Search results for: count data
24112 An Infrared Inorganic Scintillating Detector Applied in Radiation Therapy
Authors: Sree Bash Chandra Debnath, Didier Tonneau, Carole Fauquet, Agnes Tallet, Julien Darreon
Abstract:
Purpose: Inorganic scintillating dosimetry is the most recent promising technique to solve several dosimetric issues and provide quality assurance in radiation therapy. Despite several advantages, the major issue of using scintillating detectors is the Cerenkov effect, typically induced in the visible emission range. In this context, the purpose of this research work is to evaluate the performance of a novel infrared inorganic scintillator detector (IR-ISD) in the radiation therapy treatment to ensure Cerenkov free signal and the best matches between the delivered and prescribed doses during treatment. Methods: A simple and small-scale infrared inorganic scintillating detector of 100 µm diameter with a sensitive scintillating volume of 2x10-6 mm3 was developed. A prototype of the dose verification system has been introduced based on PTIR1470/F (provided by Phosphor Technology®) material used in the proposed novel IR-ISD. The detector was tested on an Elekta LINAC system tuned at 6 MV/15MV and a brachytherapy source (Ir-192) used in the patient treatment protocol. The associated dose rate was measured in count rate (photons/s) using a highly sensitive photon counter (sensitivity ~20ph/s). Overall measurements were performed in IBATM water tank phantoms by following international Technical Reports series recommendations (TRS 381) for radiotherapy and TG43U1 recommendations for brachytherapy. The performance of the detector was tested through several dosimetric parameters such as PDD, beam profiling, Cerenkov measurement, dose linearity, dose rate linearity repeatability, and scintillator stability. Finally, a comparative study is also shown using a reference microdiamond dosimeter, Monte-Carlo (MC) simulation, and data from recent literature. Results: This study is highlighting the complete removal of the Cerenkov effect especially for small field radiation beam characterization. The detector provides an entire linear response with the dose in the 4cGy to 800 cGy range, independently of the field size selected from 5 x 5 cm² down to 0.5 x 0.5 cm². A perfect repeatability (0.2 % variation from average) with day-to-day reproducibility (0.3% variation) was observed. Measurements demonstrated that ISD has superlinear behavior with dose rate (R2=1) varying from 50 cGy/s to 1000 cGy/s. PDD profiles obtained in water present identical behavior with a build-up maximum depth dose at 15 mm for different small fields irradiation. A low dimension of 0.5 x 0.5 cm² field profiles have been characterized, and the field cross profile presents a Gaussian-like shape. The standard deviation (1σ) of the scintillating signal remains within 0.02% while having a very low convolution effect, thanks to lower sensitive volume. Finally, during brachytherapy, a comparison with MC simulations shows that considering energy dependency, measurement agrees within 0.8% till 0.2 cm source to detector distance. Conclusion: The proposed scintillating detector in this study shows no- Cerenkov radiation and efficient performance for several radiation therapy measurement parameters. Therefore, it is anticipated that the IR-ISD system can be promoted to validate with direct clinical investigations, such as appropriate dose verification and quality control in the Treatment Planning System (TPS).Keywords: IR-Scintillating detector, dose measurement, micro-scintillators, Cerenkov effect
Procedia PDF Downloads 18224111 An Enzyme Technology - Metnin™ - Enables the Full Replacement of Fossil-Based Polymers by Lignin in Polymeric Composites
Authors: Joana Antunes, Thomas Levée, Barbara Radovani, Anu Suonpää, Paulina Saloranta, Liji Sobhana, Petri Ihalainen
Abstract:
Lignin is an important component in the exploitation of lignocellulosic biomass. It has been shown that within the next years, the yield of added-value lignin-based chemicals and materials will generate renewable alternatives to oil-based products (e.g. polymeric composites, resins and adhesives) and enhance the economic feasibility of biorefineries. In this paper, a novel technology for lignin valorisation (METNIN™) is presented. METNIN™ is based on the oxidative action of an alkaliphilic enzyme in aqueous alkaline conditions (pH 10-11) at mild temperature (40-50 °C) combined with a cascading membrane operation, yielding a collection of lignin fractions (from oligomeric down to mixture of tri-, di- and monomeric units) with distinct molecular weight distribution, low polydispersity and favourable physicochemical properties. The alkaline process conditions ensure the high processibility of crude lignin in an aqueous environment and the efficiency of the enzyme, yielding better compatibility of lignin towards targeted applications. The application of a selected lignin fraction produced by METNIN™ as a suitable lignopolyol to completely replace a commercial polyol in polyurethane rigid foam formulations is presented as a prototype. Liquid lignopolyols with a high lignin content were prepared by oxypropylation and their full utilization in the polyurethane rigid foam formulation was successfully demonstrated. Moreover, selected technical specifications of different foam demonstrators were determined, including closed cell count, water uptake and compression characteristics. These specifications are within industrial standards for rigid foam applications. The lignin loading in the lignopolyol was a major factor determining the properties of the foam. In addition to polyurethane foam demonstrators, other examples of lignin-based products related to resins and sizing applications will be presented.Keywords: enzyme, lignin valorisation, polyol, polyurethane foam
Procedia PDF Downloads 15324110 Standard Languages for Creating a Database to Display Financial Statements on a Web Application
Authors: Vladimir Simovic, Matija Varga, Predrag Oreski
Abstract:
XHTML and XBRL are the standard languages for creating a database for the purpose of displaying financial statements on web applications. Today, XBRL is one of the most popular languages for business reporting. A large number of countries in the world recognize the role of XBRL language for financial reporting and the benefits that the reporting format provides in the collection, analysis, preparation, publication and the exchange of data (information) which is the positive side of this language. Here we present all advantages and opportunities that a company may have by using the XBRL format for business reporting. Also, this paper presents XBRL and other languages that are used for creating the database, such XML, XHTML, etc. The role of the AJAX complex model and technology will be explained in detail, and during the exchange of financial data between the web client and web server. Here will be mentioned basic layers of the network for data exchange via the web.Keywords: XHTML, XBRL, XML, JavaScript, AJAX technology, data exchange
Procedia PDF Downloads 39424109 Process Optimization and Microbial Quality of Provitamin A-Biofortified Amahewu, a Non-Alcoholic Maize Based Beverage
Authors: Temitope D. Awobusuyi, Eric O. Amonsou, Muthulisi Siwela, Oluwatosin A. Ijabadeniyi
Abstract:
Provitamin A-biofortified maize has been developed to alleviate Vitamin A deficiency; a major public health problem in developing countries. Amahewu, a non-alcoholic fermented maize based beverage is produced using white maize, which is deficient in Vitamin A. In this study, the suitable processing conditions for the production of amahewu using provitamin A-biofortified maize and the microbial quality of the processed products were evaluated. Provitamin A-biofortified amahewu was produced with reference to traditional processing method. Processing variables were Inoculum types (Malted provitamin A maize, Wheat bran, and lactobacillus mixed starter culture with either malted provitamin A or wheat bran) and concentration (0.5 %, 1 % and 2 %). A total of four provitamin A-biofortified amahewu products after fermentation were subjected to different storage conditions: 4ᴼC, 25ᴼC and 37ᴼC. pH and TTA were monitored throughout the storage period. Sample of provitamin A-biofortified amahewu were plated and observed every day for 5 days to assess the presence of Aerobic and Anaerobic spore formers, E.coli, Lactobacillus and Mould. The addition of starter culture substantially reduced the fermentation time (6 hour, pH 3.3) compared to those with no addition of starter culture (24 hour pH 3.5). It was observed that Lactobacillus were present from day 0 for all the storage temperatures. The presence of aerobic spore former and mould were observed on day 3. E.coli and Anaerobic spore formers were not present throughout the storage period. These microbial growth were minimal at 4ᴼC while 25ᴼC had higher counts of growth with 37ᴼC having the highest colony count. Throughout the storage period, pH of provitamin A-biofortified amahewu was stable. Provitamin A-biofortified amahewu stored under refrigerated condition (4ᴼC) had better storability compared to 25ᴼC and 37ᴼC. The production and microbial quality of provitamin A-biofortified amahewu might be important in combating Vitamin A Deficiency.Keywords: biofortification, fermentation, maize, vitamin A deficiency
Procedia PDF Downloads 43224108 Analyze and Visualize Eye-Tracking Data
Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael
Abstract:
Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades
Procedia PDF Downloads 13524107 Privacy Rights of Children in the Social Media Sphere: The Benefits and Challenges Under the EU and US Legislative Framework
Authors: Anna Citterbergova
Abstract:
This study explores the safeguards and guarantees to children’s personal data protection under the current EU and US legislative framework, namely the GDPR (2018) and COPPA (2000). Considering that children are online for the majority of their free time, one cannot overlook the negative side effects that may be associated with online participation, which may put children’s wellbeing and their fundamental rights at risk. The question of whether the current relevant legislative framework in relation to the responsibilities of the internet service providers (ISPs) are adequate safeguards and guarantees to children’s personal data protection has been an evolving debate both in the US and in the EU. From a children’s rights perspective, processors of personal data have certain obligations that must meet the international human rights principles (e. g. the CRC, ECHR), which require taking into account the best interest of the child. Accordingly, the need to protect children’s privacy online remains strong and relevant with the expansion of the number and importance of social media platforms to human life. At the same time, the landscape of the internet is rapidly evolving, and commercial interests are taking a more targeted approach in seeking children’s data. Therefore, it is essential to constantly evaluate the ongoing and evolving newly adopted market policies of ISPs that may misuse the gap in the current letter of the law. Previous studies in the field have already pointed out that both GDPR and COPPA may theoretically not be sufficient in protecting children’s personal data. With the focus on social media platforms, this study uses the doctrinal-descriptive method to identifiy the mechanisms enshrined in the GDPR and COPPA designed to protect children’s personal data. In its second part, the study includes a data gathering phase by the national data protection authorities responsible for monitoring and supervision of the GDPR in relation to children’s personal data protection who monitor the enforcement of the data protection rules throughout the European Union an contribute to their consistent application. These gathered primary source of data will later be used to outline the series of benefits and challenges to children’s persona lata protection faced by these institutes and the analysis that aims to suggest if and/or how to hold ISPs accountable while striking a fair balance between the commercial rights and the right to protection of the personal data of children. The preliminary results can be divided into two categories. First, conclusions in the doctrinal-descriptive part of the study. Second, specific cases and situations from the practice of national data protection authorities. While for the first part, concrete conclusions can already be presented, the second part is currently still in the data gathering phase. The result of this research is a comprehensive analysis on the safeguards and guarantees to children’s personal data protection under the current EU and US legislative framework, based on doctrinal-descriptive approach and original empirical data.Keywords: personal data of children, personal data protection, GDPR, COPPA, ISPs, social media
Procedia PDF Downloads 9624106 Modelling the Education Supply Chain with Network Data Envelopment Analysis
Authors: Sourour Ramzi, Claudia Sarrico
Abstract:
Little has been done on network DEA in education, and nobody has attempted to model the whole education supply chain using network DEA. As such the contribution of the present paper is to propose a model for measuring the efficiency of education supply chains using network DEA. First, we use a general survey of data envelopment analysis (DEA) to establish the emergent themes for research in DEA, and focus on the theme of Network DEA. Second, we use a survey on two-stage DEA models, and Network DEA to write a state of the art on Network DEA, particularly applied to supply chain management. Third, we use a survey on DEA applications to establish the most influential papers on DEA education applications, in order to establish the state of the art on applications of DEA in education, in general, and applications of DEA to education using network DEA, in particular. Finally, we propose a model for measuring the performance of education supply chains of different education systems (countries or states within a country, for instance). We then use this model on some empirical data.Keywords: supply chain, education, data envelopment analysis, network DEA
Procedia PDF Downloads 36824105 Secure Transmission Scheme in Device-to-Device Multicast Communications
Authors: Bangwon Seo
Abstract:
In this paper, we consider multicast device-to-device (D2D) direct communication systems in cellular networks. In multicast D2D communications, nearby mobile devices exchanges, their data directly without going through a base station and a D2D transmitter send its data to multiple D2D receivers that compose of D2D multicast group. We consider wiretap channel where there is an eavesdropper that attempts to overhear the transmitted data of the D2D transmitter. In this paper, we propose a secure transmission scheme in D2D multicast communications in cellular networks. In order to prevent the eavesdropper from overhearing the transmitted data of the D2D transmitter, a precoding vector is employed at the D2D transmitter in the proposed scheme. We perform computer simulations to evaluate the performance of the proposed scheme. Through the simulation, we show that the secrecy rate performance can be improved by selecting an appropriate precoding vector.Keywords: device-to-device communications, wiretap channel, secure transmission, precoding
Procedia PDF Downloads 29124104 Online Shopping vs Privacy – Results of an Experimental Study
Authors: Andrzej Poszewiecki
Abstract:
The presented paper contributes to the experimental current of research on privacy. The question of privacy is being discussed at length at present, primarily among lawyers and politicians. However, the matter of privacy has been of interest for economists for some time as well. The valuation of privacy by people is of great importance now. This article is about how people valuate their privacy. An experimental method has been utilised in the conducted research – the survey was carried out among customers of an online store, and the studied issue was whether their readiness to sell their data (WTA) was different from the willingness to buy data back (WTP). The basic aim of this article is to analyse whether people shopping on the Internet differentiate their privacy depending on whether they protect or sell it. The achieved results indicate the presence of major differences in this respect, which do not always come up with the original expectations. The obtained results have supported the hypothesis that people are more willing to sell their data than to repurchase them. However, the hypothesis that the value of proposed remuneration affects the willingness to sell/buy back personal data (one’s privacy) has not been supported.Keywords: privacy, experimental economics, behavioural economics, internet
Procedia PDF Downloads 29324103 Assessment of Platelet and Lymphocyte Interaction in Autoimmune Hyperthyroidism
Authors: Małgorzata Tomczyńska, Joanna Saluk-Bijak
Abstract:
Background: Graves’ disease is a frequent organ-specific autoimmune thyroid disease, which characterized by the presence of different kind autoantibodies, that, in most cases, act as agonists of the thyrotropin receptor, leading to hyperthyroidism. Role of platelets and lymphocytes can be modulated in the pathophysiology of thyroid autoimmune diseases. Interference in the physiology of platelets can lead to enhanced activity of these cells. Activated platelets can bind to circulating lymphocytes and to affect lymphocyte adhesion. Platelets and lymphocytes can regulate mutual functions. Therefore, the activation of T lymphocytes, as well as blood platelets, is associated with the development of inflammation and oxidative stress within the target tissue. The present study was performed to investigate a platelet-lymphocyte relation by assessing the degree of their mutual aggregation in whole blood of patients with Graves’ disease. Also, the purpose of this study was to examine the impact of platelet interaction on lymphocyte migration capacity. Methods: 30 patients with Graves’ disease were recruited in the study. The matched 30 healthy subjects were served as the control group. Immunophenotyping of lymphocytes was carried out by flow cytometry method. A CytoSelect™ Cell Migration Assay Kit was used to evaluate lymphocyte migration and adhesion to blood platelets. Visual assessment of lymphocyte-platelet aggregate morphology was done using confocal microscope after magnetic cell isolation by Miltenyi Biotec. Results: The migration and functional responses of lymphocytes to blood platelets were greater in the group of Graves’ disease patients compared with healthy controls. The group of Graves’ disease patients exhibited a reduced T lymphocyte and a higher B cell count compared with controls. Based on microscopic analysis, more platelet-lymphocyte aggregates were found in patients than in control. Conclusions: Studies have shown that in Graves' disease, lymphocytes show increased platelet affinity, more strongly migrating toward them, and forming mutual cellular conglomerates. This may be due to the increased activation of blood platelets in this disease.Keywords: blood platelets, cell migration, Graves’ disease, lymphocytes, lymphocyte-platelet aggregates
Procedia PDF Downloads 22724102 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights
Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan
Abstract:
The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.Keywords: big data, COVID-19, health, indexing, NoSQL, sharding, scalability, well being
Procedia PDF Downloads 7024101 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method
Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain
Abstract:
The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR
Procedia PDF Downloads 31824100 Static vs. Stream Mining Trajectories Similarity Measures
Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh
Abstract:
Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining
Procedia PDF Downloads 39624099 Systematic Review and Meta-analysis Investigating the Efficacy of Walking-based Aerobic Exercise Interventions to Treat Postpartum Depression
Authors: V. Pentland, S. Spilsbury, A. Biswas, M. F. Mottola, S. Paplinskie, M. S. Mitchell
Abstract:
Postpartum depression (PPD) is a form of major depressive disorder that afflicts 10–22% of mothers worldwide. Rising demands for traditional PPD treatment options (e.g., psychiatry), especially in the context of the COVID-19 pandemic, are increasingly difficult to meet. More accessible treatment options (e.g., walking) are needed. The objective of this review is to determine the impact of walking on PPD severity. A structured search of seven electronic databases for randomised controlled trials published between 2000 and July 29, 2021, was completed. Studies were included if walking was the sole or primary aerobic exercise modality. A random-effects meta-analysis was conducted for studies reporting PPD symptoms measured using a clinically validated tool. A simple count of positive/null effect studies was undertaken as part of a narrative summary. Five studies involving 242 participants were included (mean age=~28.9 years; 100% with mild-to-moderate depression). Interventions were 12 (n=4) and 24 (n=1) weeks long. Each assessed PPD severity using the Edinburgh Postnatal Depression Scale (EPDS) and was included in the meta-analysis. The pooled effect estimate suggests that relative to controls, walking yielded clinically significant decreases in mean EPDS scores from baseline to intervention end (pooled MD=-4.01; 95% CI:-7.18 to -0.84, I2=86%). The narrative summary provides preliminary evidence that walking-only, supervised, and group-based interventions, including 90-120+ minutes/week of moderate-intensity walking, may produce greater EPDS reductions. While limited by a relatively small number of included studies, pooled effect estimates suggest walking may help mothers manage PPD. This is the first time walking as a treatment for PPD, an exercise modality that uniquely addresses many barriers faced by mothers has been summarized in a systematic way. Trial registration: PROSPERO (CRD42020197521) on August 16th, 2020Keywords: postpartum, exercise, depression, walking
Procedia PDF Downloads 20424098 A Qualitative Study Identifying the Complexities of Early Childhood Professionals' Use and Production of Data
Authors: Sara Bonetti
Abstract:
The use of quantitative data to support policies and justify investments has become imperative in many fields including the field of education. However, the topic of data literacy has only marginally touched the early care and education (ECE) field. In California, within the ECE workforce, there is a group of professionals working in policy and advocacy that use quantitative data regularly and whose educational and professional experiences have been neglected by existing research. This study aimed at analyzing these experiences in accessing, using, and producing quantitative data. This study utilized semi-structured interviews to capture the differences in educational and professional backgrounds, policy contexts, and power relations. The participants were three key professionals from county-level organizations and one working at a State Department to allow for a broader perspective at systems level. The study followed Núñez’s multilevel model of intersectionality. The key in Núñez’s model is the intersection of multiple levels of analysis and influence, from the individual to the system level, and the identification of institutional power dynamics that perpetuate the marginalization of certain groups within society. In a similar manner, this study looked at the dynamic interaction of different influences at individual, organizational, and system levels that might intersect and affect ECE professionals’ experiences with quantitative data. At the individual level, an important element identified was the participants’ educational background, as it was possible to observe a relationship between that and their positionality, both with respect to working with data and also with respect to their power within an organization and at the policy table. For example, those with a background in child development were aware of how their formal education failed to train them in the skills that are necessary to work in policy and advocacy, and especially to work with quantitative data, compared to those with a background in administration and/or business. At the organizational level, the interviews showed a connection between the participants’ position within the organization and their organization’s position with respect to others and their degree of access to quantitative data. This in turn affected their sense of empowerment and agency in dealing with data, such as shaping what data is collected and available. These differences reflected on the interviewees’ perceptions and expectations for the ECE workforce. For example, one of the interviewees pointed out that many ECE professionals happen to use data out of the necessity of the moment. This lack of intentionality is a cause for, and at the same time translates into missed training opportunities. Another interviewee pointed out issues related to the professionalism of the ECE workforce by remarking the inadequacy of ECE students’ training in working with data. In conclusion, Núñez’s model helped understand the different elements that affect ECE professionals’ experiences with quantitative data. In particular, what was clear is that these professionals are not being provided with the necessary support and that we are not being intentional in creating data literacy skills for them, despite what is asked of them and their work.Keywords: data literacy, early childhood professionals, intersectionality, quantitative data
Procedia PDF Downloads 25324097 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014
Authors: Alexiou Dimitra, Fragkaki Maria
Abstract:
The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.Keywords: Multiple Factorial Correspondence Analysis, Principal Component Analysis, Factor Analysis, E.U.-28 countries, Statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu Statistics
Procedia PDF Downloads 51124096 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory C: Laboratory Exposed Snails to Chemical Mixtures
Authors: Hanaa M. M. El-Khayat, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hanan S. Gaber, Hoda, M. A. Abu Taleb, Hassan E. Flefel
Abstract:
Snails are considered as suitable diagnostic organisms for heavy metal–contaminated sites. Biomphalaria alexandrina snails are used in this work as pollution bioindicators after exposure to chemical mixtures consisted of heavy metals (HM); zinc (Zn), copper (Cu) and lead (Pb); and persistent organic pollutants; Decabromodiphenyl ether 98% (D) and Aroclor 1254 (A). The impacts of these tested chemicals, individual and mixtures, on liver and kidney functions, antioxidant enzymes, complete blood picture, and tissue histology were studied. Results showed that Cu was proved to be the highly toxic against snails than Zn and Pb where LC50 values were 1.362, 213.198 and 277.396 ppm, respectively. Also, B. alexandrina snails exposed to the mixture of HM (¼ LC5 Cu, Pb and Zn) showed the highest bioaccumulation of Cu and Zn in their whole tissue, the most significant increase in AST, ALT & ALP activities and the highest significant levels of total protein, albumin and globulin. Results showed significant alterations in CAT activity in snail tissue extracts while snail samples exposed to most experimental tests showed significant increase in GST activity. Snail samples that exposed to HM mixtures showed a significant decrease in total hemocytes count while snail samples that exposed to mixtures containing A & D showed a significant increase in total hemocytes and Hyalinocytes. Histopathological alterations in snail samples exposed to individual HM and their mixtures for 4 weeks showed degeneration, edema, hyper trophy and vaculation in head-foot muscle, degeneration and necrotic changes in the digestive gland and accumulation in most tested organs. Also, the hermaphrodite gland showed mature ova with irregular shape and reduction in sperm number. In conclusion, the resulted damage and alterations in B. alexandrina studied parameters can be used as bioindicators to the presence of pollutants in its habitats.Keywords: Biomphalaria, Zn, Cu, Pb, AST, ALT, ALP, total protein albumin, globulin, CAT, histopathology
Procedia PDF Downloads 35324095 Deployment of Electronic Healthcare Records and Development of Big Data Analytics Capabilities in the Healthcare Industry: A Systematic Literature Review
Authors: Tigabu Dagne Akal
Abstract:
Electronic health records (EHRs) can help to store, maintain, and make the appropriate handling of patient histories for proper treatment and decision. Merging the EHRs with big data analytics (BDA) capabilities enable healthcare stakeholders to provide effective and efficient treatments for chronic diseases. Though there are huge opportunities and efforts that exist in the deployment of EMRs and the development of BDA, there are challenges in addressing resources and organizational capabilities that are required to achieve the competitive advantage and sustainability of EHRs and BDA. The resource-based view (RBV), information system (IS), and non- IS theories should be extended to examine organizational capabilities and resources which are required for successful data analytics in the healthcare industries. The main purpose of this study is to develop a conceptual framework for the development of healthcare BDA capabilities based on past works so that researchers can extend. The research question was formulated for the search strategy as a research methodology. The study selection was made at the end. Based on the study selection, the conceptual framework for the development of BDA capabilities in the healthcare settings was formulated.Keywords: EHR, EMR, Big data, Big data analytics, resource-based view
Procedia PDF Downloads 13124094 Development of a Spatial Data for Renal Registry in Nigeria Health Sector
Authors: Adekunle Kolawole Ojo, Idowu Peter Adebayo, Egwuche Sylvester O.
Abstract:
Chronic Kidney Disease (CKD) is a significant cause of morbidity and mortality across developed and developing nations and is associated with increased risk. There are no existing electronic means of capturing and monitoring CKD in Nigeria. The work is aimed at developing a spatial data model that can be used to implement renal registries required for tracking and monitoring the spatial distribution of renal diseases by public health officers and patients. In this study, we have developed a spatial data model for a functional renal registry.Keywords: renal registry, health informatics, chronic kidney disease, interface
Procedia PDF Downloads 21424093 Environmental Evaluation of Two Kind of Drug Production (Syrup and Pomade Form) Using Life Cycle Assessment Methodology
Authors: H. Aksas, S. Boughrara, K. Louhab
Abstract:
The goal of this study was the use of life cycle assessment (LCA) methodology to assess the environmental impact of pharmaceutical product (four kinds of syrup form and tree kinds of pomade form), which are produced in one leader manufactory in Algeria town that is SAIDAL Company. The impacts generated have evaluated using SimpaPro7.1 with CML92 Method for syrup form and EPD 2007 for pomade form. All impacts evaluated have compared between them, with determination of the compound contributing to each impacts in each case. Data needed to conduct Life Cycle Inventory (LCI) came from this factory, by the collection of theoretical data near the responsible technicians and engineers of the company, the practical data are resulting from the assay of pharmaceutical liquid, obtained at the laboratories of the university. This data represent different raw material imported from European and Asian country necessarily to formulate the drug. Energy used is coming from Algerian resource for the input. Outputs are the result of effluent analysis of this factory with different form (liquid, solid and gas form). All this data (input and output) represent the ecobalance.Keywords: pharmaceutical product, drug residues, LCA methodology, environmental impacts
Procedia PDF Downloads 24624092 Multi Cloud Storage Systems for Resource Constrained Mobile Devices: Comparison and Analysis
Authors: Rajeev Kumar Bedi, Jaswinder Singh, Sunil Kumar Gupta
Abstract:
Cloud storage is a model of online data storage where data is stored in virtualized pool of servers hosted by third parties (CSPs) and located in different geographical locations. Cloud storage revolutionized the way how users access their data online anywhere, anytime and using any device as a tablet, mobile, laptop, etc. A lot of issues as vendor lock-in, frequent service outage, data loss and performance related issues exist in single cloud storage systems. So to evade these issues, the concept of multi cloud storage introduced. There are a lot of multi cloud storage systems exists in the market for mobile devices. In this article, we are providing comparison of four multi cloud storage systems for mobile devices Otixo, Unclouded, Cloud Fuze, and Clouds and evaluate their performance on the basis of CPU usage, battery consumption, time consumption and data usage parameters on three mobile phones Nexus 5, Moto G and Nexus 7 tablet and using Wi-Fi network. Finally, open research challenges and future scope are discussed.Keywords: cloud storage, multi cloud storage, vendor lock-in, mobile devices, mobile cloud computing
Procedia PDF Downloads 40724091 Preparation of Wireless Networks and Security; Challenges in Efficient Accession of Encrypted Data in Healthcare
Authors: M. Zayoud, S. Oueida, S. Ionescu, P. AbiChar
Abstract:
Background: Wireless sensor network is encompassed of diversified tools of information technology, which is widely applied in a range of domains, including military surveillance, weather forecasting, and earthquake forecasting. Strengthened grounds are always developed for wireless sensor networks, which usually emerges security issues during professional application. Thus, essential technological tools are necessary to be assessed for secure aggregation of data. Moreover, such practices have to be incorporated in the healthcare practices that shall be serving in the best of the mutual interest Objective: Aggregation of encrypted data has been assessed through homomorphic stream cipher to assure its effectiveness along with providing the optimum solutions to the field of healthcare. Methods: An experimental design has been incorporated, which utilized newly developed cipher along with CPU-constrained devices. Modular additions have also been employed to evaluate the nature of aggregated data. The processes of homomorphic stream cipher have been highlighted through different sensors and modular additions. Results: Homomorphic stream cipher has been recognized as simple and secure process, which has allowed efficient aggregation of encrypted data. In addition, the application has led its way to the improvisation of the healthcare practices. Statistical values can be easily computed through the aggregation on the basis of selected cipher. Sensed data in accordance with variance, mean, and standard deviation has also been computed through the selected tool. Conclusion: It can be concluded that homomorphic stream cipher can be an ideal tool for appropriate aggregation of data. Alongside, it shall also provide the best solutions to the healthcare sector.Keywords: aggregation, cipher, homomorphic stream, encryption
Procedia PDF Downloads 26024090 The Relationship between Emotional Intelligence and Leadership Performance
Authors: Omar Al Ali
Abstract:
The current study was aimed to explore the relationships between emotional intelligence, cognitive ability, and leader's performance. Data were collected from 260 senior managers from UAE. The results showed that there are significant relationships between emotional intelligence and leadership performance as measured by the annual internal evaluations of each participant (r = .42, p < .01). Data from regression analysis revealed that both variables namely emotional intelligence (beta = .31, p < .01), and cognitive ability (beta = .29, p < .01), predicted leadership competencies, and together explained 26% of its variance. Data suggests that EI and cognitive ability are significantly correlated with leadership performance. In depth implications of the present findings for human resource development theory and practice are discussed.Keywords: emotional intelligence, cognitive ability, leadership, performance
Procedia PDF Downloads 47724089 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System
Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva
Abstract:
Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system
Procedia PDF Downloads 14224088 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 8424087 A Web Service-Based Framework for Mining E-Learning Data
Authors: Felermino D. M. A. Ali, S. C. Ng
Abstract:
E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka
Procedia PDF Downloads 23624086 Mathematics Bridging Theory and Applications for a Data-Driven World
Authors: Zahid Ullah, Atlas Khan
Abstract:
In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models
Procedia PDF Downloads 7524085 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0
Authors: Harris Niavis, Dimitra Politaki
Abstract:
The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.Keywords: blockchain, data quality, industry4.0, product quality
Procedia PDF Downloads 18924084 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization
Procedia PDF Downloads 17524083 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG
Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna
Abstract:
The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram
Procedia PDF Downloads 186