Search results for: curve approximation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1569

Search results for: curve approximation

99 Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing

Authors: Patrícia Severino, Luciana Nalone, Daniele Martins, Marco Chaud, Classius Ferreira, Cristiane Bani, Ricardo Albuquerque

Abstract:

Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics.

Keywords: nanocomposite, wound healing, hydrogel, silver nanoparticle

Procedia PDF Downloads 101
98 Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters

Authors: Trevor C. Brown, David J. Miron

Abstract:

Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites.

Keywords: Langmuir adsorption isotherm, BET adsorption isotherm, pressure-varying adsorption parameters, adsorbate and adsorbent properties and energetics

Procedia PDF Downloads 233
97 Techno Economic Analysis for Solar PV and Hydro Power for Kafue Gorge Power Station

Authors: Elvis Nyirenda

Abstract:

This research study work was done to evaluate and propose an optimum measure to enhance the uptake of clean energy technologies such as solar photovoltaics, the study also aims at enhancing the country’s energy mix from the overdependence on hydro power which is susceptible to droughts and climate change challenges The country in the years 2015 - 2016 and 2018 - 2019 had received rainfall below average due to climate change and a shift in the weather pattern; this resulted in prolonged power outages and load shedding for more than 10 hours per day. ZESCO Limited, the utility company that owns infrastructure in the generation, transmission, and distribution of electricity (state-owned), is seeking alternative sources of energy in order to reduce the over-dependence on hydropower stations. One of the alternative sources of energy is Solar Energy from the sun. However, solar power is intermittent in nature and to smoothen the load curve, investment in robust energy storage facilities is of great importance to enhance security and reliability of electricity supply in the country. The methodology of the study looked at the historical performance of the Kafue gorge upper power station and utilised the hourly generation figures as input data for generation modelling in Homer software. The average yearly demand was derived from the available data on the system SCADA. The two dams were modelled as natural battery with the absolute state of charging and discharging determined by the available water resource and the peak electricity demand. The software Homer Energy System is used to simulate the scheme incorporating a pumped storage facility and Solar photovoltaic systems. The pumped hydro scheme works like a natural battery for the conservation of water, with the only losses being evaporation and water leakages from the dams and the turbines. To address the problem of intermittency on the solar resource and the non-availability of water for hydropower generation, the study concluded that utilising the existing Hydro power stations, Kafue Gorge upper and Kafue Gorge Lower to work conjunctively with Solar energy will reduce power deficits and increase the security of supply for the country. An optimum capacity of 350MW of solar PV can be integrated while operating Kafue Gorge power station in both generating and pumping mode to enable efficient utilisation of water at Kafue Gorge upper Dam and Kafue Gorge Lower dam.

Keywords: hydropower, solar power systems, energy storage, photovoltaics, solar irradiation, pumped hydro storage system, supervisory control and data acquisition, Homer energy

Procedia PDF Downloads 117
96 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 150
95 A Laundry Algorithm for Colored Textiles

Authors: H. E. Budak, B. Arslan-Ilkiz, N. Cakmakci, I. Gocek, U. K. Sahin, H. Acikgoz-Tufan, M. H. Arslan

Abstract:

The aim of this study is to design a novel laundry algorithm for colored textiles which have significant decoloring problem. During the experimental work, bleached knitted single jersey fabric made of 100% cotton and dyed with reactive dyestuff was utilized, since according to a conducted survey textiles made of cotton are the most demanded textile products in the textile market by the textile consumers and for coloration of textiles reactive dyestuffs are the ones that are the most commonly used in the textile industry for dyeing cotton-made products. Therefore, the fabric used in this study was selected and purchased in accordance with the survey results. The fabric samples cut out of this fabric were dyed with different dyeing parameters by using Remazol Brilliant Red 3BS dyestuff in Gyrowash machine at laboratory conditions. From the alternative reactive-dyed cotton fabric samples, the ones that have high tendency to color loss were determined and examined. Accordingly, the parameters of the dyeing process used for these fabric samples were evaluated and the dyeing process which was chosen to be used for causing high tendency to color loss for the cotton fabrics was determined in order to reveal the level of improvement in color loss during this study clearly. Afterwards, all of the untreated fabric samples cut out of the fabric purchased were dyed with the dyeing process selected. When dyeing process was completed, an experimental design was created for the laundering process by using Minitab® program considering temperature, time and mechanical action as parameters. All of the washing experiments were performed in domestic washing machine. 16 washing experiments were performed with 8 different experimental conditions and 2 repeats for each condition. After each of the washing experiments, water samples of the main wash of the laundering process were measured with UV spectrophotometer. The values obtained were compared with the calibration curve of the materials used for the dyeing process. The results of the washing experiments were statistically analyzed with Minitab® program. According to the results, the most suitable washing algorithm to be used in terms of the parameters temperature, time and mechanical action for domestic washing machines for minimizing fabric color loss was chosen. The laundry algorithm proposed in this study have the ability of minimalizing the problem of color loss of colored textiles in washing machines by eliminating the negative effects of the parameters of laundering process on color of textiles without compromising the fundamental effects of basic cleaning action being performed properly. Therefore, since fabric color loss is minimized with this washing algorithm, dyestuff residuals will definitely be lower in the grey water released from the laundering process. In addition to this, with this laundry algorithm it is possible to wash and clean other types of textile products with proper cleaning effect and minimized color loss.

Keywords: color loss, laundry algorithm, textiles, domestic washing process

Procedia PDF Downloads 357
94 Flood Vulnerability Zoning for Blue Nile Basin Using Geospatial Techniques

Authors: Melese Wondatir

Abstract:

Flooding ranks among the most destructive natural disasters, impacting millions of individuals globally and resulting in substantial economic, social, and environmental repercussions. This study's objective was to create a comprehensive model that assesses the Nile River basin's susceptibility to flood damage and improves existing flood risk management strategies. Authorities responsible for enacting policies and implementing measures may benefit from this research to acquire essential information about the flood, including its scope and susceptible areas. The identification of severe flood damage locations and efficient mitigation techniques were made possible by the use of geospatial data. Slope, elevation, distance from the river, drainage density, topographic witness index, rainfall intensity, distance from road, NDVI, soil type, and land use type were all used throughout the study to determine the vulnerability of flood damage. Ranking elements according to their significance in predicting flood damage risk was done using the Analytic Hierarchy Process (AHP) and geospatial approaches. The analysis finds that the most important parameters determining the region's vulnerability are distance from the river, topographic witness index, rainfall, and elevation, respectively. The consistency ratio (CR) value obtained in this case is 0.000866 (<0.1), which signifies the acceptance of the derived weights. Furthermore, 10.84m2, 83331.14m2, 476987.15m2, 24247.29m2, and 15.83m2 of the region show varying degrees of vulnerability to flooding—very low, low, medium, high, and very high, respectively. Due to their close proximity to the river, the northern-western regions of the Nile River basin—especially those that are close to Sudanese cities like Khartoum—are more vulnerable to flood damage, according to the research findings. Furthermore, the AUC ROC curve demonstrates that the categorized vulnerability map achieves an accuracy rate of 91.0% based on 117 sample points. By putting into practice strategies to address the topographic witness index, rainfall patterns, elevation fluctuations, and distance from the river, vulnerable settlements in the area can be protected, and the impact of future flood occurrences can be greatly reduced. Furthermore, the research findings highlight the urgent requirement for infrastructure development and effective flood management strategies in the northern and western regions of the Nile River basin, particularly in proximity to major towns such as Khartoum. Overall, the study recommends prioritizing high-risk locations and developing a complete flood risk management plan based on the vulnerability map.

Keywords: analytic hierarchy process, Blue Nile Basin, geospatial techniques, flood vulnerability, multi-criteria decision making

Procedia PDF Downloads 70
93 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording

Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen

Abstract:

It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.

Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration

Procedia PDF Downloads 179
92 Simplified Modeling of Post-Soil Interaction for Roadside Safety Barriers

Authors: Charly Julien Nyobe, Eric Jacquelin, Denis Brizard, Alexy Mercier

Abstract:

The performance of road side safety barriers depends largely on the dynamic interactions between post and soil. These interactions play a key role in the response of barriers to crash testing. In the literature, soil-post interaction is modeled in crash test simulations using three approaches. Many researchers have initially used the finite element approach, in which the post is embedded in a continuum soil modelled by solid finite elements. This method represents a more comprehensive and detailed approach, employing a mesh-based continuum to model the soil’s behavior and its interaction with the post. Although this method takes all soil properties into account, it is nevertheless very costly in terms of simulation time. In the second approach, all the points of the post located at a predefined depth are fixed. Although this approach reduces CPU computing time, it overestimates soil-post stiffness. The third approach involves modeling the post as a beam supported by a set of nonlinear springs in the horizontal directions. For support in the vertical direction, the posts were constrained at a node at ground level. This approach is less costly, but the literature does not provide a simple procedure to determine the constitutive law of the springs The aim of this study is to propose a simple and low-cost procedure to obtain the constitutive law of nonlinear springs that model the soil-post interaction. To achieve this objective, we will first present a procedure to obtain the constitutive law of nonlinear springs thanks to the simulation of a soil compression test. The test consists in compressing the soil contained in the tank by a rigid solid, up to a vertical displacement of 200 mm. The resultant force exerted by the ground on the rigid solid and its vertical displacement are extracted and, a force-displacement curve was determined. The proposed procedure for replacing the soil with springs must be tested against a reference model. The reference model consists of a wooden post embedded into the ground and impacted with an impactor. Two simplified models with springs are studied. In the first model, called Kh-Kv model, the springs are attached to the post in the horizontal and vertical directions. The second Kh model is the one described in the literature. The two simplified models are compared with the reference model according to several criteria: the displacement of a node located at the top of the post in vertical and horizontal directions; displacement of the post's center of rotation and impactor velocity. The results given by both simplified models are very close to the reference model results. It is noticeable that the Kh-Kv model is slightly better than the Kh model. Further, the former model is more interesting than the latter as it involves less arbitrary conditions. The simplified models also reduce the simulation time by a factor 4. The Kh-Kv model can therefore be used as a reliable tool to represent the soil-post interaction in a future research and development of road safety barriers.

Keywords: crash tests, nonlinear springs, soil-post interaction modeling, constitutive law

Procedia PDF Downloads 30
91 Evaluation of Batch Splitting in the Context of Load Scattering

Authors: S. Wesebaum, S. Willeke

Abstract:

Production companies are faced with an increasingly turbulent business environment, which demands very high production volumes- and delivery date flexibility. If a decoupling by storage stages is not possible (e.g. at a contract manufacturing company) or undesirable from a logistical point of view, load scattering effects the production processes. ‘Load’ characterizes timing and quantity incidence of production orders (e.g. in work content hours) to workstations in the production, which results in specific capacity requirements. Insufficient coordination between load (demand capacity) and capacity supply results in heavy load scattering, which can be described by deviations and uncertainties in the input behavior of a capacity unit. In order to respond to fluctuating loads, companies try to implement consistent and realizable input behavior using the capacity supply available. For example, a uniform and high level of equipment capacity utilization keeps production costs down. In contrast, strong load scattering at workstations leads to performance loss or disproportionately fluctuating WIP, whereby the logistics objectives are affected negatively. Options for reducing load scattering are e.g. shifting the start and end dates of orders, batch splitting and outsourcing of operations or shifting to other workstations. This leads to an adjustment of load to capacity supply, and thus to a reduction of load scattering. If the adaptation of load to capacity cannot be satisfied completely, possibly flexible capacity must be used to ensure that the performance of a workstation does not decrease for a given load. Where the use of flexible capacities normally raises costs, an adjustment of load to capacity supply reduces load scattering and, in consequence, costs. In the literature you mostly find qualitative statements for describing load scattering. Quantitative evaluation methods that describe load mathematically are rare. In this article the authors discuss existing approaches for calculating load scattering and their various disadvantages such as lack of opportunity for normalization. These approaches are the basis for the development of our mathematical quantification approach for describing load scattering that compensates the disadvantages of the current quantification approaches. After presenting our mathematical quantification approach, the method of batch splitting will be described. Batch splitting allows the adaptation of load to capacity to reduce load scattering. After describing the method, it will be explicitly analyzed in the context of the logistic curve theory by Nyhuis using the stretch factor α1 in order to evaluate the impact of the method of batch splitting on load scattering and on logistic curves. The conclusion of this article will be to show how the methods and approaches presented can help companies in a turbulent environment to quantify the occurring work load scattering accurately and apply an efficient method for adjusting work load to capacity supply. In this way, the achievements of the logistical objectives are increased without causing additional costs.

Keywords: batch splitting, production logistics, production planning and control, quantification, load scattering

Procedia PDF Downloads 399
90 Study of the Kinetics of Formation of Carboxylic Acids Using Ion Chromatography during Oxidation Induced by Rancimat of the Oleic Acid, Linoleic Acid, Linolenic Acid, and Biodiesel

Authors: Patrícia T. Souza, Marina Ansolin, Eduardo A. C. Batista, Antonio J. A. Meirelles, Matthieu Tubino

Abstract:

Lipid oxidation is a major cause of the deterioration of the quality of the biodiesel, because the waste generated damages the engines. Among the main undesirable effects are the increase of viscosity and acidity, leading to the formation of insoluble gums and sediments which cause the blockage of fuel filters. The auto-oxidation is defined as the spontaneous reaction of atmospheric oxygen with lipids. Unsaturated fatty acids are usually the components affected by such reactions. They are present as free fatty acids, fatty esters and glycerides. To determine the oxidative stability of biodiesels, through the induction period, IP, the Rancimat method is used, which allows continuous monitoring of the induced oxidation process of the samples. During the oxidation of the lipids, volatile organic acids are produced as byproducts, in addition, other byproducts, including alcohols and carbonyl compounds, may be further oxidized to carboxylic acids. By the methodology developed in this work using ion chromatography, IC, analyzing the water contained in the conductimetric vessel, were quantified organic anions of carboxylic acids in samples subjected to oxidation induced by Rancimat. The optimized chromatographic conditions were: eluent water:acetone (80:20 v/v) with 0.5 mM sulfuric acid; flow rate 0.4 mL min-1; injection volume 20 µL; eluent suppressor 20 mM LiCl; analytical curve from 1 to 400 ppm. The samples studied were methyl biodiesel from soybean oil and unsaturated fatty acids standards: oleic, linoleic and linolenic. The induced oxidation kinetics curves were constructed by analyzing the water contained in the conductimetric vessels which were removed, each one, from the Rancimat apparatus at prefixed intervals of time. About 3 g of sample were used under the conditions of 110 °C and air flow rate of 10 L h-1. The water of each conductimetric Rancimat measuring vessel, where the volatile compounds were collected, was filtered through a 0.45 µm filter and analyzed by IC. Through the kinetic data of the formation of the organic anions of carboxylic acids, the formation rates of the same were calculated. The observed order of the rates of formation of the anions was: formate >>> acetate > hexanoate > valerate for the oleic acid; formate > hexanoate > acetate > valerate for the linoleic acid; formate >>> valerate > acetate > propionate > butyrate for the linolenic acid. It is possible to suppose that propionate and butyrate are obtained mainly from linolenic acid and that hexanoate is originated from oleic and linoleic acid. For the methyl biodiesel the order of formation of anions was: formate >>> acetate > valerate > hexanoate > propionate. According to the total rate of formation these anions produced during the induced degradation of the fatty acids can be assigned the order of reactivity: linolenic acid > linoleic acid >>> oleic acid.

Keywords: anions of carboxylic acids, biodiesel, ion chromatography, oxidation

Procedia PDF Downloads 475
89 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System

Authors: Iman Janghorban Esfahani

Abstract:

Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.

Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy

Procedia PDF Downloads 138
88 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering

Authors: Youssef I. Hafez

Abstract:

Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.

Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming

Procedia PDF Downloads 223
87 Development and Validation of a Turbidimetric Bioassay to Determine the Potency of Ertapenem Sodium

Authors: Tahisa M. Pedroso, Hérida R. N. Salgado

Abstract:

The microbiological turbidimetric assay allows the determination of potency of the drug, by measuring the turbidity (absorbance), caused by inhibition of microorganisms by ertapenem sodium. Ertapenem sodium (ERTM), a synthetic antimicrobial agent of the class of carbapenems, shows action against Gram-negative, Gram-positive, aerobic and anaerobic microorganisms. Turbidimetric assays are described in the literature for some antibiotics, but this method is not described for ertapenem. The objective of the present study was to develop and validate a simple, sensitive, precise and accurate microbiological assay by turbidimetry to quantify ertapenem sodium injectable as an alternative to the physicochemical methods described in the literature. Several preliminary tests were performed to choose the following parameters: Staphylococcus aureus ATCC 25923, IAL 1851, 8 % of inoculum, BHI culture medium, and aqueous solution of ertapenem sodium. 10.0 mL of sterile BHI culture medium were distributed in 20 tubes. 0.2 mL of solutions (standard and test), were added in tube, respectively S1, S2 and S3, and T1, T2 and T3, 0.8 mL of culture medium inoculated were transferred to each tube, according parallel lines 3 x 3 test. The tubes were incubated in shaker Marconi MA 420 at a temperature of 35.0 °C ± 2.0 °C for 4 hours. After this period, the growth of microorganisms was inhibited by addition of 0.5 mL of 12% formaldehyde solution in each tube. The absorbance was determined in Quimis Q-798DRM spectrophotometer at a wavelength of 530 nm. An analytical curve was constructed to obtain the equation of the line by the least-squares method and the linearity and parallelism was detected by ANOVA. The specificity of the method was proven by comparing the response obtained for the standard and the finished product. The precision was checked by testing the determination of ertapenem sodium in three days. The accuracy was determined by recovery test. The robustness was determined by comparing the results obtained by varying wavelength, brand of culture medium and volume of culture medium in the tubes. Statistical analysis showed that there is no deviation from linearity in the analytical curves of standard and test samples. The correlation coefficients were 0.9996 and 0.9998 for the standard and test samples, respectively. The specificity was confirmed by comparing the absorbance of the reference substance and test samples. The values obtained for intraday, interday and between analyst precision were 1.25%; 0.26%, 0.15% respectively. The amount of ertapenem sodium present in the samples analyzed, 99.87%, is consistent. The accuracy was proven by the recovery test, with value of 98.20%. The parameters varied did not affect the analysis of ertapenem sodium, confirming the robustness of this method. The turbidimetric assay is more versatile, faster and easier to apply than agar diffusion assay. The method is simple, rapid and accurate and can be used in routine analysis of quality control of formulations containing ertapenem sodium.

Keywords: ertapenem sodium, turbidimetric assay, quality control, validation

Procedia PDF Downloads 393
86 Accelerating Malaysian Technology Startups: Case Study of Malaysian Technology Development Corporation as the Innovator

Authors: Norhalim Yunus, Mohamad Husaini Dahalan, Nor Halina Ghazali

Abstract:

Building technology start-ups from ground zero into world-class companies in form and substance present a rare opportunity for government-affiliated institutions in Malaysia. The challenge of building such start-ups becomes tougher when their core businesses involve commercialization of unproven technologies for the mass market. These simple truths, while difficult to execute, will go a long way in getting a business off the ground and flying high. Malaysian Technology Development Corporation (MTDC), a company founded to facilitate the commercial exploitation of R&D findings from research institutions and universities, and eventually help translate these findings of applications in the marketplace, is an excellent case in point. The purpose of this paper is to examine MTDC as an institution as it explores the concept of ‘it takes a village to raise a child’ in an effort to create and nurture start-ups into established world class Malaysian technology companies. With MTDC at the centre of Malaysia's innovative start-ups, the analysis seeks to specifically answer two questions: How has the concept been applied in MTDC? and what can we learn from this successful case? A key aim is to elucidate how MTDC's journey as a private limited company can help leverage reforms and achieve transformation, a process that might be suitable for other small, open, third world and developing countries. This paper employs a single case study, designed to acquire an in-depth understanding of how MTDC has developed and grown technology start-ups to world-class technology companies. The case study methodology is employed as the focus is on a contemporary phenomenon within a real business context. It also explains the causal links in real-life situations where a single survey or experiment is unable to unearth. The findings show that MTDC maximises the concept of it needs a village to raise a child in totality, as MTDC itself assumes the role of the innovator to 'raise' start-up companies into world-class stature. As the innovator, MTDC creates shared value and leadership, introduces innovative programmes ahead of the curve, mobilises talents for optimum results and aggregates knowledge for personnel advancement. The success of the company's effort is attributed largely to leadership, visionary, adaptability, commitment to innovate, partnership and networking, and entrepreneurial drive. The findings of this paper are however limited by the single case study of MTDC. Future research is required to study more cases of success or/and failure where the concept of it takes a village to raise a child have been explored and applied.

Keywords: start-ups, technology transfer, commercialization, technology incubator

Procedia PDF Downloads 150
85 Propagation of Ultra-High Energy Cosmic Rays through Extragalactic Magnetic Fields: An Exploratory Study of the Distance Amplification from Rectilinear Propagation

Authors: Rubens P. Costa, Marcelo A. Leigui de Oliveira

Abstract:

The comprehension of features on the energy spectra, the chemical compositions, and the origins of Ultra-High Energy Cosmic Rays (UHECRs) - mainly atomic nuclei with energies above ~1.0 EeV (exa-electron volts) - are intrinsically linked to the problem of determining the magnitude of their deflections in cosmic magnetic fields on cosmological scales. In addition, as they propagate from the source to the observer, modifications are expected in their original energy spectra, anisotropy, and the chemical compositions due to interactions with low energy photons and matter. This means that any consistent interpretation of the nature and origin of UHECRs has to include the detailed knowledge of their propagation in a three-dimensional environment, taking into account the magnetic deflections and energy losses. The parameter space range for the magnetic fields in the universe is very large because the field strength and especially their orientation have big uncertainties. Particularly, the strength and morphology of the Extragalactic Magnetic Fields (EGMFs) remain largely unknown, because of the intrinsic difficulty of observing them. Monte Carlo simulations of charged particles traveling through a simulated magnetized universe is the straightforward way to study the influence of extragalactic magnetic fields on UHECRs propagation. However, this brings two major difficulties: an accurate numerical modeling of charged particles diffusion in magnetic fields, and an accurate numerical modeling of the magnetized Universe. Since magnetic fields do not cause energy losses, it is important to impose that the particle tracking method conserve the particle’s total energy and that the energy changes are results of the interactions with background photons only. Hence, special attention should be paid to computational effects. Additionally, because of the number of particles necessary to obtain a relevant statistical sample, the particle tracking method must be computationally efficient. In this work, we present an analysis of the propagation of ultra-high energy charged particles in the intergalactic medium. The EGMFs are considered to be coherent within cells of 1 Mpc (mega parsec) diameter, wherein they have uniform intensities of 1 nG (nano Gauss). Moreover, each cell has its field orientation randomly chosen, and a border region is defined such that at distances beyond 95% of the cell radius from the cell center smooth transitions have been applied in order to avoid discontinuities. The smooth transitions are simulated by weighting the magnetic field orientation by the particle's distance to the two nearby cells. The energy losses have been treated in the continuous approximation parameterizing the mean energy loss per unit path length by the energy loss length. We have shown, for a particle with the typical energy of interest the integration method performance in the relative error of Larmor radius, without energy losses and the relative error of energy. Additionally, we plotted the distance amplification from rectilinear propagation as a function of the traveled distance, particle's magnetic rigidity, without energy losses, and particle's energy, with energy losses, to study the influence of particle's species on these calculations. The results clearly show when it is necessary to use a full three-dimensional simulation.

Keywords: cosmic rays propagation, extragalactic magnetic fields, magnetic deflections, ultra-high energy

Procedia PDF Downloads 127
84 ATR-IR Study of the Mechanism of Aluminum Chloride Induced Alzheimer Disease - Curative and Protective Effect of Lepidium sativum Water Extract on Hippocampus Rats Brain Tissue

Authors: Maha J. Balgoon, Gehan A. Raouf, Safaa Y. Qusti, Soad S. Ali

Abstract:

The main cause of Alzheimer disease (AD) was believed to be mainly due to the accumulation of free radicals owing to oxidative stress (OS) in brain tissue. The mechanism of the neurotoxicity of Aluminum chloride (AlCl3) induced AD in hippocampus Albino wister rat brain tissue, the curative & the protective effects of Lipidium sativum group (LS) water extract were assessed after 8 weeks by attenuated total reflection spectroscopy ATR-IR and histologically by light microscope. ATR-IR results revealed that the membrane phospholipid undergo free radical attacks, mediated by AlCl3, primary affects the polyunsaturated fatty acids indicated by the increased of the olefinic -C=CH sub-band area around 3012 cm-1 from the curve fitting analysis. The narrowing in the half band width(HBW) of the sνCH2 sub-band around 2852 cm-1 due to Al intoxication indicates the presence of trans form fatty acids rather than gauch rotomer. The degradation of hydrocarbon chain to shorter chain length, increasing in membrane fluidity, disorder and decreasing in lipid polarity in AlCl3 group were indicated by the detected changes in certain calculated area ratios compared to the control. Administration of LS was greatly improved these parameters compared to the AlCl3 group. Al influences the Aβ aggregation and plaque formation, which in turn interferes to and disrupts the membrane structure. The results also showed a marked increase in the β-parallel and antiparallel structure, that characterize the Aβ formation in Al-induced AD hippocampal brain tissue, indicated by the detected increase in both amide I sub-bands around 1674, 1692 cm-1. This drastic increase in Aβ formation was greatly reduced in the curative and protective groups compared to the AlCl3 group and approaches nearly the control values. These results were supported too by the light microscope. AlCl3 group showed significant marked degenerative changes in hippocampal neurons. Most cells appeared small, shrieked and deformed. Interestingly, the administration of LS in curative and protective groups markedly decreases the amount of degenerated cells compared to the non-treated group. Also the intensity of congo red stained cells was decreased. Hippocampal neurons looked more/or less similar to those of control. This study showed a promising therapeutic effect of Lipidium sativum group (LS) on AD rat model that seriously overcome the signs of oxidative stress on membrane lipid and restore the protein misfolding.

Keywords: aluminum chloride, alzheimer disease, ATR-IR, Lipidium sativum

Procedia PDF Downloads 366
83 Effect of Silica Nanoparticles on Three-Point Flexural Properties of Isogrid E-Glass Fiber/Epoxy Composite Structures

Authors: Hamed Khosravi, Reza Eslami-Farsani

Abstract:

Increased interest in lightweight and efficient structural components has created the need for selecting materials with improved mechanical properties. To do so, composite materials are being widely used in many applications, due to durability, high strength and modulus, and low weight. Among the various composite structures, grid-stiffened structures are extensively considered in various aerospace and aircraft applications, because of higher specific strength and stiffness, higher impact resistance, superior load-bearing capacity, easy to repair, and excellent energy absorption capability. Although there are a good number of publications on the design aspects and fabrication of grid structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Therefore, the aim of this research is to study the reinforcing effect of silica nanoparticles on the flexural properties of epoxy/E-glass isogrid panels under three-point bending test. Samples containing 0, 1, 3, and 5 wt.% of the silica nanoparticles, with 44 and 48 vol.% of the glass fibers in the ribs and skin components respectively, were fabricated by using a manual filament winding method. Ultrasonic and mechanical routes were employed to disperse the nanoparticles within the epoxy resin. To fabricate the ribs, the unidirectional fiber rovings were impregnated with the matrix mixture (epoxy + nanoparticles) and then laid up into the grooves of a silicone mold layer-by-layer. At once, four plies of woven fabrics, after impregnating into the same matrix mixture, were layered on the top of the ribs to produce the skin part. In order to conduct the ultimate curing and to achieve the maximum strength, the samples were tested after 7 days of holding at room temperature. According to load-displacement graphs, the bellow trend was observed for all of the samples when loaded from the skin side; following an initial linear region and reaching a load peak, the curve was abruptly dropped and then showed a typical absorbed energy region. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. The results showed that the flexural properties of the nanocomposite samples were always higher than those of the nanoparticle-free sample. The maximum enhancement in flexural maximum load and energy absorption was found to be for the incorporation of 3 wt.% of the nanoparticles. Furthermore, the flexural stiffness was continually increased by increasing the silica loading. In conclusion, this study suggested that the addition of nanoparticles is a promising method to improve the flexural properties of grid-stiffened fibrous composite structures.

Keywords: grid-stiffened composite structures, nanocomposite, three point flexural test , energy absorption

Procedia PDF Downloads 341
82 Potential Impacts of Climate Change on Hydrological Droughts in the Limpopo River Basin

Authors: Nokwethaba Makhanya, Babatunde J. Abiodun, Piotr Wolski

Abstract:

Climate change possibly intensifies hydrological droughts and reduces water availability in river basins. Despite this, most research on climate change effects in southern Africa has focused exclusively on meteorological droughts. This thesis projects the potential impact of climate change on the future characteristics of hydrological droughts in the Limpopo River Basin (LRB). The study uses regional climate model (RCM) measurements (from the Coordinated Regional Climate Downscaling Experiment, CORDEX) and a combination of hydrological simulations (using the Soil and Water Assessment Tool Plus model, SWAT+) to predict the impacts at four global warming levels (GWLs: 1.5℃, 2.0℃, 2.5℃, and 3.0℃) under the RCP8.5 future climate scenario. The SWAT+ model was calibrated and validated with a streamflow dataset observed over the basin, and the sensitivity of model parameters was investigated. The performance of the SWAT+LRB model was verified using the Nash-Sutcliffe efficiency (NSE), Percent Bias (PBIAS), Root Mean Square Error (RMSE), and coefficient of determination (R²). The Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) have been used to detect meteorological droughts. The Soil Water Index (SSI) has been used to define agricultural drought, while the Water Yield Drought Index (WYLDI), the Surface Run-off Index (SRI), and the Streamflow Index (SFI) have been used to characterise hydrological drought. The performance of the SWAT+ model simulations over LRB is sensitive to the parameters CN2 (initial SCS runoff curve number for moisture condition II) and ESCO (soil evaporation compensation factor). The best simulation generally performed better during the calibration period than the validation period. In calibration and validation periods, NSE is ≤ 0.8, while PBIAS is ≥ ﹣80.3%, RMSE ≥ 11.2 m³/s, and R² ≤ 0.9. The simulations project a future increase in temperature and potential evapotranspiration over the basin, but they do not project a significant future trend in precipitation and hydrological variables. However, the spatial distribution of precipitation reveals a projected increase in precipitation in the southern part of the basin and a decline in the northern part of the basin, with the region of reduced precipitation projected to increase with GWLs. A decrease in all hydrological variables is projected over most parts of the basin, especially over the eastern part of the basin. The simulations predict meteorological droughts (i.e., SPEI and SPI), agricultural droughts (i.e., SSI), and hydrological droughts (i.e., WYLDI, SRI) would become more intense and severe across the basin. SPEI-drought has a greater magnitude of increase than SPI-drought, and agricultural and hydrological droughts have a magnitude of increase between the two. As a result, this research suggests that future hydrological droughts over the LRB could be more severe than the SPI-drought projection predicts but less severe than the SPEI-drought projection. This research can be used to mitigate the effects of potential climate change on basin hydrological drought.

Keywords: climate change, CORDEX, drought, hydrological modelling, Limpopo River Basin

Procedia PDF Downloads 128
81 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees

Authors: Alexandru-Ion Marinescu

Abstract:

There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.

Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution

Procedia PDF Downloads 117
80 Transcriptional Differences in B cell Subpopulations over the Course of Preclinical Autoimmunity Development

Authors: Aleksandra Bylinska, Samantha Slight-Webb, Kevin Thomas, Miles Smith, Susan Macwana, Nicolas Dominguez, Eliza Chakravarty, Joan T. Merrill, Judith A. James, Joel M. Guthridge

Abstract:

Background: Systemic Lupus Erythematosus (SLE) is an interferon-related autoimmune disease characterized by B cell dysfunction. One of the main hallmarks is a loss of tolerance to self-antigens leading to increased levels of autoantibodies against nuclear components (ANAs). However, up to 20% of healthy ANA+ individuals will not develop clinical illness. SLE is more prevalent among women and minority populations (African, Asian American and Hispanics). Moreover, African Americans have a stronger interferon (IFN) signature and develop more severe symptoms. The exact mechanisms involved in ethnicity-dependent B cell dysregulation and the progression of autoimmune disease from ANA+ healthy individuals to clinical disease remains unclear. Methods: Peripheral blood mononuclear cells (PBMCs) from African (AA) and European American (EA) ANA- (n=12), ANA+ (n=12) and SLE (n=12) individuals were assessed by multimodal scRNA-Seq/CITE-Seq methods to examine differential gene signatures in specific B cell subsets. Library preparation was done with a 10X Genomics Chromium according to established protocols and sequenced on Illumina NextSeq. The data were further analyzed for distinct cluster identification and differential gene signatures in the Seurat package in R and pathways analysis was performed using Ingenuity Pathways Analysis (IPA). Results: Comparing all subjects, 14 distinct B cell clusters were identified using a community detection algorithm and visualized with Uniform Manifold Approximation Projection (UMAP). The proportion of each of those clusters varied by disease status and ethnicity. Transitional B cells trended higher in ANA+ healthy individuals, especially in AA. Ribonucleoprotein high population (HNRNPH1 elevated, heterogeneous nuclear ribonucleoprotein, RNP-Hi) of proliferating Naïve B cells were more prevalent in SLE patients, specifically in EA. Interferon-induced protein high population (IFIT-Hi) of Naive B cells are increased in EA ANA- individuals. The proportion of memory B cells and plasma cells clusters tend to be expanded in SLE patients. As anticipated, we observed a higher signature of cytokine-related pathways, especially interferon, in SLE individuals. Pathway analysis among AA individuals revealed an NRF2-mediated Oxidative Stress response signature in the transitional B cell cluster, not seen in EA individuals. TNFR1/2 and Sirtuin Signaling pathway genes were higher in AA IFIT-Hi Naive B cells, whereas they were not detected in EA individuals. Interferon signaling was observed in B cells in both ethnicities. Oxidative phosphorylation was found in age-related B cells (ABCs) for both ethnicities, whereas Death Receptor Signaling was found only in EA patients in these cells. Interferon-related transcription factors were elevated in ABCs and IFIT-Hi Naive B cells in SLE subjects of both ethnicities. Conclusions: ANA+ healthy individuals have altered gene expression pathways in B cells that might drive apoptosis and subsequent clinical autoimmune pathogenesis. Increases in certain regulatory pathways may delay progression to SLE. Further, AA individuals have more elevated activation pathways that may make them more susceptible to SLE.

Keywords:

Procedia PDF Downloads 175
79 Teachers Engagement to Teaching: Exploring Australian Teachers’ Attribute Constructs of Resilience, Adaptability, Commitment, Self/Collective Efficacy Beliefs

Authors: Lynn Sheridan, Dennis Alonzo, Hoa Nguyen, Andy Gao, Tracy Durksen

Abstract:

Disruptions to teaching (e.g., COVID-related) have increased work demands for teachers. There is an opportunity for research to explore evidence-informed steps to support teachers. Collective evidence informs data on teachers’ personal attributes (e.g., self-efficacy beliefs) in the workplace are seen to promote success in teaching and support teacher engagement. Teacher engagement plays a role in students’ learning and teachers’ effectiveness. Engaged teachers are better at overcoming work-related stress, burnout and are more likely to take on active roles. Teachers’ commitment is influenced by a host of personal (e.g., teacher well-being) and environmental factors (e.g., job stresses). The job demands-resources model provided a conceptual basis for examining how teachers’ well-being, and is influenced by job demands and job resources. Job demands potentially evoke strain and exceed the employee’s capability to adapt. Job resources entail what the job offers to individual teachers (e.g., organisational support), helping to reduce job demands. The application of the job demands-resources model involves gathering an evidence-base of and connection to personal attributes (job resources). The study explored the association between constructs (resilience, adaptability, commitment, self/collective efficacy) and a teacher’s engagement with the job. The paper sought to elaborate on the model and determine the associations between key constructs of well-being (resilience, adaptability), commitment, and motivation (self and collective-efficacy beliefs) to teachers’ engagement in teaching. Data collection involved online a multi-dimensional instrument using validated items distributed from 2020-2022. The instrument was designed to identify construct relationships. The participant number was 170. Data Analysis: The reliability coefficients, means, standard deviations, skewness, and kurtosis statistics for the six variables were completed. All scales have good reliability coefficients (.72-.96). A confirmatory factor analysis (CFA) and structural equation model (SEM) were performed to provide measurement support and to obtain latent correlations among factors. The final analysis was performed using structural equation modelling. Several fit indices were used to evaluate the model fit, including chi-square statistics and root mean square error of approximation. The CFA and SEM analysis was performed. The correlations of constructs indicated positive correlations exist, with the highest found between teacher engagement and resilience (r=.80) and the lowest between teacher adaptability and collective teacher efficacy (r=.22). Given the associations; we proceeded with CFA. The CFA yielded adequate fit: CFA fit: X (270, 1019) = 1836.79, p < .001, RMSEA = .04, and CFI = .94, TLI = .93 and SRMR = .04. All values were within the threshold values, indicating a good model fit. Results indicate that increasing teacher self-efficacy beliefs will increase a teacher’s level of engagement; that teacher ‘adaptability and resilience are positively associated with self-efficacy beliefs, as are collective teacher efficacy beliefs. Implications for school leaders and school systems: 1. investing in increasing teachers’ sense of efficacy beliefs to manage work demands; 2. leadership approaches can enhance teachers' adaptability and resilience; and 3. a culture of collective efficacy support. Preparing teachers for now and in the future offers an important reminder to policymakers and school leaders on the importance of supporting teachers’ personal attributes when faced with the challenging demands of the job.

Keywords: collective teacher efficacy, teacher self-efficacy, job demands, teacher engagement

Procedia PDF Downloads 124
78 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research

Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde

Abstract:

Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.

Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing

Procedia PDF Downloads 94
77 The Role of China’s Rural Policies on the Changing the Rural Area in China: Changfu Village(China) Case

Authors: Zheng Lulin, Xiong Guoping

Abstract:

In recent years, agriculture, rural development, and peasants are among the top concerns and priorities of the Chinese Government. Several related issues have been paid many attentions by academic communities, including the impacts of corresponding policies on the rural villages, the mechanisms of these impacts, and the future development of rural society. However, most of the researchers focus on single rural policy instead of integral rural policy system. Hence, this dissertation focused on the mechanisms of policies’ influence on rural changes through a case study from Changfu Village in central Guangxi Province, China, to propose the optimized suggestions for rural development. Forty-three relevant pivotal policies of significant influence on rural development are summarized from literature and documents, covering five aspects of agricultural production, rural living security, open rural markets, rural household registration systems, and farmland transferring. Besides, having been live in this area for more than 20 years, researchers obtain the basic information about changing the social connection between citizens and villagers, the habitat of villagers by years of informal interviews. Furthermore, more than 200 questionnaires are given to villagers to analyze the changing of their personal and family information. The summary of rural policies revealed that the development trend of public rural policies followed the U-shape curve and these policies are characterized by economic intentions and operative economy. Report of questionnaires and interviews show that the development of rural economy was promoted greatly by public policies. Firstly, Social communication and rural culture were affected to a certain extent. Secondly, the educational level of rural individuals was significantly enhanced, whereas the quality of population had limited progress. Finally, the freedom of occupational choice for rural individuals into cities was greater than before, but still restricted by the class solidification of social background, resulting in more obstacles for rural individuals to settle down in cities. From what we discuss about, we may reach the conclusion on several perspectives: Firstly, the impact of the rural policies has a significant role in promoting the economy development of the rural area. However, separations between rural and urban area are still a major problem since rural policy contributed little to improve the rural population quality. Therefore, in the future, providing high quality educational facilities including teachers, libraries, and opportunities of broadening their knowledge base are key issues of future rural policy. Secondly, the development of rural economy would be a lack of driving force for further improvement owning to the fact that working hard couldn’t get more improvement. In the future, public policies should support the rural development of culture, technology, and personal qualities to create favorable social environment for the free increase of rural population.

Keywords: changing of rural area, rural development of China, rural policy, social environment

Procedia PDF Downloads 429
76 Fast Detection of Local Fiber Shifts by X-Ray Scattering

Authors: Peter Modregger, Özgül Öztürk

Abstract:

Glass fabric reinforced thermoplastic (GFRT) are composite materials, which combine low weight and resilient mechanical properties rendering them especially suitable for automobile construction. However, defects in the glass fabric as well as in the polymer matrix can occur during manufacturing, which may compromise component lifetime or even safety. One type of these defects is local fiber shifts, which can be difficult to detect. Recently, we have experimentally demonstrated the reliable detection of local fiber shifts by X-ray scattering based on the edge-illumination (EI) principle. EI constitutes a novel X-ray imaging technique that utilizes two slit masks, one in front of the sample and one in front of the detector, in order to simultaneously provide absorption, phase, and scattering contrast. The principle of contrast formation is as follows. The incident X-ray beam is split into smaller beamlets by the sample mask, resulting in small beamlets. These are distorted by the interaction with the sample, and the distortions are scaled up by the detector masks, rendering them visible to a pixelated detector. In the experiment, the sample mask is laterally scanned, resulting in Gaussian-like intensity distributions in each pixel. The area under the curves represents absorption, the peak offset refraction, and the width of the curve represents the scattering occurring in the sample. Here, scattering is caused by the numerous glass fiber/polymer matrix interfaces. In our recent publication, we have shown that the standard deviation of the absorption and scattering values over a selected field of view can be used to distinguish between intact samples and samples with local fiber shift defects. The quantification of defect detection performance was done by using p-values (p=0.002 for absorption and p=0.009 for scattering) and contrast-to-noise ratios (CNR=3.0 for absorption and CNR=2.1 for scattering) between the two groups of samples. This was further improved for the scattering contrast to p=0.0004 and CNR=4.2 by utilizing a harmonic decomposition analysis of the images. Thus, we concluded that local fiber shifts can be reliably detected by the X-ray scattering contrasts provided by EI. However, a potential application in, for example, production monitoring requires fast data acquisition times. For the results above, the scanning of the sample masks was performed over 50 individual steps, which resulted in long total scan times. In this paper, we will demonstrate that reliable detection of local fiber shift defects is also possible by using single images, which implies a speed up of total scan time by a factor of 50. Additional performance improvements will also be discussed, which opens the possibility for real-time acquisition. This contributes a vital step for the translation of EI to industrial applications for a wide variety of materials consisting of numerous interfaces on the micrometer scale.

Keywords: defects in composites, X-ray scattering, local fiber shifts, X-ray edge Illumination

Procedia PDF Downloads 63
75 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region

Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho

Abstract:

The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.

Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon

Procedia PDF Downloads 66
74 Gas-Phase Noncovalent Functionalization of Pristine Single-Walled Carbon Nanotubes with 3D Metal(II) Phthalocyanines

Authors: Vladimir A. Basiuk, Laura J. Flores-Sanchez, Victor Meza-Laguna, Jose O. Flores-Flores, Lauro Bucio-Galindo, Elena V. Basiuk

Abstract:

Noncovalent nanohybrid materials combining carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of increasing research effort, with a particular emphasis on the design of new heterogeneous catalysts, efficient organic photovoltaic cells, lithium batteries, gas sensors, field effect transistors, among other possible applications. The possibility of using unsubstituted Pcs for CNT functionalization is very attractive due to their very moderate cost and easy commercial availability. However, unfortunately, the deposition of unsubstituted Pcs onto nanotube sidewalls through the traditional liquid-phase protocols turns to be very problematic due to extremely poor solubility of Pcs. On the other hand, unsubstituted free-base H₂Pc phthalocyanine ligand, as well as many of its transition metal complexes, exhibit very high thermal stability and considerable volatility under reduced pressure, which opens the possibility for their physical vapor deposition onto solid surfaces, including nanotube sidewalls. In the present work, we show the possibility of simple, fast and efficient noncovalent functionalization of single-walled carbon nanotubes (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me= Co, Ni, Cu, and Zn. The functionalization can be performed in a temperature range of 400-500 °C under moderate vacuum and requires about 2-3 h only. The functionalized materials obtained were characterized by means of Fourier-transform infrared (FTIR), Raman, UV-visible and energy-dispersive X-ray spectroscopy (EDS), scanning and transmission electron microscopy (SEM and TEM, respectively) and thermogravimetric analysis (TGA). TGA suggested that Me(II)Pc weight content is 30%, 17% and 35% for NiPc, CuPc, and ZnPc, respectively (CoPc exhibited anomalous thermal decomposition behavior). The above values are consistent with those estimated from EDS spectra, namely, of 24-39%, 27-36% and 27-44% for CoPc, CuPc, and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Me(II)Pc hybrids, as compared to that of pristine nanotubes, implies very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO, respectively) distribution patterns, calculated with density functional theory by using Perdew-Burke-Ernzerhof general gradient approximation correlation functional in combination with the Grimme’s empirical dispersion correction (PBE-D) and the double numerical basis set (DNP), also suggested that the interactions between Me(II) phthalocyanines and nanotube sidewalls are very strong. The authors thank the National Autonomous University of Mexico (grant DGAPA-IN200516) and the National Council of Science and Technology of Mexico (CONACYT, grant 250655) for financial support. The authors are also grateful to Dr. Natalia Alzate-Carvajal (CCADET of UNAM), Eréndira Martínez (IF of UNAM) and Iván Puente-Lee (Faculty of Chemistry of UNAM) for technical assistance with FTIR, TGA measurements, and TEM imaging, respectively.

Keywords: carbon nanotubes, functionalization, gas-phase, metal(II) phthalocyanines

Procedia PDF Downloads 129
73 Geomorphology and Flood Analysis Using Light Detection and Ranging

Authors: George R. Puno, Eric N. Bruno

Abstract:

The natural landscape of the Philippine archipelago plus the current realities of climate change make the country vulnerable to flood hazards. Flooding becomes the recurring natural disaster in the country resulting to lose of lives and properties. Musimusi is among the rivers which exhibited inundation particularly at the inhabited floodplain portion of its watershed. During the event, rescue operations and distribution of relief goods become a problem due to lack of high resolution flood maps to aid local government unit identify the most affected areas. In the attempt of minimizing impact of flooding, hydrologic modelling with high resolution mapping is becoming more challenging and important. This study focused on the analysis of flood extent as a function of different geomorphologic characteristics of Musimusi watershed. The methods include the delineation of morphometric parameters in the Musimusi watershed using Geographic Information System (GIS) and geometric calculations tools. Digital Terrain Model (DTM) as one of the derivatives of Light Detection and Ranging (LiDAR) technology was used to determine the extent of river inundation involving the application of Hydrologic Engineering Center-River Analysis System (HEC-RAS) and Hydrology Modelling System (HEC-HMS) models. The digital elevation model (DEM) from synthetic Aperture Radar (SAR) was used to delineate watershed boundary and river network. Datasets like mean sea level, river cross section, river stage, discharge and rainfall were also used as input parameters. Curve number (CN), vegetation, and soil properties were calibrated based on the existing condition of the site. Results showed that the drainage density value of the watershed is low which indicates that the basin is highly permeable subsoil and thick vegetative cover. The watershed’s elongation ratio value of 0.9 implies that the floodplain portion of the watershed is susceptible to flooding. The bifurcation ratio value of 2.1 indicates higher risk of flooding in localized areas of the watershed. The circularity ratio value (1.20) indicates that the basin is circular in shape, high discharge of runoff and low permeability of the subsoil condition. The heavy rainfall of 167 mm brought by Typhoon Seniang last December 29, 2014 was characterized as high intensity and long duration, with a return period of 100 years produced 316 m3s-1 outflows. Portion of the floodplain zone (1.52%) suffered inundation with 2.76 m depth at the maximum. The information generated in this study is helpful to the local disaster risk reduction management council in monitoring the affected sites for more appropriate decisions so that cost of rescue operations and relief goods distribution is minimized.

Keywords: flooding, geomorphology, mapping, watershed

Procedia PDF Downloads 230
72 Acute Antihyperglycemic Activity of a Selected Medicinal Plant Extract Mixture in Streptozotocin Induced Diabetic Rats

Authors: D. S. N. K. Liyanagamage, V. Karunaratne, A. P. Attanayake, S. Jayasinghe

Abstract:

Diabetes mellitus is an ever increasing global health problem which causes disability and untimely death. Current treatments using synthetic drugs have caused numerous adverse effects as well as complications, leading research efforts in search of safe and effective alternative treatments for diabetes mellitus. Even though there are traditional Ayurvedic remedies which are effective, due to a lack of scientific exploration, they have not been proven to be beneficial for common use. Hence the aim of this study is to evaluate the traditional remedy made of mixture of plant components, namely leaves of Murraya koenigii L. Spreng (Rutaceae), cloves of Allium sativum L. (Amaryllidaceae), fruits of Garcinia queasita Pierre (Clusiaceae) and seeds of Piper nigrum L. (Piperaceae) used for the treatment of diabetes. We report herein the preliminary results for the in vivo study of the anti-hyperglycaemic activity of the extracts of the above plant mixture in Wistar rats. A mixture made out of equal weights (100 g) of the above mentioned medicinal plant parts were extracted into cold water, hot water (3 h reflux) and water: acetone mixture (1:1) separately. Male wistar rats were divided into six groups that received different treatments. Diabetes mellitus was induced by intraperitoneal administration of streptozotocin at a dose of 70 mg/ kg in male Wistar rats in group two, three, four, five and six. Group one (N=6) served as the healthy untreated and group two (N=6) served as diabetic untreated control and both groups received distilled water. Cold water, hot water, and water: acetone plant extracts were orally administered in diabetic rats in groups three, four and five, respectively at different doses of 0.5 g/kg (n=6), 1.0 g/kg(n=6) and 1.5 g/kg(n=6) for each group. Glibenclamide (0.5 mg/kg) was administered to diabetic rats in group six (N=6) served as the positive control. The acute anti-hyperglycemic effect was evaluated over a four hour period using the total area under the curve (TAUC) method. The results of the test group of rats were compared with the diabetic untreated control. The TAUC of healthy and diabetic rats were 23.16 ±2.5 mmol/L.h and 58.31±3.0 mmol/L.h, respectively. A significant dose dependent improvement in acute anti-hyperglycaemic activity was observed in water: acetone extract (25%), hot water extract ( 20 %), and cold water extract (15 %) compared to the diabetic untreated control rats in terms of glucose tolerance (P < 0.05). Therefore, the results suggest that the plant mixture has a potent antihyperglycemic effect and thus validating their used in Ayurvedic medicine for the management of diabetes mellitus. Future studies will be focused on the determination of the long term in vivo anti-diabetic mechanisms and isolation of bioactive compounds responsible for the anti-diabetic activity.

Keywords: acute antihyperglycemic activity, herbal mixture, oral glucose tolerance test, Sri Lankan medicinal plant extracts

Procedia PDF Downloads 179
71 Initial Resistance Training Status Influences Upper Body Strength and Power Development

Authors: Stacey Herzog, Mitchell McCleary, Istvan Kovacs

Abstract:

Purpose: Maximal strength and maximal power are key athletic abilities in many sports disciplines. In recent years, velocity-based training (VBT) with a relatively high 75-85% 1RM resistance has been popularized in preparation for powerlifting and various other sports. The purpose of this study was to discover differences between beginner/intermediate and advanced lifters’ push/press performances after a heavy resistance-based BP training program. Methods: A six-week, three-workouts per week program was administered to 52 young, physically active adults (age: 22.4±5.1; 12 female). The majority of the participants (84.6%) had prior experience in bench pressing. Typical workouts began with BP using 75-95% 1RM in the 1-5 repetition range. The sets in the lower part of the range (75-80% 1RM) were performed with velocity-focus as well. The BP sets were followed by seated dumbbell presses and six additional upper-body assistance exercises. Pre- and post-tests were conducted on five test exercises: one-repetition maximum BP (1RM), calculated relative strength index: BP/BW (RSI), four-repetition maximal-effort dynamic BP for peak concentric velocity with 80% 1RM (4RV), 4-repetition ballistic pushups (BPU) for height (4PU), and seated medicine ball toss for distance (MBT). For analytic purposes, the participant group was divided into two subgroups: self-indicated beginner or intermediate initial resistance training status (BITS) [n=21, age: 21.9±3.6; 10 female] and advanced initial resistance training status (ATS) [n=31, age: 22.7±5.9; 2 female]. Pre- and post-test results were compared within subgroups. Results: Paired-sample t-tests indicated significant within-group improvements in all five test exercises in both groups (p < 0.05). BITS improved 18.1 lbs. (13.0%) in 1RM, 0.099 (12.8%) in RSI, 0.133 m/s (23.3%) in 4RV, 1.55 in. (27.1%) in BPU, and 1.00 ft. (5.8%) in MBT, while the ATS group improved 13.2 lbs. (5.7%) in 1RM, 0.071 (5.8%) in RSI, 0.051 m/s (9.1%) in 4RV, 1.20 in. (13.7%) in BPU, and 1.15 ft. (5.5%) in MBT. Conclusion: While the two training groups had different initial resistance training backgrounds, both showed significant improvements in all test exercises. As expected, the beginner/intermediate group displayed better relative improvements in four of the five test exercises. However, the medicine ball toss, which had the lightest resistance among the tests, showed similar relative improvements between the two groups. These findings relate to two important training principles: specificity and transfer. The ATS group had more specific experiences with heavy-resistance BP. Therefore, fewer improvements were detected in their test performances with heavy resistances. On the other hand, while the heavy resistance-based training transferred to increased power outcomes in light-resistance power exercises, the difference in the rate of improvement between the two groups disappeared. Practical applications: Based on initial training status, S&C coaches should expect different performance gains in maximal strength training-specific test exercises. However, the transfer from maximal strength to a non-training-specific performance category along the F-v curve continuum (i.e., light resistance and high velocity) might not depend on initial training status.

Keywords: exercise, power, resistance training, strength

Procedia PDF Downloads 70
70 Wetting Induced Collapse Behavior of Loosely Compacted Kaolin Soil: A Microstructural Study

Authors: Dhanesh Sing Das, Bharat Tadikonda Venkata

Abstract:

Collapsible soils undergo significant volume reduction upon wetting under the pre-existing mechanically applied normal stress (inundation pressure). These soils exhibit a very high strength in air-dried conditions and can carry up to a considerable magnitude of normal stress without undergoing significant volume change. The soil strength is, however, lost upon saturation and results in a sudden collapse of the soil structure under the existing mechanical stress condition. The intrusion of water into the dry deposits of such soil causes ground subsidence leading to damages in the overlying buildings/structures. A study on the wetting-induced volume change behavior of collapsible soils is essential in dealing with the ground subsidence problems in various geotechnical engineering practices. The collapse of loosely compacted Kaolin soil upon wetting under various inundation pressures has been reported in recent studies. The collapse in the Kaolin soil is attributed to the alteration in the soil particle-particle association (fabric) resulting due to the changes in the various inter-particle (microscale) forces induced by the water saturation. The inundation pressure plays a significant role in the fabric evolution during the wetting process, thus controls the collapse potential of the compacted soil. A microstructural study is useful to understand the collapse mechanisms at various pore-fabric levels under different inundation pressure. Kaolin soil compacted to a dry density of 1.25 g/cc was used in this work to study the wetting-induced volume change behavior under different inundation pressures in the range of 10-1600 kPa. The compacted specimen of Kaolin soil exhibited a consistent collapse under all the studied inundation pressure. The collapse potential was observed to be increasing with an increase in the inundation pressure up to a maximum value of 13.85% under 800 kPa and then decreased to 11.7% under 1600 kPa. Microstructural analysis was carried out based on the fabric images and the pore size distributions (PSDs) obtained from FESEM analysis and mercury intrusion porosimetry (MIP), respectively. The PSDs and the soil fabric images of ‘as-compacted’ specimen and post-collapse specimen under 400 kPa were analyzed to understand the changes in the soil fabric and pores due to wetting. The pore size density curve for the post-collapse specimen was found to be on the finer side with respect to the ‘as-compacted’ specimen, indicating the reduction of the larger pores during the collapse. The inter-aggregate pores in the range of 0.1-0.5μm were identified as the major contributing pore size classes to the macroscopic volume change. Wetting under an inundation pressure results in the reduction of these pore sizes and lead to an increase in the finer pore sizes. The magnitude of inundation pressure influences the amount of reduction of these pores during the wetting process. The collapse potential was directly related to the degree of reduction in the pore volume contributed by these pore sizes.

Keywords: collapse behavior, inundation pressure, kaolin, microstructure

Procedia PDF Downloads 138