity. This is recognized as a national priority both by government agencies and the private sector. Cybersecurity is a very wide technical area which encompasses all measures that can be taken in an electronic system to prevent criminal or unauthorized use of data and resources. This requires defending computers, servers, networks, and their users from any kind of malicious attacks. The need to address this challenge has been recognized globally but is particularly acute in the New York metropolitan area, home to some of the largest financial institutions in the world, which are prime targets of cyberattacks. In New York State alone, there are currently around 57,000 jobs in the Cybersecurity industry, with more than 23,000 unfilled positions. The Cybersecurity Program at City College is a collaboration between the Departments of Computer Science and Electrical Engineering. In Fall 2020, The City College of New York matriculated its first students in theCybersecurity Master of Science program. The program was designed to fill gaps in the previous offerings and evolved out ofan established partnership with Facebook on Cybersecurity Education. City College has designed a program where courses, curricula, syllabi, materials, labs, etc., are developed in cooperation and coordination with industry whenever possible, ensuring that students graduating from the program will have the necessary background to seamlessly segue into industry jobs. The Cybersecurity Program has created multiple pathways for prospective students to obtain the necessary prerequisites to apply in order to build a more diverse student population. The program can also be pursued on a part-time basis which makes it available to working professionals. Since City College’s Cybersecurity M.S. program was established to equip students with the advanced technical skills needed to thrive in a high-demand, rapidly-evolving field, it incorporates a range of pedagogical formats. From its outset, the Cybersecurity program has sought to provide both the theoretical foundations necessary for meaningful work in the field along with labs and applied learning projects aligned with skillsets required by industry. The efforts have involved collaboration with outside organizations and with visiting professors designing new courses on topics such as Adversarial AI, Data Privacy, Secure Cloud Computing, and blockchain. Although the program was initially designed with a single asynchronous course in the curriculum with the rest of the classes designed to be offered in-person, the advent of the COVID-19 pandemic necessitated a move to fullyonline learning. The shift to online learning has provided lessons for future development by providing examples of some inherent advantages to the medium in addition to its drawbacks. This talk will address the structure of the newly-implemented Cybersecurity Master’s Program and discuss the innovations, challenges, and possible future directions.

Keywords: cybersecurity, new york, city college, graduate degree, master of science

Procedia PDF Downloads 147
1460 Ensuring Cyber Security Using Kippo Honeypots

Authors: S. Vivekananda Pandian

Abstract:

A major challenging task in this current scenario is protecting your computer and other electronic gadgets against Cyber-attacks. In this current era Cyber warfare becomes a major threat to the entire world which targets a particular organization or a country spreading the Malwares, Breaching the securities, causing major loss to the organization. Several sectors both public and private are computerized such as Energy sectors, Oil refinery sectors, Defense sectors and Aviation sectors are prone to attacks. Several attacks are unknown while accessing the internet. To study the characteristics and Intention of the Attacker Kippo Honeypots are used. Honeypots are the trap set by us which enables them to monitor the malicious activities and detailed study about attackers which leads to strengthening of the security.

Keywords: attackers, security, Kippo Honeypots, virtual machine

Procedia PDF Downloads 427
1459 Developing Digital Competencies in Aboriginal Students through University-College Partnerships

Authors: W. S. Barber, S. L. King

Abstract:

This paper reports on a pilot project to develop a collaborative partnership between a community college in rural northern Ontario, Canada, and an urban university in the greater Toronto area in Oshawa, Canada. Partner institutions will collaborate to address learning needs of university applicants whose goals are to attain an undergraduate university BA in Educational Studies and Digital Technology degree, but who may not live in a geographical location that would facilitate this pathways process. The UOIT BA degree is attained through a 2+2 program, where students with a 2 year college diploma or equivalent can attain a four year undergraduate degree. The goals reported on the project are as: 1. Our aim is to expand the BA program to include an additional stream which includes serious educational games, simulations and virtual environments, 2. Develop fully (using both synchronous and asynchronous technologies) online learning modules for use by university applicants who otherwise are not geographically located close to a physical university site, 3. Assess the digital competencies of all students, including members of local, distance and Indigenous communities using a validated tool developed and tested by UOIT across numerous populations. This tool, the General Technical Competency Use and Scale (GTCU) will provide the collaborating institutions with data that will allow for analyzing how well students are prepared to succeed in fully online learning communities. Philosophically, the UOIT BA program is based on a fully online learning communities model (FOLC) that can be accessed from anywhere in the world through digital learning environments via audio video conferencing tools such as Adobe Connect. It also follows models of adult learning and mobile learning, and makes a university degree accessible to the increasing demographic of adult learners who may use mobile devices to learn anywhere anytime. The program is based on key principles of Problem Based Learning, allowing students to build their own understandings through the co-design of the learning environment in collaboration with the instructors and their peers. In this way, this degree allows students to personalize and individualize the learning based on their own culture, background and professional/personal experiences. Using modified flipped classroom strategies, students are able to interrogate video modules on their own time in preparation for one hour discussions occurring in video conferencing sessions. As a consequence of the program flexibility, students may continue to work full or part time. All of the partner institutions will co-develop four new modules, administer the GTCU and share data, while creating a new stream of the UOIT BA degree. This will increase accessibility for students to bridge from community colleges to university through a fully digital environment. We aim to work collaboratively with Indigenous elders, community members and distance education instructors to increase opportunities for more students to attain a university education.

Keywords: aboriginal, college, competencies, digital, universities

Procedia PDF Downloads 215
1458 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 245
1457 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 51
1456 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy

Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly

Abstract:

In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.

Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening

Procedia PDF Downloads 72
1455 An Investigation of Machinability of Inconel 718 in EDM Using Different Cryogenic Treated Tools

Authors: Pradeep Joshi, Prashant Dhiman, Shiv Dayal Dhakad

Abstract:

Inconel 718 is a family if Nickel-Chromium based Superalloy; it has very high oxidation and corrosion resistance. Inconel 718 is widely being used in aerospace, engine, turbine etc. due to its high mechanical strength and creep resistance. Being widely used, its machining should be easy but in real its machining is very difficult, especially by using traditional machining methods. It becomes easy to machine only by using non Traditional machining such as EDM. During EDM machining there is wear of both tool and workpiece, the tool wear is undesired because it changes tool shape, geometry. To reduce the tool wear rate (TWR) cryogenic treatment is performed on tool before the machining operation. The machining performances of the process are to be evaluated in terms of MRR, TWR which are functions of Discharge current, Pulse on-time, Pulse Off-time.

Keywords: EDM, cyrogenic, TWR, MRR

Procedia PDF Downloads 457
1454 Modeling Driving Distraction Considering Psychological-Physical Constraints

Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang

Abstract:

Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.

Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints

Procedia PDF Downloads 91
1453 A Probabilistic View of the Spatial Pooler in Hierarchical Temporal Memory

Authors: Mackenzie Leake, Liyu Xia, Kamil Rocki, Wayne Imaino

Abstract:

In the Hierarchical Temporal Memory (HTM) paradigm the effect of overlap between inputs on the activation of columns in the spatial pooler is studied. Numerical results suggest that similar inputs are represented by similar sets of columns and dissimilar inputs are represented by dissimilar sets of columns. It is shown that the spatial pooler produces these results under certain conditions for the connectivity and proximal thresholds. Following the discussion of the initialization of parameters for the thresholds, corresponding qualitative arguments about the learning dynamics of the spatial pooler are discussed.

Keywords: hierarchical temporal memory, HTM, learning algorithms, machine learning, spatial pooler

Procedia PDF Downloads 345
1452 Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides

Authors: Josef Brychta, Jiri Kratochvil, Marek Pagac

Abstract:

The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness.

Keywords: grained cutting materials difficult to machine materials, optimum utilization, mechanic, manufacturing

Procedia PDF Downloads 299
1451 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
1450 Design of a Drift Assist Control System Applied to Remote Control Car

Authors: Sheng-Tse Wu, Wu-Sung Yao

Abstract:

In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.

Keywords: drift assist control system, remote control cars, gyroscope, vehicle dynamics

Procedia PDF Downloads 397
1449 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision

Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek

Abstract:

This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.

Keywords: autonomous maritime vehicle, object detection, situation awareness, tracking

Procedia PDF Downloads 458
1448 Using Neural Networks for Click Prediction of Sponsored Search

Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov

Abstract:

Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.

Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate

Procedia PDF Downloads 572
1447 Experimental Evaluation of UDP in Wireless LAN

Authors: Omar Imhemed Alramli

Abstract:

As Transmission Control Protocol (TCP), User Datagram Protocol (UDP) is transfer protocol in the transportation layer in Open Systems Interconnection model (OSI model) or in TCP/IP model of networks. The UDP aspects evaluation were not recognized by using the pcattcp tool on the windows operating system platform like TCP. The study has been carried out to find a tool which supports UDP aspects evolution. After the information collection about different tools, iperf tool was chosen and implemented on Cygwin tool which is installed on both Windows XP platform and also on Windows XP on virtual box machine on one computer only. Iperf is used to make experimental evaluation of UDP and to see what will happen during the sending the packets between the Host and Guest in wired and wireless networks. Many test scenarios have been done and the major UDP aspects such as jitter, packet losses, and throughput are evaluated.

Keywords: TCP, UDP, IPERF, wireless LAN

Procedia PDF Downloads 354
1446 Emotions Evoked by Robots - Comparison of Older Adults and Students

Authors: Stephanie Lehmann, Esther Ruf, Sabina Misoch

Abstract:

Background: Due to demographic change and shortage of skilled nursing staff, assistive robots are built to support older adults at home and nursing staff in care institutions. When assistive robots facilitate tasks that are usually performed by humans, user acceptance is essential. Even though they are an important aspect of acceptance, emotions towards different assistive robots and different situations of robot-use have so far not been examined in detail. The appearance of assistive robots can trigger emotions that affect their acceptance. Acceptance of robots is assumed to be greater when they look more human-like; however, too much human similarity can be counterproductive. Regarding different groups, it is assumed that older adults have a more negative attitude towards robots than younger adults. Within the framework of a simulated robot study, the aim was to investigate emotions of older adults compared to students towards robots with different appearances and in different situations and so contribute to a deeper view of the emotions influencing acceptance. Methods: In a questionnaire study, vignettes were used to assess emotions toward robots in different situations and of different appearance. The vignettes were composed of two situations (service and care) shown by video and four pictures of robots varying in human similarity (machine-like to android). The combination of the vignettes was randomly distributed to the participants. One hundred forty-two older adults and 35 bachelor students of nursing participated. They filled out a questionnaire that surveyed 30 positive and 30 negative emotions. For each group, older adults and students, a sum score of “positive emotions” and a sum score of “negative emotions” was calculated. Mean value, standard deviation, or n for sample size and % for frequencies, according to the scale level, were calculated. For differences in the scores of positive and negative emotions for different situations, t-tests were calculated. Results: Overall, older adults reported significantly more positive emotions than students towards robots in general. Students reported significantly more negative emotions than older adults. Regarding the two different situations, the results were similar for the care situation, with older adults reporting more positive emotions than students and less negative emotions than students. In the service situation, older adults reported significantly more positive emotions; negative emotions did not differ significantly from the students. Regarding the appearance of the robot, there were no significant differences in emotions reported towards the machine-like, the mechanical-human-like and the human-like appearance. Regarding the android robot, students reported significantly more negative emotions than older adults. Conclusion: There were differences in the emotions reported by older adults compared to students. Older adults reported more positive emotions, and students reported more negative emotions towards robots in different situations and with different appearances. It can be assumed that older adults have a different attitude towards the use of robots than younger people, especially young adults in the health sector. Therefore, the use of robots in the service or care sector should not be rejected rashly based on the attitudes of younger persons, without considering the attitudes of older adults equally.

Keywords: emotions, robots, seniors, young adults

Procedia PDF Downloads 466
1445 Accurate and Repeatable Pressure Control for Critical Testing of Advanced Ceramics Using Proportional and Derivative Controller

Authors: Benchalak Muangmeesri

Abstract:

The purpose of this paper is to discuss how to test the best control performance of a ceramics. Hydraulic press machine (HPM) is the most common shaping of advanced ceramic with products, dimensions, and ceramic products mainly from synthetic powders. A microcontroller can be achieved to control process and has set high standards in the shaping of raw materials in powder form. HPM was proposed to develop a position control system that linked to the embedded controller PIC16F877 via Proportional and Derivative (PD) controller. The model is performed using MATLAB/SIMULINK and the best control performance of an HPM. Finally, PD controller results, showing the best performance as it had the smallest overshoot and highest quality using a microcontroller control.

Keywords: ceramics, hydraulic press, microcontroller, PD controller

Procedia PDF Downloads 356
1444 Adaptive Auth - Adaptive Authentication Based on User Attributes for Web Application

Authors: Senthuran Manoharan, Rathesan Sivagananalingam

Abstract:

One of the main issues in system security is Authentication. Authentication can be defined as the process of recognizing the user's identity and it is the most important step in the access control process to safeguard data/resources from being accessed by unauthorized users. The static method of authentication cannot ensure the genuineness of the user. Due to this reason, more innovative authentication mechanisms came into play. At first two factor authentication was introduced and later, multi-factor authentication was introduced to enhance the security of the system. It also had some issues and later, adaptive authentication was introduced. In this research paper, the design of an adaptive authentication engine was put forward. The user risk profile was calculated based on the user parameters and then the user was challenged with a suitable authentication method.

Keywords: authentication, adaptive authentication, machine learning, security

Procedia PDF Downloads 249
1443 Data Mining in Healthcare for Predictive Analytics

Authors: Ruzanna Muradyan

Abstract:

Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.

Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health

Procedia PDF Downloads 63
1442 The Mechanical Behavior of a Chemically Stabilized Soil

Authors: I Lamri, L Arabet, M. Hidjeb

Abstract:

The direct shear test was used to determine the shear strength parameters C and Ø of a series of samples with different cement content. Samples stabilized with a certain percentage of cement showed a substantial gain in compressive strength and a significant increase in shear strength parameters. C and Ø. The laboratory equipment used in UCS tests consisted of a conventional 102mm diameter sample triaxial loading machine. Beyond 4% cement content a very important increase in shear strength was observed. It can be deduced from a comparative study of shear strength of soil samples with 4%, 7%, and 10% cement with sample containing 2 %, that the sample with a 4% cement content showed 90% increase in shear strength while those with 7% and 10% showed an increase of around 13 and 21 fold.

Keywords: cement, compression strength, shear stress, cohesion, angle of internal friction

Procedia PDF Downloads 488
1441 The Impact of the COVID-19 Pandemic on the Armenian Higher Education System: Challenges аnd Perspectives

Authors: Armine Vahanyan

Abstract:

Humanity has been still coping with the new COVID-19 pandemic. Healthcare providers, economists, psychologists, and other specialists speak about the impact of the virus on different spheres of our life. In the list of similar discussions, the impact of pandemics on global education is of utmost importance. Ideally, providing quality education services should be crucial, and the ways education programs are being adapted will determine the success or failure of the service providers. The paper aims to summarize the research touching upon the current situation of higher education in Armenia. The research includes data from official reports, surveys among education leads, faculty, and students, as well as personal observations and consideration. Through descriptive analysis, the findings of the research are being presented from various aspects. Interim results of the research unveiled two major issues in the sector of higher education in Armenia. On the one hand, the entire compulsory digitization of instruction, assessment, and grading has evoked serious gaps related to the lack of technical competencies. There is an urgent need for professional development programs that will address most of the concerns due to the shift to the online instruction mode. On the other hand, online teaching and learning require revision and adaptation of the existing curricula. Given that the content of certain programs may not be compromised, the teaching methods, the assignments, and evaluation require profound transformation, which will still be in line with course learning outcomes and student learning outcomes. The given paper focuses on the ways the mentioned issues are being addressed in Armenia. The extent of commitment for changes and adaptability to the new situation varies from the government-funded and private universities. In particular, the paper compares and contrasts activities and measures taken at the Armenian State Pedagogical University and the American University of Armenia. Thus, the Pedagogical University focused on the use of Google Classroom as the only means for teaching and learning as well as adopted the compulsory synchronous instruction mode. The American University, on the contrary, kept practicing the academic freedom, enabling both synchronous and asynchronous instruction modes, ensuring alignment of the course learning outcomes and student learning outcomes. The State University utilized the assignments and assessment, which would work for the on-campus instruction mode, while the American university employed a variety of assignments applicable for online teaching mode. The latter has suggested the utilization of multiple apps, internet sources, and online library access for a better online instant. Discussions with faculty through online forums and/or professional development workshops also facilitate restructuring and adaptation of the courses. Finally, the paper will synthesize the results of the undertaken research and will outline the e-learning perspectives and opportunities boosted by the known devastating healthcare issue.

Keywords: assessment, compulsory digitization of education services, online teaching, instruction mode, program restructuring

Procedia PDF Downloads 127
1440 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load

Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul

Abstract:

While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.

Keywords: aluminum foam, collapse mechanisms, light-weight structures, transport application

Procedia PDF Downloads 398
1439 Anatomical Survey for Text Pattern Detection

Authors: S. Tehsin, S. Kausar

Abstract:

The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.

Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction

Procedia PDF Downloads 444