Search results for: failure mode analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30422

Search results for: failure mode analysis

28952 Experimental Investigation of the Out-of-Plane Dynamic Behavior of Adhesively Bonded Composite Joints at High Strain Rates

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Ben Yahia

Abstract:

In this investigation, an experimental technique in which the dynamic response, damage kinetic and heat dissipation are measured simultaneously during high strain rates on adhesively bonded joints materials. The material used in this study is widely used in the design of structures for military applications. It was composed of a 45° Bi-axial fiber-glass mat of 0.286 mm thickness in a Polyester resin matrix. In adhesive bonding, a NORPOL Polyvinylester of 1 mm thickness was used to assemble the composite substrate. The experimental setup consists of a compression Split Hopkinson Pressure Bar (SHPB), a high-speed infrared camera and a high-speed Fastcam rapid camera. For the dynamic compression tests, 13 mm x 13 mm x 9 mm samples for out-of-plane tests were considered from 372 to 1030 s-1. Specimen surface is controlled and monitored in situ and in real time using the high-speed camera which acquires the damage progressive in specimens and with the infrared camera which provides thermal images in time sequence. Preliminary compressive stress-strain vs. strain rates data obtained show that the dynamic material strength increases with increasing strain rates. Damage investigations have revealed that the failure mainly occurred in the adhesive/adherent interface because of the brittle nature of the polymeric adhesive. Results have shown the dependency of the dynamic parameters on strain rates. Significant temperature rise was observed in dynamic compression tests. Experimental results show that the temperature change depending on the strain rate and the damage mode and their maximum exceed 100 °C. The dependence of these results on strain rate indicates that there exists a strong correlation between damage rate sensitivity and heat dissipation, which might be useful when developing damage models under dynamic loading tacking into account the effect of the energy balance of adhesively bonded joints.

Keywords: adhesive bonded joints, Hopkinson bars, out-of-plane tests, dynamic compression properties, damage mechanisms, heat dissipation

Procedia PDF Downloads 210
28951 Reliability Analysis of a Life Support System in a Public Aquarium

Authors: Mehmet Savsar

Abstract:

Complex Life Support Systems (LSS) are used in all large commercial and public aquariums in order to keep the fish alive. Reliabilities of individual equipment, as well as the complete system, are extremely important and critical since the life and safety of important fish depend on these life support systems. Failure of some critical device or equipment, which do not have redundancy, results in negative consequences and affects life support as a whole. In this paper, we have considered a life support system in a large public aquarium in Kuwait Scientific Center and presented a procedure and analysis to show how the reliability of such systems can be estimated by using appropriate tools and collected data. We have also proposed possible improvements for systems reliability. In particular, addition of parallel components and spare parts are considered and the numbers of spare parts needed for each component to achieve a required reliability during specified lead time are calculated. The results show that significant improvements in system reliability can be achieved by operating some LSS components in parallel and having certain numbers of spares available in the spare parts inventories. The procedures and the results presented in this paper are expected to be useful for aquarium engineers and maintenance managers dealing with LSS.

Keywords: life support systems, aquariums, reliability, failures, availability, spare parts

Procedia PDF Downloads 280
28950 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels

Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge

Abstract:

An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panels

Keywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling

Procedia PDF Downloads 313
28949 Multiscale Modeling of Damage in Textile Composites

Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese

Abstract:

Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.

Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites

Procedia PDF Downloads 352
28948 FE Modelling of Structural Effects of Alkali-Silica Reaction in Reinforced Concrete Beams

Authors: Mehdi Habibagahi, Shami Nejadi, Ata Aminfar

Abstract:

A significant degradation factor that impacts the durability of concrete structures is the alkali-silica reaction. Engineers are frequently charged with the challenges of conducting a thorough safety assessment of concrete structures that have been impacted by ASR. The alkali-silica reaction has a major influence on the structural capacities of structures. In most cases, the reduction in compressive strength, tensile strength, and modulus of elasticity is expressed as a function of free expansion and crack widths. Predicting the effect of ASR on flexural strength is also relevant. In this paper, a nonlinear three-dimensional (3D) finite-element model was proposed to describe the flexural strength degradation induced byASR.Initial strains, initial stresses, initial cracks, and deterioration of material characteristics were all considered ASR factors in this model. The effects of ASR on structural performance were evaluated by focusing on initial flexural stiffness, force–deformation curve, and load-carrying capacity. Degradation of concrete mechanical properties was correlated with ASR growth using material test data conducted at Tech Lab, UTS, and implemented into the FEM for various expansions. The finite element study revealed a better understanding of the ASR-affected RC beam's failure mechanism and capacity reduction as a function of ASR expansion. Furthermore, in this study, decreasing of the residual mechanical properties due to ASRisreviewed, using as input data for the FEM model. Finally, analysis techniques and a comparison of the analysis and the experiment results are discussed. Verification is also provided through analyses of reinforced concrete beams with behavior governed by either flexural or shear mechanisms.

Keywords: alkali-silica reaction, analysis, assessment, finite element, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 156
28947 Women, Quality of Life, and Infertility: The Mediating Role of Social Support and Hope

Authors: Saeideh Lotfi Nikoo, Azadeh Ghaheri, Reza Omani Samani

Abstract:

Context: In most cultures around the globe, infertility is recognized as a crisis and exposed infertile couples are under psychosocial pressure. Indeed, the quality of life (QoL) for infertile women is lower in comparison with fertile control. Objective, The purpose of this study, was to investigate the impact of social support and hope on QoL in women undergoing infertility treatment. Methods: A cross-sectional study. Patient(s): In this cross-sectional study, 350 infertile women were recruited who were referred to an infertility clinic for the first time and had no history of Assisted Reproductive Techniques (ART) failure. Intervention(s): Questionnaires on the Fertility Quality of Life (FertiQoL), Multi-dimensional Scale of Perceived Social Support (family and friends), and Snyder Hope Scale (pathway and agency) were used to collect data. Data analysis was done by univariate and multivariate analysis. P value <0.05 was considered statistically significant. Result(s): Multivariate analysis indicated that infertile women with a higher score of social support (by family & friends) (b= 0.59 (CI 95%: 0.03, 1.15) (P = 0.040), b= 0.61 (CI 95%: 0.17, 1.04) (P = 0.006)) and hope (pathway & agency) (b= 0.94 (CI 95%: 0.29, 1.59) (P = 0.005), b= 1.13 (CI 95%: 0.45, 1.82) (P = 0.001) respectively) have significantly better Core FertiQoL. The result revealed that social support and hope are significantly and positively associated with other subscales of FertiQoL as well. Conclusions: According to the results, lifestyle interventions such as receiving social support, building a sound family with effective communication, and providing appropriate health education are of crucial importance to address psychological distress and improve the fertility QoL of women experiencing fertility problems.

Keywords: inertility, social support, infertile women, hope

Procedia PDF Downloads 91
28946 Symbolic Analysis of Input Impedance of CMOS Floating Active Inductors with Application in Fully Differential Bandpass Amplifier

Authors: Kittipong Tripetch

Abstract:

This paper proposes studies of input impedance of two types of the CMOS active inductor. It derives two input impedance formulas. The first formula is the input impedance of a grounded active inductor. The second formula is an input impedance of floating active inductor. After that, these formulas can be used to simulate magnitude and phase response of input impedance as a function of current consumption with MATLAB. Common mode rejection ratio (CMRR) of a fully differential bandpass amplifier is derived based on superposition principle. CMRR as a function of input frequency is plotted as a function of current consumption

Keywords: grounded active inductor, floating active inductor, fully differential bandpass amplifier

Procedia PDF Downloads 424
28945 Technique for Online Condition Monitoring of Surge Arresters

Authors: Anil S. Khopkar, Kartik S. Pandya

Abstract:

Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring.

Keywords: metal oxide surge arrester (MOSA), over voltage, total leakage current, resistive leakage current

Procedia PDF Downloads 64
28944 Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant

Authors: W. S. Hsu, S. W. Chen, Y. T. Ku, Y. Chiang, J. R. Wang , J. H. Yang, C. Shih

Abstract:

ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.

Keywords: PWR, ALOHA, habitability, Maanshan

Procedia PDF Downloads 197
28943 Advanced Exergetic Analysis: Decomposition Method Applied to a Membrane-Based Hard Coal Oxyfuel Power Plant

Authors: Renzo Castillo, George Tsatsaronis

Abstract:

High-temperature ceramic membranes for air separation represents an important option to reduce the significant efficiency drops incurred in state-of-the-art cryogenic air separation for high tonnage oxygen production required in oxyfuel power stations. This study is focused on the thermodynamic analysis of two power plant model designs: the state-of-the-art supercritical 600ᵒC hard coal plant (reference power plant Nordrhein-Westfalen) and the membrane-based oxyfuel concept implemented in this reference plant. In the latter case, the oxygen is separated through a mixed-conducting hollow fiber perovskite membrane unit in the three-end operation mode, which has been simulated under vacuum conditions on the permeate side and at high-pressure conditions on the feed side. The thermodynamic performance of each plant concept is assessed by conventional exergetic analysis, which determines location, magnitude and sources of efficiency losses, and advanced exergetic analysis, where endogenous/exogenous and avoidable/unavoidable parts of exergy destruction are calculated at the component and full process level. These calculations identify thermodynamic interdependencies among components and reveal the real potential for efficiency improvements. The endogenous and exogenous exergy destruction portions are calculated by the decomposition method, a recently developed straightforward methodology, which is suitable for complex power stations with a large number of process components. Lastly, an improvement priority ranking for relevant components, as well as suggested changes in process layouts are presented for both power stations.

Keywords: exergy, carbon capture and storage, ceramic membranes, perovskite, oxyfuel combustion

Procedia PDF Downloads 184
28942 Optimization of Bills Assignment to Different Skill-Levels of Data Entry Operators in a Business Process Outsourcing Industry

Authors: M. S. Maglasang, S. O. Palacio, L. P. Ogdoc

Abstract:

Business Process Outsourcing has been one of the fastest growing and emerging industry in the Philippines today. Unlike most of the contact service centers, more popularly known as "call centers", The BPO Industry’s primary outsourced service is performing audits of the global clients' logistics. As a service industry, manpower is considered as the most important yet the most expensive resource in the company. Because of this, there is a need to maximize the human resources so people are effectively and efficiently utilized. The main purpose of the study is to optimize the current manpower resources through effective distribution and assignment of different types of bills to the different skill-level of data entry operators. The assignment model parameters include the average observed time matrix gathered from through time study, which incorporates the learning curve concept. Subsequently, a simulation model was made to duplicate the arrival rate of demand which includes the different batches and types of bill per day. Next, a mathematical linear programming model was formulated. Its objective is to minimize direct labor cost per bill by allocating the different types of bills to the different skill-levels of operators. Finally, a hypothesis test was done to validate the model, comparing the actual and simulated results. The analysis of results revealed that the there’s low utilization of effective capacity because of its failure to determine the product-mix, skill-mix, and simulated demand as model parameters. Moreover, failure to consider the effects of learning curve leads to overestimation of labor needs. From 107 current number of operators, the proposed model gives a result of 79 operators. This results to an increase of utilization of effective capacity to 14.94%. It is recommended that the excess 28 operators would be reallocated to the other areas of the department. Finally, a manpower capacity planning model is also recommended in support to management’s decisions on what to do when the current capacity would reach its limit with the expected increasing demand.

Keywords: optimization modelling, linear programming, simulation, time and motion study, capacity planning

Procedia PDF Downloads 518
28941 Detection of Cytotoxicity of Green Synthesized Silver, Gold, and Silver/Gold Bimetallic on Baby Hamster Kidney-21 Cells Using MTT Assay

Authors: Naila Sher, Mushtaq Ahmed, Nadia Mushtaq, Rahmat Ali Khan

Abstract:

In cancer therapy, nanoparticles (NPs) shall be applied possibly by inoculation in the veins of humans. This action will connect them with white (WBCs) and red blood cells (RBCs) in the bloodstream before they reach their main targeted cancer cells. However, possible effects of silver, gold, and silver/gold bimetallic NPs (Ag, Au, and Ag/Au BNPs) on baby hamster kidney-21 (BHK-21) cells were studied by MTT assay. Here, Ag, Au, and their Ag/Au BNPs (bimetallic nanoparticles) were synthesized by using Hippeastrum hybridum (HH) extract. These NPs were characterized by UV-visible spectroscopy, FT-IR, XRD, and EDX, and SEM analysis. XRD analysis conferring the crystal structure with an average size of 13.3, 10.72, and 8.34nm of Ag, Au, and Ag/Au BNPs, respectively. SEM showed that Ag, Au, and Ag/Au BNPs had irregular morphologies, with nano measures calculated sizes of 40, 30, and 20 nm respectively. EDX spectrometers confirmed the presence of elemental Ag signal of the AgNPs with 22.75%, Au signal of the AuNPs with 48.08%, Ag signal with 12%, and Au signal with 38.26% of the Ag/Au BNPs. The BHK-21cells were incubated in the existence of doxorubicin, plant extract, Ag, Au, and Ag/Au BNPs. The cytotoxic effects could be observed in a dose-dependent mode; doxorubicin and Ag/Au BNPs were more toxic than plant extract, Ag, and Au NPs. It is demonstrated that NPs interact with BHK-21cells and significantly reduce cell viability in a concentration-dependent manner. However, to reduce the potential threats of NPs further studies are recommended.

Keywords: hippeastrum hybridum, nanoparticle, BHK-21cells

Procedia PDF Downloads 128
28940 Damage Mesomodel Based Low-Velocity Impact Damage Analysis of Laminated Composite Structures

Authors: Semayat Fanta, P.M. Mohite, C.S. Upadhyay

Abstract:

Damage meso-model for laminates is one of the most widely applicable approaches for the analysis of damage induced in laminated fiber-reinforced polymeric composites. Damage meso-model for laminates has been developed over the last three decades by many researchers in experimental, theoretical, and analytical methods that have been carried out in micromechanics as well as meso-mechanics analysis approaches. It has been fundamentally developed based on the micromechanical description that aims to predict the damage initiation and evolution until the failure of structure in various loading conditions. The current damage meso-model for laminates aimed to act as a bridge between micromechanics and macro-mechanics of the laminated composite structure. This model considers two meso-constituents for the analysis of damage in ply and interface that imparted from low-velocity impact. The damages considered in this study include fiber breakage, matrix cracking, and diffused damage of the lamina, and delamination of the interface. The damage initiation and evolution in laminae can be modeled in terms of damaged strain energy density using damage parameters and the thermodynamic irreversible forces. Interface damage can be modeled with a new concept of spherical micro-void in the resin-rich zone of interface material. The damage evolution is controlled by the damage parameter (d) and the radius of micro-void (r) from the point of damage nucleation to its saturation. The constitutive martial model for meso-constituents is defined in a user material subroutine VUMAT and implemented in ABAQUS/Explicit finite element modeling tool. The model predicts the damages in the meso-constituents level very accurately and is considered the most effective technique of modeling low-velocity impact simulation for laminated composite structures.

Keywords: mesomodel, laminate, low-energy impact, micromechanics

Procedia PDF Downloads 219
28939 Chemical Study of Volatile Organic Compounds (VOCS) from Xylopia aromatica (LAM.) Mart (Annonaceae)

Authors: Vanessa G. P. Severino, JOÃO Gabriel M. Junqueira, Michelle N. G. do Nascimento, Francisco W. B. Aquino, João B. Fernandes, Ana P. Terezan

Abstract:

The scientific interest in analyzing VOCs represents a significant modern research field as a result of importance in most branches of the present life and industry. Therefore it is extremely important to investigate, identify and isolate volatile substances, since they can be used in different areas, such as food, medicine, cosmetics, perfumery, aromatherapy, pesticides, repellents and other household products through methods for extracting volatile constituents, such as solid phase microextraction (SPME), hydrodistillation (HD), solvent extraction (SE), Soxhlet extraction, supercritical fluid extraction (SFE), stream distillation (SD) and vacuum distillation (VD). The Chemometrics is an area of chemistry that uses statistical and mathematical tools for the planning and optimization of the experimental conditions, and to extract relevant chemical information multivariate chemical data. In this context, the focus of this work was the study of the chemical VOCs by SPME of the specie X. aromatica, in search of constituents that can be used in the industrial sector as well as in food, cosmetics and perfumery, since these areas industrial has a considerable role. In addition, by chemometric analysis, we sought to maximize the answers of this research, in order to search for the largest number of compounds. The investigation of flowers from X. aromatica in vitro and in alive mode proved consistent, but certain factors supposed influence the composition of metabolites, and the chemometric analysis strengthened the analysis. Thus, the study of the chemical composition of X. aromatica contributed to the VOCs knowledge of the species and a possible application.

Keywords: chemometrics, flowers, HS-SPME, Xylopia aromatica

Procedia PDF Downloads 360
28938 Analysis of Replication Protein A (RPA): The Role of Homolog Interaction and Recombination during Meiosis

Authors: Jeong Hwan Joo, Keun Pil Kim

Abstract:

During meiosis, meiotic recombination is initiated by Spo11-mediated DSB formation and exonuclease-mediated DSB resection occurs to expose single stranded DNA formation. RPA is further required to inhibit secondary structure formation of ssDNA that can be formed Watson-Crick pairing. Rad51-Dmc1, RecA homologs in eukaryote and their accessory factors involve in searching homolog templates to mediate strand exchange. In this study, we investigate the recombinational roles of replication protein A (RPA), which is heterotrimeric protein that is composed of RPA1, RPA2, and RPA3. Here, we investigated meiotic recombination using DNA physical analysis at the HIS4LEU2 hot spot. In rfa1-119 (K45E, N316S) cells, crossover (CO) and non-crossover (NCO) products reduced than WT. rfa1-119 delayed in single end invasion-to-double holiday junction (SEI-to-dHJ) transition and exhibits a defect in second-end capture that is also modulated by Rad52. In the further experiment, we observed that in rfa1-119 mutant, RPA could not be released in timely manner. Furthermore, rfa1-119 exhibits failure in the second end capture, implying reduction of COs and NCOs. In this talk, we will discuss more detail how RPA involves in chromatin axis association via formation of axis-bridge and why RPA is required for Rad52-mediated second-end capture progression.

Keywords: homolog interaction, meiotic recombination, replication protein A, RPA1

Procedia PDF Downloads 201
28937 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites

Authors: Jifeng Zhang , Yongpeng Lei

Abstract:

Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.

Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface

Procedia PDF Downloads 120
28936 Performance of Reinforced Concrete Wall with Opening Using Analytical Model

Authors: Alaa Morsy, Youssef Ibrahim

Abstract:

Earthquake is one of the most catastrophic events, which makes enormous harm to properties and human lives. As a piece of a safe building configuration, reinforced concrete walls are given in structures to decrease horizontal displacements under seismic load. Shear walls are additionally used to oppose the horizontal loads that might be incited by the impact of wind. Reinforced concrete walls in residential buildings might have openings that are required for windows in outside walls or for doors in inside walls or different states of openings due to architectural purposes. The size, position, and area of openings may fluctuate from an engineering perspective. Shear walls can encounter harm around corners of entryways and windows because of advancement of stress concentration under the impact of vertical or horizontal loads. The openings cause a diminishing in shear wall capacity. It might have an unfavorable impact on the stiffness of reinforced concrete wall and on the seismic reaction of structures. Finite Element Method using software package ‘ANSYS ver. 12’ becomes an essential approach in analyzing civil engineering problems numerically. Now we can make various models with different parameters in short time by using ANSYS instead of doing it experimentally, which consumes a lot of time and money. Finite element modeling approach has been conducted to study the effect of opening shape, size and position in RC wall with different thicknesses under axial and lateral static loads. The proposed finite element approach has been verified with experimental programme conducted by the researchers and validated by their variables. A very good correlation has been observed between the model and experimental results including load capacity, failure mode, and lateral displacement. A parametric study is applied to investigate the effect of opening size, shape, position on different reinforced concrete wall thicknesses. The results may be useful for improving existing design models and to be applied in practice, as it satisfies both the architectural and the structural requirements.

Keywords: Ansys, concrete walls, openings, out of plane behavior, seismic, shear wall

Procedia PDF Downloads 165
28935 The Applications and Effects of the Career Courses of Taiwanese College Students with LEGO® SERIOUS PLAY®

Authors: Payling Harn

Abstract:

LEGO® SERIOUS PLAY® is a kind of facilitated workshop of thinking and problem-solving approach. Participants built symbolic and metaphorical brick models in response to tasks given by the facilitator and presented these models to other participants. LEGO® SERIOUS PLAY® applied the positive psychological mechanism of Flow and positive emotions to help participants perceiving self-experience and unknown fact and increasing the happiness of life by building bricks and narrating story. At present, LEGO® SERIOUS PLAY® is often utilized for facilitating professional identity and strategy development to assist workers in career development. The researcher desires to apply LEGO® SERIOUS PLAY® to the career courses of college students in order to promote their career ability. This study aimed to use the facilitative method of LEGO® SERIOUS PLAY® to develop the career courses of college students, then explore the effects of Taiwanese college students' positive and negative emotions, career adaptabilities, and career sense of hope by LEGO® SERIOUS PLAY® career courses. The researcher regarded strength as the core concept and use the facilitative mode of LEGO® SERIOUS PLAY® to develop the 8 weeks’ career courses, which including ‘emotion of college life’ ‘career highlights’, ‘career strengths’, ‘professional identity’, ‘business model’, ‘career coping’, ‘strength guiding principles’, ‘career visions’,’ career hope’, etc. The researcher will adopt problem-oriented teaching method to give tasks which according to the weekly theme, use the facilitative mode of LEGO® SERIOUS PLAY® to guide participants to respond tasks by building bricks. Then participants will conduct group discussions, reports, and writing reflection journals weekly. Participants will be 24 second-grade college students. They will attend LEGO® SERIOUS PLAY® career courses for 2 hours a week. The researcher used’ ‘Career Adaptability Scale’ and ‘Career Hope Scale’ to conduct pre-test and post-test. The time points of implementation testing will be one week before courses starting, one day after courses ending respectively. Then the researcher will adopt repeated measures one-way ANOVA for analyzing data. The results revealed that the participants significantly presented immediate positive effect in career adaptability and career hope. The researcher hopes to construct the mode of LEGO® SERIOUS PLAY® career courses by this study and to make a substantial contribution to the future career teaching and researches of LEGO® SERIOUS PLAY®.

Keywords: LEGO® SERIOUS PLAY®, career courses, strength, positive and negative affect, career hope

Procedia PDF Downloads 251
28934 Etiological Factors for Renal Cell Carcinoma: Five-Year Study at Mayo Hospital Lahore

Authors: Muhammad Umar Hassan

Abstract:

Renal cell carcinoma is a subset of kidney cancer that arises in the lining of DCT and is present in parenchymal tissue. Diagnosis is based on lab reports, including urinalysis, renal function tests (RFTs), and electrolyte balance, along with imaging techniques. Organ failure and other complications have been commonly observed in these cases. Over the years, the presentation of patients has varied, so carcinoma was classified on the basis of site, shape, and consistency for detailed analysis. Lifestyle patterns and occupational history were inquired about and recorded. Methods: Data from 100 patients presenting to the oncology and nephrology department of Mayo Hospital in the year 2015-2020 were included in this retrospective study on a random basis. The study was specifically focused on three risk factors. Smoking, occupational exposures, and Hakim medicine are taken by the patient for any cause. After procurement of data, follow-up contacts of these patients were established, resulting in a detailed analysis of lifestyle. Conclusion: The inference drawn is a direct causal link between smoking, industrial workplace exposure, and Hakim medicine with the development of Renal Cell Carcinoma. It was shown in the majority of the patients and hence confirmed our hypothesis.

Keywords: renal cell carcinoma, kidney cancer, clear cell carcinoma

Procedia PDF Downloads 101
28933 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models

Authors: C. F. Kumru, C. Kocatepe, O. Arikan

Abstract:

In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.

Keywords: electric field, energy transmission line, finite element method, pylon

Procedia PDF Downloads 727
28932 Metallurgical Analysis of Surface Defect in Telescopic Front Fork

Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya

Abstract:

Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.

Keywords: telescopic front fork, induction welding, hook crack, internal oxidation

Procedia PDF Downloads 130
28931 Reliability Modeling of Repairable Subsystems in Semiconductor Fabrication: A Virtual Age and General Repair Framework

Authors: Keshav Dubey, Swajeeth Panchangam, Arun Rajendran, Swarnim Gupta

Abstract:

In the semiconductor capital equipment industry, effective modeling of repairable system reliability is crucial for optimizing maintenance strategies and ensuring operational efficiency. However, repairable system reliability modeling using a renewal process is not as popular in the semiconductor equipment industry as it is in the locomotive and automotive industries. Utilization of this approach will help optimize maintenance practices. This paper presents a structured framework that leverages both parametric and non-parametric approaches to model the reliability of repairable subsystems based on operational data, maintenance schedules, and system-specific conditions. Data is organized at the equipment ID level, facilitating trend testing to uncover failure patterns and system degradation over time. For non-parametric modeling, the Mean Cumulative Function (Mean Cumulative Function) approach is applied, offering a flexible method to estimate the cumulative number of failures over time without assuming an underlying statistical distribution. This allows for empirical insights into subsystem failure behavior based on historical data. On the parametric side, virtual age modeling, along with Homogeneous and Non-Homogeneous Poisson Process (Homogeneous Poisson Process and Non-Homogeneous Poisson Process) models, is employed to quantify the effect of repairs and the aging process on subsystem reliability. These models allow for a more structured analysis by characterizing repair effectiveness and system wear-out trends over time. A comparison of various Generalized Renewal Process (GRP) approaches highlights their utility in modeling different repair effectiveness scenarios. These approaches provide a robust framework for assessing the impact of maintenance actions on system performance and reliability. By integrating both parametric and non-parametric methods, this framework offers a comprehensive toolset for reliability engineers to better understand equipment behavior, assess the effectiveness of maintenance activities, and make data-driven decisions that enhance system availability and operational performance in semiconductor fabrication facilities.

Keywords: reliability, maintainability, homegenous poission process, repairable system

Procedia PDF Downloads 18
28930 Preparation and Characterization of BaMnO₃ Application to the Photocatalytic Oxidation of Paracetamol under Solar Light

Authors: Dahmane Mohamed, Tab Asma, Trari Mohamed

Abstract:

BaMnO₃ nanoparticles were synthesized by a nitrate route. Its structure and physical properties were characterized by means of X-ray powder diffraction, radio crystallographic analysis, ultraviolet-visible absorption spectroscopy in diffuse reflectance mode, infrared spectroscopy, and electrochemical measurements. The optical study showed that barium manganese oxide presents a direct transition with band energy 2.13 eV. The electrochemical study allowed us to identify the redox peaks and the corrosion parameters. Capacitance measurement clearly showed n-type conductivity. The photodegradation of paracetamol by BaMnO₃ was followed by UV-visible spectrophotometry; the results were then confirmed by HPLC. BaMnO₃ has shown its photocatalytic efficiency in the photodegradation of 10 mg/L paracetamol under solar irradiation, with a yield of ≈ 88%. The kinetic study has shown that paracetamol degrades with first-order kinetics.

Keywords: BaMnO₃, photodegradation, paracetamol, electrochemical measurements, solar light

Procedia PDF Downloads 101
28929 An Interaction between Human and Animal through the Death Experience

Authors: Mindaugas Kazlauskas

Abstract:

In this paper, it is presupposed that the description of the relationship between animal and human should begin with a description of the direct experience of the animal and how, in this experience, the human experiences itself (a self awareness mode). A human is concerned first and foremost with himself as a human through the experience of another as an animal. The questionsare: In the encounter with an animal, how is the animal constituted in the acts of human experience? How does human-animal interaction influence human behavioral patterns, and how does the human identifies itself in this interaction? The paper will present the results of interpretative phenomenological descriptions (IPA) of the relationship between human and animal in the face of death phenomenon through the experience of pet owners who lost their beloved companions and hunters, veterinatians, and farmers who face animal death. The results of IPA analysis reveal different relations such as the identification with an animal, the alienation experience, the experience of resistance, and an experience of detachment. Within these themes, IPA qualitative research results will be presented by highlighting patterns of human behavior, following Friedrich Schlachermacher's hermeneutics methodological principles, and reflecting on changes in value and attitude within society during daily interaction with the animal.

Keywords: animal human interaction, phenomenology, philosophy, death phenomenon

Procedia PDF Downloads 150
28928 Differences in Guilt, Shame, Self-Anger, and Suicide Cognitions Based on Recent Suicide Ideation and Lifetime Suicide Attempt History

Authors: E. H. Szeto, E. Ammendola, J. V. Tabares, A. Starkey, J. Hay, J. G. McClung, C. J. Bryan

Abstract:

Introduction: Suicide is a leading cause of death globally, which accounts for more deaths annually than war, acquired immunodeficiency syndrome, homicides, and car accidents, while an estimated 140 million individuals have significant suicide ideation (SI) each year in the United States. Typical risk factors such as hopelessness, depression, and psychiatric disorders can predict suicide ideation but cannot distinguish between those who ideate from those who attempt suicide (SA). The Fluid Vulnerability Theory of suicide posits that a person’s activation of the suicidal mode is predicated on one’s predisposition, triggers, baseline/acute risk, and protective factors. The current study compares self-conscious cognitive-affective states (including guilt, shame, anger towards the self, and suicidal beliefs) among patients based on the endorsement of recent SI (i.e., past two weeks; acute risk) and lifetime SA (i.e., baseline risk). Method: A total of 2,722 individuals in an outpatient primary care setting were included in this cross-sectional, observational study; data for 2,584 were valid and retained for analysis. The Differential Emotions Scale measuring guilt, shame, and self-anger and the Suicide Cognitions Scale measuring suicide cognitions were administered. Results: A total of 2,222 individuals reported no recent SI or lifetime SA (Group 1), 161 reported recent SI only (Group 2), 145 reported lifetime SA only (Group 3), 56 reported both recent SI and lifetime SA (Group 4). The Kruskal-Wallis test showed that guilt, shame, self-anger, and suicide cognitions were the highest for Group 4 (both recent SI and lifetime SA), followed by Group 2 (recent SI-only), then Group 3 (lifetime SA-only), and lastly, Group 1 (no recent SI or lifetime SA). Conclusion: The results on recent SI-only versus lifetime SA-only contribute to the literature on the Fluid Vulnerability Theory of suicide by capturing SI and SA in two different time periods, which signify the acute risks and chronic baseline risks of the suicidal mode, respectively. It is also shown that: (a) people with a lifetime SA reported more severe symptoms than those without, (b) people with recent SI reported more severe symptoms than those without, and (c) people with both recent SI and lifetime SA were the most severely distressed. Future studies may replicate the findings here with other pertinent risk factors such as thwarted belongingness, perceived burdensomeness, and acquired capability, the last of which is consistently linked to attempting among ideators.

Keywords: suicide, guilt, shame, self-anger, suicide cognitions, suicide ideation, suicide attempt

Procedia PDF Downloads 161
28927 Increasing Efficiency, Performance and Safety of Aircraft during Takeoff and Landing by Interpreting Electromagnetism

Authors: Sambit Supriya Dash

Abstract:

Aerospace Industry has evolved over the last century and is growing by approaching towards, more fuel efficient, cheaper, simpler, convenient and safer ways of flight stages. In this paper, the accident records of aircrafts are studied and found about 71% of accidents caused on runways during Takeoff and Landing. By introducing the concept of interpreting electromagnetism, the cause of bounced touchdown and flare failure such as landing impact loads and instability could be eliminated. During Takeoff, the rate of fuel consumption is observed to be maximum. By applying concept of interpreting electromagnetism, a remarkable rate of fuel consumption is reduced, which can be used in case of emergency due to lack of fuel or in case of extended flight. A complete setup of the concept, its effects and characteristics are studied and provided with references of few popular aircrafts. By embedding series of strong and controlled electromagnets below the runway along and aside the centre line and fixed in the line of acting force through wing-fuselage aerodynamic centre. By the essence of its strength controllable nature, it can contribute to performance and fuel efficiency for aircraft. This ensures a perfect Takeoff with less fuel consumption followed by safe cruise stage, which in turn ensures a short and safe landing, eliminating the till known failures, due to bounced touchdowns and flare failure.

Keywords: efficiency, elctromagnetism, performance, reduced fuel consumption, safety

Procedia PDF Downloads 228
28926 Life Cycle Assessment in Road Pavements: A Literature Review and the Potential Use in Brazil

Authors: B. V. Santos, M. T. M. Carvalho, J. H. S. Rêgo

Abstract:

The article presents a literature review on recent advances related to studies of the environmental impact of road pavements, with reference to the concepts of Life Cycle Assessment (LCA). An introduction with the main motivations for the development of the research is presented, with a current overview of the Brazilian transport infrastructure and the projections for the road mode for the coming years, and the possibility of using the referred methodology by the road sector in Brazil. The article explores the origin of LCA in road pavements and the details linked to its implementation from the perspective of the four main phases of the study (goal and scope definition, inventory analysis, impact assessment, and interpretation). Finally, the main advances and deficiencies observed in the selected studies are gathered, with the proposition of research fields that can be explored in future national or international studies of LCA of road pavements.

Keywords: Brazil, life cycle assessment, road pavements, sustainable

Procedia PDF Downloads 78
28925 Preparing a Library of Abnormal Masses for Designing a Long-Lasting Anatomical Breast Phantom for Ultrasonography Training

Authors: Nasibullina A., Leonov D.

Abstract:

The ultrasonography method is actively used for the early diagnosis of various le-sions in the human body, including the mammary gland. The incidence of breast cancer has increased by more than 20%, and mortality by 14% since 2008. The correctness of the diagnosis often directly depends on the qualifications and expe-rience of a diagnostic medical sonographer. That is why special attention should be paid to the practical training of future specialists. Anatomical phantoms are ex-cellent teaching tools because they accurately imitate the characteristics of real hu-man tissues and organs. The purpose of this work is to create a breast phantom for practicing ultrasound diagnostic skills in grayscale and elastography imaging, as well as ultrasound-guided biopsy sampling. We used silicone-like compounds ranging from 3 to 17 on the Shore scale hardness units to simulate soft tissue and lesions. Impurities with experimentally selected concentrations were added to give the phantom the necessary attenuation and reflection parameters. We used 3D modeling programs and 3D printing with PLA plastic to create the casting mold. We developed a breast phantom with inclusions of varying shape, elasticity and echogenicity. After testing the created phantom in B-mode and elastography mode, we performed a survey asking 19 participants how realistic the sonograms of the phantom were. The results showed that the closest to real was the model of the cyst with 9.5 on the 0-10 similarity scale. Thus, the developed breast phantom can be used for ultrasonography, elastography, and ultrasound-guided biopsy training.

Keywords: breast ultrasound, mammary gland, mammography, training phantom, tissue-mimicking materials

Procedia PDF Downloads 92
28924 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: cyclic loading, DPIV, settlement, soil-structure interactions, strip footing

Procedia PDF Downloads 166
28923 Autonomic Threat Avoidance and Self-Healing in Database Management System

Authors: Wajahat Munir, Muhammad Haseeb, Adeel Anjum, Basit Raza, Ahmad Kamran Malik

Abstract:

Databases are the key components of the software systems. Due to the exponential growth of data, it is the concern that the data should be accurate and available. The data in databases is vulnerable to internal and external threats, especially when it contains sensitive data like medical or military applications. Whenever the data is changed by malicious intent, data analysis result may lead to disastrous decisions. Autonomic self-healing is molded toward computer system after inspiring from the autonomic system of human body. In order to guarantee the accuracy and availability of data, we propose a technique which on a priority basis, tries to avoid any malicious transaction from execution and in case a malicious transaction affects the system, it heals the system in an isolated mode in such a way that the availability of system would not be compromised. Using this autonomic system, the management cost and time of DBAs can be minimized. In the end, we test our model and present the findings.

Keywords: autonomic computing, self-healing, threat avoidance, security

Procedia PDF Downloads 503