Search results for: crop water requirements
10178 The Use of Fertilizers in the Context of Agricultural Extension
Authors: Ahmed Altalb
Abstract:
Fertilizers are natural materials, or industrial contain nutrients, which help to improve soil fertility and is considered (nitrogen, phosphorus, and potassium) is important elements for the growth of crops properly. Fertilization is necessary in order to improve the quality of agricultural products and the recovery in agricultural activities. The use of organic fertilizers and chemical lead to reduce the loss of nutrients in agricultural soils, and this leads to an increase in the production of agricultural crops. Fertilizers are one of the key factors in the increase of agricultural production as well as other factors such as irrigation and improved seeds and Prevention and others; the fertilizers will continue to be a cornerstone of the agriculture in order to produce the food to feed of world population. The use of fertilizers has become commonplace today, especially the chemical fertilizers for the development of agricultural production, due to the provision of nutrients for plants and in high concentrations and easily dissolves in water and ease of use. The choose the right type of fertilizer depends on the soil type and the type of crop. In this subject, find the relationship between the agricultural extension and the optimal use of fertilizers. The extension plays the important role in the advise and educate of farmers in how they optimal use the fertilizers in a scientific way. This article aims to identify the concept the fertilizers. Identify the role of fertilizers in increasing the agricultural production, identify the role of agricultural extension in the optimal use of fertilizers and rural development.Keywords: agricultural, extension, fertilizers, production
Procedia PDF Downloads 43710177 Review of Various Designs and Development in Hydropower Turbines
Authors: Fatemeh Behrouzi, Adi Maimun, Mehdi Nakisa
Abstract:
The growth of population, rising fossil fuel prices which the fossil fuels are limited and decreased day by day, pollution problem due to use of fossil fuels and electrical demand are important role to encourage of using the green energy and renewable technologies. Among different renewable energy technologies, hydro power generation (large and small scale) is the prime choice in terms of contribution to the world's electricity generation by using water current turbines. Nowadays, researchers focus on design and development of different kind of turbines to capture hydro-power electricity generation as clean and reliable energy. This article is review about statues of water current turbines carried out to generate electricity from hydro-kinetic energy especially places that they do not have electricity, but they have access to the current water.Keywords: water current turbine, renewable energy, hydro-power, mechanic
Procedia PDF Downloads 47910176 Physicochemical and Microbiological Assessment of Source and Stored Domestic Water from Three Local Governments in Ile-Ife, Nigeria
Authors: Mary A. Bisi-Johnson, Kehinde A. Adediran, Saheed A. Akinola, Hamzat A. Oyelade
Abstract:
Some of the main problems man contends with are the quantity (source and amount) and quality of water in Nigeria. Scarcity leads to water being obtained from various sources and microbiological contaminations of the water may thus occur between the collection point and the point of usage. Thus, this study aims to assess the general and microbiological quality of domestic water sources and household stored water used within selected areas in Ile-Ife, South-Western part of Nigeria for microbial contaminants. Physicochemical and microbiological examination were carried out on 45 source and stored water samples collected from well and spring in three different local government areas i.e. Ife east, Ife-south, and Ife-north. Physicochemical analysis included pH value, temperature, total dissolved solid, dissolved oxygen, and biochemical oxygen demand. Microbiology involved most probable number analysis, total coliform, heterotrophic plate, faecal coliform, and streptococcus count. The result of the physicochemical analysis of samples showed anomalies compared to acceptable standards with the pH value of 7.20-8.60 for stored and 6.50-7.80 for source samples as the total dissolved solids (TDS of stored 20-70mg/L, source 352-691mg/L), dissolved oxygen (DO of stored 1.60-9.60mg/L, source 1.60-4.80mg/L), biochemical oxygen demand (BOD stored 0.80-3.60mg/L, source 0.60-5.40mg/L). General microbiological quality indicated that both stored and source samples with the exception of a sample were not within acceptable range as indicated by analysis of the MPN/100ml which ranges (stored 290-1100mg/L, source 9-1100mg/L). Apart from high counts, most samples did not meet the World Health Organization standard for drinking water with the presence of some pathogenic bacteria and fungi such as Salmonella and Aspergillus spp. To annul these constraints, standard treatment methods should be adopted to make water free from contaminants. This will help identify common and likely water related infection origin within the communities and thus help guide in terms of interventions required to prevent the general populace from such infections.Keywords: domestic, microbiology, physicochemical, quality, water
Procedia PDF Downloads 36110175 Catchment Nutrient Balancing Approach to Improve River Water Quality: A Case Study at the River Petteril, Cumbria, United Kingdom
Authors: Nalika S. Rajapaksha, James Airton, Amina Aboobakar, Nick Chappell, Andy Dyer
Abstract:
Nutrient pollution and their impact on water quality is a key concern in England. Many water quality issues originate from multiple sources of pollution spread across the catchment. The river water quality in England has improved since 1990s and wastewater effluent discharges into rivers now contain less phosphorus than in the past. However, excess phosphorus is still recognised as the prevailing issue for rivers failing Water Framework Directive (WFD) good ecological status. To achieve WFD Phosphorus objectives, Wastewater Treatment Works (WwTW) permit limits are becoming increasingly stringent. Nevertheless, in some rural catchments, the apportionment of Phosphorus pollution can be greater from agricultural runoff and other sources such as septic tanks. Therefore, the challenge of meeting the requirements of watercourses to deliver WFD objectives often goes beyond water company activities, providing significant opportunities to co-deliver activities in wider catchments to reduce nutrient load at source. The aim of this study was to apply the United Utilities' Catchment Systems Thinking (CaST) strategy and pilot an innovative permitting approach - Catchment Nutrient Balancing (CNB) in a rural catchment in Cumbria (the River Petteril) in collaboration with the regulator and others to achieve WFD objectives and multiple benefits. The study area is mainly agricultural land, predominantly livestock farms. The local ecology is impacted by significant nutrient inputs which require intervention to meet WFD obligations. There are a range of Phosphorus inputs into the river, including discharges from wastewater assets but also significantly from agricultural contributions. Solely focusing on the WwTW discharges would not have resolved the problem hence in order to address this issue effectively, a CNB trial was initiated at a small WwTW, targeting the removal of a total of 150kg of Phosphorus load, of which 13kg were to be reduced through the use of catchment interventions. Various catchment interventions were implemented across selected farms in the upstream of the catchment and also an innovative polonite reactive filter media was implemented at the WwTW as an alternative to traditional Phosphorus treatment methods. During the 3 years of this trial, the impact of the interventions in the catchment and the treatment works were monitored. In 2020 and 2022, it respectively achieved a 69% and 63% reduction in the phosphorus level in the catchment against the initial reduction target of 9%. Phosphorus treatment at the WwTW had a significant impact on overall load reduction. The wider catchment impact, however, was seven times greater than the initial target when wider catchment interventions were also established. While it is unlikely that all the Phosphorus load reduction was delivered exclusively from the interventions implemented though this project, this trial evidenced the enhanced benefits that can be achieved with an integrated approach, that engages all sources of pollution within the catchment - rather than focusing on a one-size-fits-all solution. Primarily, the CNB approach and the act of collaboratively engaging others, particularly the agriculture sector is likely to yield improved farm and land management performance and better compliance, which can lead to improved river quality as well as wider benefits.Keywords: agriculture, catchment nutrient balancing, phosphorus pollution, water quality, wastewater
Procedia PDF Downloads 6610174 Hypersonic Propulsion Requirements for Sustained Hypersonic Flight for Air Transportation
Authors: James Rate, Apostolos Pesiridis
Abstract:
In this paper, the propulsion requirements required to achieve sustained hypersonic flight for commercial air transportation are evaluated. In addition, a design methodology is developed and used to determine the propulsive capabilities of both ramjet and scramjet engines. Twelve configurations are proposed for hypersonic flight using varying combinations of turbojet, turbofan, ramjet and scramjet engines. The optimal configuration was determined based on how well each of the configurations met the projected requirements for hypersonic commercial transport. The configurations were separated into four sub-configurations each comprising of three unique derivations. The first sub-configuration comprised four afterburning turbojets and either one or two ramjets idealised for Mach 5 cruise. The number of ramjets required was dependent on the thrust required to accelerate the vehicle from a speed where the turbojets cut out to Mach 5 cruise. The second comprised four afterburning turbojets and either one or two scramjets, similar to the first configuration. The third used four turbojets, one scramjet and one ramjet to aid acceleration from Mach 3 to Mach 5. The fourth configuration was the same as the third, but instead of turbojets, it implemented turbofan engines for the preliminary acceleration of the vehicle. From calculations which determined the fuel consumption at incremental Mach numbers this paper found that the ideal solution would require four turbojet engines and two Scramjet engines. The ideal mission profile was determined as being an 8000km sortie based on an averaging of popular long haul flights with strong business ties, which included Los Angeles to Tokyo, London to New York and Dubai to Beijing. This paper deemed that these routes would benefit from hypersonic transport links based on the previously mentioned factors. This paper has found that this configuration would be sufficient for the 8000km flight to be completed in approximately two and a half hours and would consume less fuel than Concord in doing so. However, this propulsion configuration still result in a greater fuel cost than a conventional passenger. In this regard, this investigation contributes towards the specification of the engine requirements throughout a mission profile for a hypersonic passenger vehicle. A number of assumptions have had to be made for this theoretical approach but the authors believe that this investigation lays the groundwork for appropriate framing of the propulsion requirements for sustained hypersonic flight for commercial air transportation. Despite this, it does serve as a crucial step in the development of the propulsion systems required for hypersonic commercial air transportation. This paper provides a methodology and a focus for the development of the propulsion systems that would be required for sustained hypersonic flight for commercial air transportation.Keywords: hypersonic, ramjet, propulsion, Scramjet, Turbojet, turbofan
Procedia PDF Downloads 32010173 Water Sorption of Self Cured Resin Acrylic Soaked in Clover Solution
Authors: Hermanto J. M, Mirna Febriani
Abstract:
Resin acrylic, which is widely used, has the physical properties that can absorb liquids. This can lead to a change in the dimensions of the acrylic resin material. If repeated immersions were done, its strength would be affected. Disinfectant solutions have been widely used to reduce microorganisms both inside and outside the patient's mouth. One of the disinfecting materials that can be used is a clover solution. The purpose of this research is to find the ratio of water absorption of the acrylic resin material of self-cured type, soaked in clover solution for 10 minutes. The results showed that the average value obtained before soaked in clover solution was 0.0692 mg/cm3 and after soaked, in clover solution, the value was 0.090 mg/cm3. The conclusion of this research shows that the values of water sorption of acrylic resin before and after soaked in clover solution is still in ISO standard 1567/2001. Differences in water sorption value of self-cured acrylic resin before and after the immersion are caused by the process of liquid diffusion into the acrylic resin.Keywords: absorption of fluid, self-cured acrylic resin, soaked, clover solution
Procedia PDF Downloads 16310172 Barrier Properties of Starch-Ethylene Vinyl Alcohol Nanocomposites
Authors: Farid Amidi Fazli
Abstract:
Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1 -15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also, the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.Keywords: starch, EVOH, nanocrystalline cellulose, hydrophilicity
Procedia PDF Downloads 41110171 Scaling Analysis for the Liquefaction Phenomena Generated by Water Waves
Authors: E. Arcos, E. Bautista, F. Méndez
Abstract:
In this work, a scaling analysis of the liquefaction phenomena is presented. The characteristic scales are obtained by balancing term by term of the well-known partial dynamics governing equations, (U − P). From the above, the order of magnitude of the horizontal displacement is very smaller compared with the vertical displacement and therefore the governing equation is only a function of the dependent vertical variables. The U − P approximation is reduced and presented in its dimensionless version. This scaling analysis can be used to obtain analytical solutions of the liquefaction phenomena under the action of the water waves.Keywords: approximation U-P, porous seabed, scaling analysis, water waves
Procedia PDF Downloads 34910170 Industrial Hemp Agronomy and Fibre Value Chain in Pakistan: Current Progress, Challenges, and Prospects
Authors: Saddam Hussain, Ghadeer Mohsen Albadrani
Abstract:
Pakistan is one of the most vulnerable countries to climate change. Being a country where 23% of the country’s GDP relies on agriculture, this is a serious cause of concern. Introducing industrial hemp in Pakistan can help build climate resilience in the agricultural sector of the country, as hemp has recently emerged as a sustainable, eco-friendly, resource-efficient, and climate-resilient crop globally. Hemp has the potential to absorb huge amounts of CO₂, nourish the soil, and be used to create various biodegradable and eco-friendly products. Hemp is twice as effective as trees at absorbing and locking up carbon, with 1 hectare (2.5 acres) of hemp reckoned to absorb 8 to 22 tonnes of CO₂ a year, more than any woodland. Along with its high carbon-sequestration ability, it produces higher biomass and can be successfully grown as a cover crop. Hemp can grow in almost all soil conditions and does not require pesticides. It has fast-growing qualities and needs only 120 days to be ready for harvest. Compared with cotton, hemp requires 50% less water to grow and can produce three times higher fiber yield with a lower ecological footprint. Recently, the Government of Pakistan has allowed the cultivation of industrial hemp for industrial and medicinal purposes, making it possible for hemp to be reinserted into the country’s economy. Pakistan’s agro-climatic and edaphic conditions are well-suitable to produce industrial hemp, and its cultivation can bring economic benefits to the country. Pakistan can enter global markets as a new exporter of hemp products. The production of hemp in Pakistan can be most exciting to the workforce, especially for farmers participating in hemp markets. The minimum production cost of hemp makes it affordable to small holding farmers, especially those who need their cropping system to be as highly sustainable as possible. Dr. Saddam Hussain is leading the first pilot project of Industrial Hemp in Pakistan. In the past three years, he has been able to recruit high-impact research grants on industrial hemp as Principal Investigator. He has already screened the non-toxic hemp genotypes, tested the adaptability of exotic material in various agroecological conditions, formulated the production agronomy, and successfully developed the complete value chain. He has developed prototypes (fabric, denim, knitwear) using hemp fibre in collaboration with industrial partners and has optimized the indigenous fibre processing techniques. In this lecture, Dr. Hussain will talk on hemp agronomy and its complete fibre value chain. He will discuss the current progress, and will highlight the major challenges and future research direction on hemp research.Keywords: industrial hemp, agricultural sustainability, agronomic evaluation, hemp value chain
Procedia PDF Downloads 8110169 Wicking Bed Cultivation System as a Strategic Proposal for the Cultivation of Milpa and Mexican Medicinal Plants in Urban Spaces
Authors: David Lynch Steinicke, Citlali Aguilera Lira, Andrea León García
Abstract:
The proposal posed in this work comes from a researching-action approach. In Mexico, a dialogue of knowledge may function as a link between traditional, local, pragmatic knowledge, and technological, scientific knowledge. The advantage of generating this nexus lies on the positive impact in the environment, in society and economy. This work attempts to combine, on the one hand the traditional Mexican knowledge such as the usage of medicinal herb and the agroecosystem milpa; and on the other hand make use of a newly created agricultural ecotechnology which main function is to take advantage of the urban space and to save water. This ecotechnology is the wicking bed. In a globalized world, is relevant to have a proposal where the most important aspect is to revalorize the culture through the acquisition of traditional knowledge but at the same time adapting them to the new social and urbanized structures without threatening the environment. The methodology used in this work comes from a researching-action approach combined with a practical dimension where an experimental model made of three wickingbeds was implemented. In this model, there were cultivated medicinal herb and milpa components. The water efficiency and the social acceptance were compared with a traditional ground crop, all this practice was made in an urban social context. The implementation of agricultural ecotechnology has had great social acceptance as its irrigation involves minimal effort and it is economically feasible for low-income people. The wicking bed system raised in this project is attainable to be implemented in schools, urban and peri-urban environments, homemade gardens and public areas. The proposal managed to carry out an innovative and sustainable knowledge-based traditional Mexican agricultural technology, allowing regain Milpa agroecosystem in urban environments to strengthen food security in favour of nutritional and protein benefits for the Mexican fare.Keywords: milpa, traditional medicine, urban agriculture, wicking bed
Procedia PDF Downloads 38710168 Adsorption of Chlorinated Pesticides in Drinking Water by Carbon Nanotubes
Authors: Hacer Sule Gonul, Vedat Uyak
Abstract:
Intensive use of pesticides in agricultural activity causes mixing of these compounds into water sources with surface flow. Especially after the 1970s, a number of limitations imposed on the use of chlorinated pesticides that have a carcinogenic risk potential and regulatory limit have been established. These chlorinated pesticides discharge to water resources, transport in the water and land environment and accumulation in the human body through the food chain raises serious health concerns. Carbon nanotubes (CNTs) have attracted considerable attention from on all because of their excellent mechanical, electrical, and environmental characteristics. Due to CNT particles' high degree of hydrophobic surfaces, these nanoparticles play critical role in the removal of water contaminants of natural organic matters, pesticides and phenolic compounds in water sources. Health concerns associated with chlorinated pesticides requires the removal of such contaminants from aquatic environment. Although the use of aldrin and atrazine was restricted in our country, repatriation of illegal entry and widespread use of such chemicals in agricultural areas cause increases for the concentration of these chemicals in the water supply. In this study, the compounds of chlorinated pesticides such as aldrin and atrazine compounds would be tried to eliminate from drinking water with carbon nanotube adsorption method. Within this study, 2 different types of CNT would be used including single-wall (SWCNT) and multi-wall (MWCNT) carbon nanotubes. Adsorption isotherms within the scope of work, the parameters affecting the adsorption of chlorinated pesticides in water are considered as pH, contact time, CNT type, CNT dose and initial concentration of pesticides. As a result, under conditions of neutral pH conditions with MWCNT respectively for atrazine and aldrin obtained adsorption capacity of determined as 2.24 µg/mg ve 3.84 µg/mg. On the other hand, the determined adsorption capacity rates for SWCNT for aldrin and atrazine has identified as 3.91 µg/mg ve 3.92 µg/mg. After all, each type of pesticide that provides superior performance in relieving SWCNT particles has emerged.Keywords: pesticide, drinking water, carbon nanotube, adsorption
Procedia PDF Downloads 17110167 Treatment of Acid Mine Drainage with Metallurgical Slag
Authors: Sukla Saha, Alok Sinha
Abstract:
Acid mine drainage (AMD) refers to the production of acidified water from abandoned mines and active mines as well. The reason behind the generation of this kind of acidified water is the oxidation of pyrites present in the rocks in and around mining areas. Thiobacillus ferrooxidans, which is a sulfur oxidizing bacteria, helps in the oxidation process. AMD is extremely acidic in nature, (pH 2-3) with high concentration of several trace and heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such as chloride and sulfate. AMD has several detrimental effect on aquatic organism and environment. It can directly or indirectly contaminate the ground water and surface water as well. The present study considered the treatment of AMD with metallurgical slag, which is a waste material. Slag helped to enhance the pH of AMD to 8.62 from 1.5 with 99% removal of trace metals such as Fe, Al, Mn, Cu and Co. Metallurgical slag was proven as efficient neutralizing material for the treatment of AMD.Keywords: acid mine drainage, Heavy metals, metallurgical slag, Neutralization
Procedia PDF Downloads 18710166 Analysis of Gas Disturbance Characteristics in Lunar Sample Storage
Authors: Lv Shizeng, Han Xiao, Zhang Yi, Ding Wenjing
Abstract:
The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation.Keywords: lunar samples, gas disturbance, storage device, characteristic analysis
Procedia PDF Downloads 29410165 Effects of a Cooler on the Sampling Process in a Continuous Emission Monitoring System
Authors: J. W. Ahn, I. Y. Choi, T. V. Dinh, J. C. Kim
Abstract:
A cooler has been widely employed in the extractive system of the continuous emission monitoring system (CEMS) to remove water vapor in the gas stream. The effect of the cooler on analytical target gases was investigated in this research. A commercial cooler for the CEMS operated at 4 C was used. Several gases emitted from a coal power plant (i.e. CO2, SO2, NO, NO2 and CO) were mixed with humid air, and then introduced into the cooler to observe its effect. Concentrations of SO2, NO, NO2 and CO were made as 200 ppm. The CO2 concentration was 8%. The inlet absolute humidity was produced as 12.5% at 100 C using a bubbling method. It was found that the reduction rate of SO2 was the highest (~21%), followed by NO2 (~17%), CO2 (~11%) and CO (~10%). In contrast, the cooler was not affected by NO gas. The result indicated that the cooler caused a significant effect on the water soluble gases due to condensate water in the cooler. To overcome this problem, a correction factor may be applied. However, water vapor might be different, and emissions of target gases are also various. Therefore, the correction factor is not only a solution, but also a better available method should be employed.Keywords: cooler, CEMS, monitoring, reproductive, sampling
Procedia PDF Downloads 36110164 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nano Fluid in Single PEMFC Mini Channel
Authors: Irnie Zakaria, W. A. N. W. Mohamed, W. H. Azmi
Abstract:
Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in mini channel of carbon graphite plate to mimic the PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.Keywords: heat transfer, mini channel, nanofluid, PEMFC
Procedia PDF Downloads 33910163 Rainwater Harvesting and Management of Ground Water (Case Study Weather Modification Project in Iran)
Authors: Samaneh Poormohammadi, Farid Golkar, Vahideh Khatibi Sarabi
Abstract:
Climate change and consecutive droughts have increased the importance of using rainwater harvesting methods. One of the methods of rainwater harvesting and, in other words, the management of atmospheric water resources is the use of weather modification technologies. Weather modification (also known as weather control) is the act of intentionally manipulating or altering the weather. The most common form of weather modification is cloud seeding, which increases rain or snow, usually for the purpose of increasing the local water supply. Cloud seeding operations in Iran have been married since 1999 in central Iran with the aim of harvesting rainwater and reducing the effects of drought. In this research, we analyze the results of cloud seeding operations in the Simindashtplain in northern Iran. Rainwater harvesting with the help of cloud seeding technology has been evaluated through its effects on surface water and underground water. For this purpose, two different methods have been used to estimate runoff. The first method is the US Soil Conservation Service (SCS) curve number method. Another method, known as the reasoning method, has also been used. In order to determine the infiltration rate of underground water, the balance reports of the comprehensive water plan of the country have been used. In this regard, the study areas located in the target area of each province have been extracted by drawing maps of the influence coefficients of each area in the GIS software. It should be mentioned that the infiltration coefficients were taken from the balance sheet reports of the country's comprehensive water plan. Then, based on the area of each study area, the weighted average of the infiltration coefficient of the study areas located in the target area of each province is considered as the infiltration coefficient of that province. Results show that the amount of water extracted from the rain with the help of cloud seeding projects in Simindasht is as follows: an increase in runoff 63.9 million cubic meters (with SCS equation) or 51.2 million cubic meters (with logical equation) and an increase in ground water resources: 40.5 million cubic meters.Keywords: rainwater harvesting, ground water, atmospheric water resources, weather modification, cloud seeding
Procedia PDF Downloads 10510162 Development and Performance Evaluation of a Gladiolus Planter in Field for Planting Corms
Authors: T. P. Singh, Vijay Gautam
Abstract:
Gladiolus is an important cash crop and is grown mainly for its elegant spikes. Traditionally the gladiolus corms are planted manually which is very tedious, time consuming and labor intensive operation. So far, there is no planter available for planting of gladiolus corms. With a view to mechanize the planting operation of this horticultural crop, a prototype of 4-row gladiolus planter was developed and its performance was evaluated in-situ condition. Cup-chain type metering device was used to singulate the gladiolus corms while planting. Three levels of corm spacing viz 15, 20 and 25 cm and four levels of forward speed viz 1.0, 1.5, 2.0 and 2.5 km/h was taken as evaluation parameter for the planter. The performance indicators namely corm spacing in each row, coefficient of uniformity, missing index, multiple index, quality of feed index, number of corms per meter length, mechanical damage to the corms etc. were determined during the field test. The data was statistically analyzed using Completely Randomized Design (CRD) for testing the significance of the parameters. The result indicated that planter was able to drop the corms at required nominal spacing with minor variations. The highest deviation from the mean corm spacing was observed as 3.53 cm with maximum coefficient of variation as 13.88%. The highest missing and quality of feed indexes were observed as 6.33% and 97.45% respectively with no multiples. The performance of the planter was observed better at lower forward speed and wider corm spacing. The field capacity of the planter was found as 0.103 ha/h with an observed field efficiency of 76.57%.Keywords: coefficient of uniformity, corm spacing, gladiolus planter, mechanization
Procedia PDF Downloads 23910161 Economic and Environmental Assessment of Heat Recovery in Beer and Spirit Production
Authors: Isabel Schestak, Jan Spriet, David Styles, Prysor Williams
Abstract:
Breweries and distilleries are well-known for their high water usage. The water consumption in a UK brewery to produce one litre of beer reportedly ranges from 3-9 L and in a distillery from 7-45 L to produce a litre of spirit. This includes product water such as mashing water, but also water for wort and distillate cooling and for cleaning of tanks, casks, and kegs. When cooling towers are used, cooling water can be the dominating water consumption in a brewery or distillery. Interlinked to the high water use is a substantial heating requirement for mashing, wort boiling, or distillation, typically met by fossil fuel combustion such as gasoil. Many water and waste water streams are leaving the processes hot, such as the returning cooling water or the pot ales. Therefore, several options exist to optimise water and energy efficiency of spirit production through heat recovery. Although these options are known in the sector, they are often not applied in practice due to planning efforts or financial obstacles. In this study, different possibilities and design options for heat recovery systems are explored in four breweries/distilleries in the UK and assessed from an economic but also environmental point of view. The eco-efficiency methodology, according to ISO 14045, is applied to combine both assessment criteria to determine the optimum solution for heat recovery application in practice. The economic evaluation is based on the total value added (TVA) while the Life Cycle Assessment (LCA) methodology is applied to account for the environmental impacts through the installations required for heat recovery. The four case study businesses differ in a) production scale with mashing volumes ranging from 2500 to 40,000 L, in b) terms of heating and cooling technology used, and in c) the extent to which heat recovery is/is not applied. This enables the evaluation of different cases for heat recovery based on empirical data. The analysis provides guidelines for practitioners in the brewing and distilling sector in and outside the UK for the realisation of heat recovery measures. Financial and environmental payback times are showcased for heat recovery systems in the four distilleries which are operating at different production scales. The results are expected to encourage the application of heat recovery where environmentally and economically beneficial and ultimately contribute to a reduction of the water and energy footprint in brewing and distilling businesses.Keywords: brewery, distillery, eco-efficiency, heat recovery from process and waste water, life cycle assessment
Procedia PDF Downloads 11810160 The Study of Stable Isotopes (18O, 2H & 13C) in Kardeh River and Dam Reservoir, North-Eastern Iran
Authors: Hossein Mohammadzadeh, Mojtaba Heydarizad
Abstract:
Among various water resources, the surface water has a dominant role in providing water supply in the arid and semi-arid region of Iran. Andarokh-Kardeh basin is located in 50 km from Mashhad city - the second biggest city of Iran (NE of Iran), draining by Kardeh river which provides a significant portion of potable and irrigation water needs for Mashhad. The stable isotopes (18O, 2H,13C-DIC, and 13C-DOC), as reliable and precious water fingerprints, have been measured in Kardeh river (Kharket, Mareshk, Jong, All and Kardeh stations) and in Kardeh dam reservoirs (at five different sites S1 to S5) during March to June 2011 and June 2012. On δ18O vs. δ2H diagram, the river samples were plotted between Global and Eastern Mediterranean Meteoric Water lines (GMWL and EMMWL) which demonstrate that various moisture sources are providing humidity for precipitation events in this area. The enriched δ18O and δ2H values (-6.5 ‰ and -44.5 ‰ VSMOW) of Kardeh dam reservoir are compared to Kardeh river (-8.6‰and-54.4‰), and its deviation from Mashhad meteoric water line (MMWL- δ2H=7.16δ18O+11.22) is due to evaporation from the open surface water body. The enriched value of δ 13C-DIC and high amount of DIC values (-7.9 ‰ VPDB and 57.23 ppm) in the river and Kardeh dam reservoir (-7.3 ‰ VPDB and 55.53 ppm) is due to dissolution of Mozdooran Carbonate Formation lithology (Jm1 to Jm3 units) (contains enriched δ13C DIC values of 9.2‰ to 27.7‰ VPDB) in the region. Because of the domination of C3 vegetations in Andarokh_Kardeh basin, the δ13C-DOC isotope of the river (-28.4‰ VPDB) and dam reservoir (-32.3‰ VPDB) demonstrate depleted values. Higher DOC concentration in dam reservoir (2.57 ppm) compared to the river (0.72 ppm) is due to more biologogical activities and organic matters in dam reservoir.Keywords: Dam reservoir, Iran, Kardeh river, Khorasan razavi, Stable isotopes
Procedia PDF Downloads 27010159 Ageing Deterioration of High-Density Polyethylene Cable Spacer under Salt Water Dip Wheel Test
Authors: P. Kaewchanthuek, R. Rawonghad, B. Marungsri
Abstract:
This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions.Keywords: cable spacer, HDPE, ageing of cable spacer, salt water dip wheel test
Procedia PDF Downloads 37910158 Day-Case Ketamine Infusions in Patients with Chronic Pancreatitis
Authors: S. M. C. Kelly, M. Goulden
Abstract:
Introduction: Chronic Pancreatitis is an increasing problem worldwide. Pain is the main symptom and the main reason for hospital readmission following diagnosis, despite the use of strong analgesics including opioids. Ketamine infusions reduce pain in complex regional pain syndrome and other neuropathic pain conditions. Our centre has trialed the use of ketamine infusions in patients with chronic pancreatitis. We have evaluated this service to assess whether ketamine reduces emergency department admissions and analgesia requirements. Methods: This study collected retrospective data from 2010 in all patients who received a ketamine infusion for chronic pain secondary to a diagnosis of chronic pancreatitis. The day-case ketamine infusions were initiated in theatre by an anaesthetist, with standard monitoring and the assistance of an anaesthetic practitioner. A bolus dose of 0.5milligrams/kilogram was given in theatre. The infusion of 0.5 milligrams/kilogram per hour was then administered over a 6 hour period in the theatre recovery area. A study proforma detailed the medical history, analgesic use and admissions to hospital. Patients received a telephone follow up consultation. Results: Over the last eight years, a total of 30 patients have received intravenous ketamine infusions, with a total of 92 ketamine infusions being administered. 53% of the patients were male with the average age of 47. A total of 27 patients participated with the telephone consultation. A third of patients reported a reduction in hospital admissions with pain following the ketamine infusion. Analgesia requirements were reduced by an average of 48.3% (range 0-100%) for an average duration of 69.6 days (range 0-180 days.) Discussion: This service evaluation illustrates that ketamine infusions can reduce analgesic requirements and the number of hospital admissions in patients with chronic pancreatitis. In the light of increasing pressures on Emergency departments and the increasing evidence of the dangers of long-term opioid use, this is clearly a useful finding. We are now performing a prospective study to assess the long-term effectiveness of ketamine infusions in reducing analgesia requirements and improving patient’s quality of life.Keywords: acute-on-chronic pain, intravenous analgesia infusion, ketamine, pancreatitis
Procedia PDF Downloads 13610157 Phrasemes With The Component 'Water' In Polish And Russian - Comparative Aspects
Authors: Aleksandra Majewska
Abstract:
The subject of this article is phrasemes with the component 'water' in Polish and Russian. The purpose of the study is to analyse the collocations from the point of view of lexis and semantics. The material for analysis was extracted from phraseological dictionaries of Polish and Russian. From the point of view of lexis, an analysis was made of the inflectional component 'water' in phrasal expressions in both languages. Then, the phrasemes were divided into their corresponding semantic groups. That division became the subject of another comparative analysis in a further step. Finally, the functioning of some phrasemes compounds in the contexts of modern Polish and Russian was shown.Keywords: lingustic, language, phraseme, polish and Russian
Procedia PDF Downloads 4010156 Design and Study of a Hybrid Micro-CSP/Biomass Boiler System for Water and Space Heating in Traditional Hammam
Authors: Said Lamghari, Abdelkader Outzourhit, Hassan Hamdi, Mohamed Krarouch, Fatima Ait Nouh, Mickael Benhaim, Mehdi Khaldoun
Abstract:
Traditional Hammams are big consumers of water and wood-energy. Any approach to reduce this consumption will contribute to the preservation of these two resources that are more and more stressed in Morocco. In the InnoTherm/InnoBiomass 2014 project HYBRIDBATH, funded by the Research Institute for Solar Energy and New Energy (IRESEN), we will use a hybrid system consisting of a micro-CSP system and a biomass boiler for water and space heating of a Hammam. This will overcome the problem of intermittency of solar energy, and will ensure continuous supply of hot water and heat. We propose to use local agricultural residues (olive pomace, shells of walnuts, almonds, Argan ...). Underfloor heating using either copper or PEX tubing will perform the space heating. This work focuses on the description of the system and the activities carried out so far: The installation of the system, the principle operation of the system and some preliminary test results.Keywords: biomass boiler, hot water, hybrid systems, micro-CSP, parabolic sensor, solar energy, solar fraction, traditional hammam, underfloor heating
Procedia PDF Downloads 31210155 Using a Design Structure Method to Support Technology Roadmapping for Product-Service Integrated Systems
Authors: Heungwook Son, Sungjoo Lee
Abstract:
Recently, due to intensifying competition in several industries, the importance of meeting customer requirements has increased. The role that service plays in satisfying customer‘s requirements is key area of focus. Thus, the concept of using product development-research in the service system has been actively practiced. As strategic decision making tool, various types of the technology roadmap were suggested in the product-service system (PSS). However, the technology roadmap was configured a top-down form around the technologies of the elements. The limitation is that it hard for it to indicate a variety of interrelations. In response, this paper suggests using the planning support tool of PSS for a DSM for the technology roadmap; it consists of the relationship of product-service-technology as a bottom-up form. Therefore, nine types of the technology roadmap of PSS exist. The first defines the relationship of product-service-technology. The second phase identifies output when of the technology roadmaps are adapted to the DSM process. Finally, the DSM-based forms of each type of technology roadmap are presented through case studies.Keywords: DSM, technology roadmap, PSS, product-service system, bottom-up
Procedia PDF Downloads 38110154 Crystallization Fouling from Potable Water in Heat Exchangers and Evaporators
Authors: Amthal Al-Gailani, Olujide Sanni, Thibaut Charpentier, Anne Neville
Abstract:
Formation of inorganic scale on heat transfer surfaces is a serious problem encountered in industrial, commercial, and domestic heat exchangers and systems. Several industries use potable/groundwater sources such as rivers, lakes, and oceans to use water as a working fluid in heat exchangers and steamers. As potable/surface water contains diverse salt ionic species, the scaling kinetics and deposit morphology are expected to be different from those found in artificially hardened solutions. In this work, scale formation on the heat transfer surfaces from potable water has been studied using a once-through open flow cell under atmospheric pressure. The surface scaling mechanism and deposit morphology are investigated at high surface temperature. Thus the water evaporation process has to be considered. The effect of surface temperature, flow rate, and inhibitor deployment on the thermal resistance and morphology of the scale have been investigated. The study findings show how an increase in surface temperature enhances the crystallization reaction kinetics on the surface. There is an increase in the amount of scale and the resistance to heat transfer. The fluid flow rate also increases the fouling resistance and the thickness of the scale layer.Keywords: fouling, heat exchanger, thermal resistance, crystallization, potable water
Procedia PDF Downloads 14510153 Ergonomics Sallow Recharge Well for Sustainable Ground Water Resources
Authors: Lilik Sudiajeng, Wiraga Wayan, Lanang Parwita I Gusti
Abstract:
This is the ongoing research started in 2013 with the final aim is to design the recharge wells both for housing and industry for ground water conservation in Bali - Indonesia. The research started in Denpasar Regency, one of the strategic areas in Bali. The research showed that there is some critical area of ground water resources, especially in north and west part of Denpasar Regency. It driven by the rapid increase of the tourism industry which is followed by the high rate of population, change of land use that leads to the decreasing of rain water catchment areas, and less awareness on preserve natural resources, including ground water. Focus Group Discussion concluded that in order to solve the problem of groundwater crisis, requires the contribution of all parties, started from making simple recharge well for housing. Because of the availability of land is limited and expensive, it is necessary to present an ergonomic shallow recharge well in accordance with the ability of the family or community. The ergonomics shallow recharge well is designed based on the data of hydrology and the characteristics of soil. The design is very flexible depending on the availability of land, environmentally friendly, energy efficient, culture-based, and affordable. To meet the recommended standard of ground water quality, then it equipped with a filtration and sedimentation ponds. Before design recharge wells is disseminated to the public, it is necessary to analyze the effectiveness of the wells to harvest and absorb rainwater into the ground.Keywords: ergonomics, ground water resources, recharge well, sustainable
Procedia PDF Downloads 25210152 Production of Clean Reusable Distillery Waste Water Using Activated Carbon Prepared from Waste Orange Peels
Authors: Joseph Govha, Sharon Mudutu
Abstract:
The research details the treatment of distillery waste water by making use of activated carbon prepared from orange peels as an adsorbent. Adsorption was carried out at different conditions to determine the optimum conditions that work best for the removal of color in distillery waste water using orange peel activated carbon. Adsorption was carried out at different conditions by varying contact time, adsorbent dosage, pH, testing for color intensity and Biological Oxygen Demand. A maximum percentage color removal of 88% was obtained at pH 7 at an adsorbent dosage of 1g/20ml. Maximum adsorption capacity was obtained from the Langmuir isotherm at R2=0.98.Keywords: distillery, waste water, orange peel, activated carbon, adsorption
Procedia PDF Downloads 30310151 A Project-Orientated Training Concept to Prepare Students for Systems Engineering Activities
Authors: Elke Mackensen
Abstract:
Systems Engineering plays a key role during industrial product development of complex technical systems. The need for systems engineers in industry is growing. However, there is a gap between the industrial need and the academic education. Normally the academic education is focused on the domain specific design, implementation and testing of technical systems. Necessary systems engineering expertise like knowledge about requirements analysis, product cost estimation, management or social skills are poorly taught. Thus, there is the need of new academic concepts for teaching systems engineering skills. This paper presents a project-orientated training concept to prepare students from different technical degree programs for systems engineering activities. The training concept has been initially implemented and applied in the industrial engineering master program of the University of Applied Sciences Offenburg.Keywords: educational systems engineering training, requirements analysis, system modelling, SysML
Procedia PDF Downloads 34610150 A Predictive MOC Solver for Water Hammer Waves Distribution in Network
Authors: A. Bayle, F. Plouraboué
Abstract:
Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer
Procedia PDF Downloads 23210149 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)
Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar
Abstract:
One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.Keywords: SEBS, remote sensing, evapotranspiration, ETa
Procedia PDF Downloads 333