Search results for: combined extremes
1253 Intelligence Failures and Infiltration: The Case of the Ethiopian Army 1977-1991
Authors: Fantahun Ibrahim
Abstract:
The Ethiopian army was one of the largest and most heavily armed ground forces in Africa between 1974 and 1991. It scored a decisive victory over Somalia’s armed forces in March 1978. It, however, failed to withstand the combined onslaught of the northern insurgents from Tigray and Eritrea and finally collapsed in 1991. At the heart of the problem was the army’s huge intelligence failure. The northern insurgents, on the other hand, had a cutting edge in intelligence gathering. Among other things they infiltrated the army high command and managed to get top secrets about the army. Commanders who had fallen into the hands of the insurgents in several battles were told to send letters to their colleagues in the command structure and persuade them to work secretly for the insurgents. Some commanders did work for the insurgents and played a great role in the undoing of military operations. Insurgent commanders were able to warn their fighters about air strikes before jet fighters took off from airfields in the northern theatre. It was not uncommon for leaders of insurgents to get the full details of military operations days before their implementation. Such intelligence failures led to major military disasters like the fall of Afabet (March, 1988), Enda Sellase (February, 1989), Massawa and Debre Tabor (February, 1990), Karra Mishig, Meragna and Alem Ketema (June, 1990). This paper, therefore, seeks to investigate the army’s intelligence failures using untapped archival documents kept at the Ministry of National Defence in Addis Ababa and interviewing key former commanders of the army and ex-leaders of the insurgents.Keywords: Ethiopian army, intelligence, infiltration, insurgents
Procedia PDF Downloads 3071252 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling
Authors: Sfiso Radebe
Abstract:
The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.Keywords: convex modelling, hybrid, metal-composite, robust design
Procedia PDF Downloads 2111251 Thermodynamic and Immunochemical Studies of Antibody Biofunctionalized Gold Nanoparticles Mediated Photothermal Ablation in Human Liver Cancer Cells
Authors: Lucian Mocan, Flaviu Tabaran, Teodora Mocan, Cristian Matea, Cornel Iancu
Abstract:
We present method of Gold Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinoma cell line), based on a simple gold nanoparticle carrier system, such as serum albumin (BSA), and demonstrate its selective therapeutic efficacy. Hyperspectral, contrast phase, and confocal microscopy combined immunochemical staining were used to demonstrate the selective internalization of HSA-GNPs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. We examined the ability of laser-activated carbon nanotubes to induce Hsp70 expression using confocal microscopy. Hep G2 cells heat-shocked (laser activated BSA-GNPs) to 42°C demonstrated an up-regulation of Hsp70 compared with control cells (BSA-GNPs treated cells without laser), which showed no detectable constitutive expression of Hsp70. We observed a time-dependent induction in Hsp70 expression in Hep G2 treated with BSA-GNPs and LASER irradiated. The post-irradiation apoptotic rate of HepG2 cells treated with HSA-GNPs ranged from 88.24% (for 50 mg/L) at 60 seconds, while at 30 minute the rate increased to 92.34% (50 mg/L). These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.Keywords: gold nanoparticles, liver cancer, albumin, laser irradiation
Procedia PDF Downloads 3061250 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation
Procedia PDF Downloads 1331249 Influence of Vibration Amplitude on Reaction Time and Drowsiness Level
Authors: Mohd A. Azizan, Mohd Z. Zali
Abstract:
It is well established that exposure to vibration has an adverse effect on human health, comfort, and performance. However, there is little quantitative knowledge on performance combined with drowsiness level during vibration exposure. This paper reports a study investigating the influence of vibration amplitude on seated occupant reaction time and drowsiness level. Eighteen male volunteers were recruited for this experiment. Before commencing the experiment, total transmitted acceleration measured at interfaces between the seat pan and seatback to human body was adjusted to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s for each volunteer. Seated volunteers were exposed to Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude (low vibration amplitude and medium vibration amplitude) for 20-minutes in separate days. For the purpose of drowsiness measurement, volunteers were asked to complete 10-minutes PVT test before and after vibration exposure and rate their subjective drowsiness by giving score using Karolinska Sleepiness Scale (KSS) before vibration, every 5-minutes interval and following 20-minutes of vibration exposure. Strong evidence of drowsiness was found as there was a significant increase in reaction time and number of lapse following exposure to vibration in both conditions. However, the effect is more apparent in medium vibration amplitude. A steady increase of drowsiness level can also be observed in KSS in all volunteers. However, no significant differences were found in KSS between low vibration amplitude and medium vibration amplitude. It is concluded that exposure to vibration has an adverse effect on human alertness level and more pronounced at higher vibration amplitude. Taken together, these findings suggest a role of vibration in promoting drowsiness, especially at higher vibration amplitude.Keywords: drowsiness, human vibration, karolinska sleepiness scale, psychomotor vigilance test
Procedia PDF Downloads 2821248 Economic Integration in Eurasia: Modeling of the Current and Future Architecture
Authors: M. G. Shilina
Abstract:
The prospects for political and economic development of the Eurasian space are currently discussed at both governmental and expert levels. New concepts actively proposed by the Eurasian governments require the analysis and search for effective implementation options. In the paper, an attempt to identify effective solutions to the problems surrounding the current economic integration of the Eurasian states is given on the basis of an interdisciplinary, comprehensive, structured analysis. The phenomenon is considered through the prism of the international law, world economy and politics, combined with the study of existing intergovernmental practice. The modeling method was taken as the basis for the research and is supplemented by legal and empirical methods. The detailed multi-level model of practical construction the 'Great Eurasia' (the GE) concept is proposed, the option for building a phased interaction in Eurasia is given through the prism of construction by the Eurasian Economic Union (the EAEU) as the main tool. The Shanghai Cooperation Organization (the SCO) is seen as the most promising element of the model. The SCO is capable of streamlining the formation of the GE and determine the transformation of Eurasia into a common economic space. Effective development of the economic integration between Eurasian states on the framework of the SCO is optimal. The SCO+ could be used as a platform for integration-integration processes formation. The creation of stable financial ties could become the basis for the possible formation of an expanded transregional integration platform. The paper concludes that the implementation of the proposed model could entail a gradual economic rapprochement of Eurasia and beyond.Keywords: economic integration, The Eurasian Economic Union, The European Union, The Shanghai Cooperation Organization, the silk road economic belt
Procedia PDF Downloads 1211247 Sustainable Management Practices of International Construction Joint Ventures: A Conceptual Model for Managing Barriers and Risks
Authors: Mershack O. Tetteh, Albert P. C. Chan, Amos Darko, Gabriel Nani
Abstract:
International construction joint ventures (ICJVs) have evolved as an effective approach to sustainable development, given their myriad socio-economic and environmental benefits. Yet, they are not free of barriers and risks. In many studies, it is termed as risks for convenience’s sake. While the barriers and risks continue to affect the success of ICJVs, a systematic and reliable approach for managing them has yet to be developed. This study aims to identify and classify the barriers and risks factors affecting ICJVs through a systematic literature review. Based on a critical review of 54 papers published in peer-reviewed journals from 1990 to 2019, a conceptual framework was proposed for managing the barriers and risks in ICJV operations. The review showed that the barriers can be grouped into six including inter-organizational differences, lack of expertise and confidence, lack of effective planning and strategies, lack of knowledge of ICJV’s fundamentals, conflicts among ICJV entities, and management difficulties. The risks were also categorized into six: policy and political risks, legal risks, financial risks, management risks, project and technical risks, and market risks. The developed model would help practitioners achieve more efficient resource allocation and bring new perspectives for managerial practices in ICJVs. Moreover, it is positioned to alleviate the negligence of previous studies that combined the barriers and risks factors as one checklist.Keywords: barriers, construction, international construction joint venture, risks, sustainable development
Procedia PDF Downloads 2601246 A Collective Intelligence Approach to Safe Artificial General Intelligence
Authors: Craig A. Kaplan
Abstract:
If AGI proves to be a “winner-take-all” scenario where the first company or country to develop AGI dominates, then the first AGI must also be the safest. The safest, and fastest, path to Artificial General Intelligence (AGI) may be to harness the collective intelligence of multiple AI and human agents in an AGI network. This approach has roots in seminal ideas from four of the scientists who founded the field of Artificial Intelligence: Allen Newell, Marvin Minsky, Claude Shannon, and Herbert Simon. Extrapolating key insights from these founders of AI, and combining them with the work of modern researchers, results in a fast and safe path to AGI. The seminal ideas discussed are: 1) Society of Mind (Minsky), 2) Information Theory (Shannon), 3) Problem Solving Theory (Newell & Simon), and 4) Bounded Rationality (Simon). Society of Mind describes a collective intelligence approach that can be used with AI and human agents to create an AGI network. Information theory helps address the critical issue of how an AGI system will increase its intelligence over time. Problem Solving Theory provides a universal framework that AI and human agents can use to communicate efficiently, effectively, and safely. Bounded Rationality helps us better understand not only the capabilities of SuperIntelligent AGI but also how humans can remain relevant in a world where the intelligence of AGI vastly exceeds that of its human creators. Each key idea can be combined with recent work in the fields of Artificial Intelligence, Machine Learning, and Large Language Models to accelerate the development of a working, safe, AGI system.Keywords: AI Agents, Collective Intelligence, Minsky, Newell, Shannon, Simon, AGI, AGI Safety
Procedia PDF Downloads 921245 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron
Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni
Abstract:
The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.Keywords: bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow
Procedia PDF Downloads 3441244 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment
Authors: Maedeh Pourmajidian, Joseph R. McDermid
Abstract:
Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation
Procedia PDF Downloads 3981243 A Comparative Study on Behavior Among Different Types of Shear Connectors using Finite Element Analysis
Authors: Mohd Tahseen Islam Talukder, Sheikh Adnan Enam, Latifa Akter Lithi, Soebur Rahman
Abstract:
Composite structures have made significant advances in construction applications during the last few decades. Composite structures are composed of structural steel shapes and reinforced concrete combined with shear connectors, which benefit each material's unique properties. Significant research has been conducted on different types of connectors’ behavior and shear capacity. Moreover, the AISC 360-16 “Specification for Steel Structural Buildings” consists of a formula for channel shear connectors' shear capacity. This research compares the behavior of C type and L type shear connectors using Finite Element Analysis. Experimental results from published literature are used to validate the finite element models. The 3-D Finite Element Model (FEM) was built using ABAQUS 2017 to investigate non-linear capabilities and the ultimate load-carrying potential of the connectors using push-out tests. The changes in connector dimensions were analyzed using this non-linear model in parametric investigations. The parametric study shows that by increasing the length of the shear connector by 10 mm, its shear strength increases by 21%. Shear capacity increased by 13% as the height was increased by 10 mm. The thickness of the specimen was raised by 1 mm, resulting in a 2% increase in shear capacity. However, the shear capacity of channel connectors was reduced by 21% due to an increase of thickness by 2 mm.Keywords: finite element method, channel shear connector, angle shear connector, ABAQUS, composite structure, shear connector, parametric study, ultimate shear capacity, push-out test
Procedia PDF Downloads 1251242 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations
Authors: Yehjune Heo
Abstract:
Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.Keywords: anti-spoofing, CNN, fingerprint recognition, GAN
Procedia PDF Downloads 1841241 Accessibility to Urban Parks for Low-income Residents in Chongqing, China: Perspective from Relative Deprivation
Authors: Junhang Luo
Abstract:
With the transformation of spatial structure and the deepening of urban development, the demand for a better life and the concerns for social resources equities of residents are increasing. As an important social resource, park plays an essential role in building environmentally sustainable cities. Thus, it is important to examine park accessibility for low-income and how it works in relative deprivation, so as to provide all residents with equitable services. Using the network and buffer methods of GIS, this paper analyzes urban park accessibility for low-income residents in Chongqing, China. And then conduct a satisfaction evaluation of park resource accessibility with low-incomes through questionnaire surveys from deprivation dimensions. Results show that the level of park accessibility in Chongqing varies significantly and the degree of relative deprivation is relatively high. Public transportation convenience improves and the number of community park increases contribute positively to improving park accessibility and alleviating the relative deprivation of public resources. Combined with the innovation pattern of social governance in China, it suggests that urban park accessibility needs to be jointly governed and optimized by multiple social resources from the government to the public, and the service efficiency needs the index system and planning standards according to local conditions to improve quality and promote equity. At the same time, building a perfect park system and complete legislation assurance system will also play a positive role in ensuring that all residents can enjoy the urban public space more fairly, especially low-income groups.Keywords: urban park, accessibility, relative deprivation, GIS network analysis, chongqing
Procedia PDF Downloads 1591240 Research on Spatial Distribution of Service Facilities Based on Innovation Function: A Case Study of Zhejiang University Zijin Co-Maker Town
Authors: Zhang Yuqi
Abstract:
Service facilities are the boosters for the cultivation and development of innovative functions in innovative cluster areas. At the same time, reasonable service facilities planning can better link the internal functional blocks. This paper takes Zhejiang University Zijin Co-Maker Town as the research object, based on the combination of network data mining and field research and verification, combined with the needs of its internal innovative groups. It studies the distribution characteristics and existing problems of service facilities and then proposes a targeted planning suggestion. The main conclusions are as follows: (1) From the perspective of view, the town is rich in general life-supporting services, but lacking of provision targeted and distinctive service facilities for innovative groups; (2) From the perspective of scale structure, small-scale street shops are the main business form, lack of large-scale service center; (3) From the perspective of spatial structure, service facilities layout of each functional block is too fragile to fit the characteristics of 2aggregation- distribution' of innovation and entrepreneurial activities; (4) The goal of optimizing service facilities planning should be guided for fostering function of innovation and entrepreneurship and meet the actual needs of the innovation and entrepreneurial groups.Keywords: the cultivation of innovative function, Zhejiang University Zijin Co-Maker Town, service facilities, network data mining, space optimization advice
Procedia PDF Downloads 1161239 Inherited Eye Diseases in Africa: A Scoping Review and Strategy for an African Longitudinal Eye Study
Authors: Bawa Yusuf Muhammad, Musa Abubakar Kana, Aminatu Abdulrahman, Kerry Goetz
Abstract:
Background: Inherited eye diseases are disorders that affect globally, 1 in 1000 people. The six main world populations have created databases containing information on eye genotypes. Aim: The aim of the scoping review was to mine and present the available information to date on the genetics of inherited eye diseases within the African continent. Method: Literature Search Strategy was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). PubMed and Google Scholar searched for articles on inherited eye diseases from inception to 20th June 2022. Both Original and review articles that report on inherited, genetic or developmental/congenital eye diseases within the African Continent were included in the research. Results: A total of 1162 citations were obtained, but only 37 articles were reviewed based on the inclusion and exclusion criteria. The highest output of publications on inherited eye diseases comes from South Africa and Tunisia (about 43%), followed by Morocco and Egypt (27%), then Sub-Saharan Africa and North Africa (13.50%), while the remaining articles (16.5%) originated from Nigeria, Ghana, Mauritania Cameroon, Zimbabwe and combined article between Zimbabwe and Cameroon. Glaucoma and inherited retinal disorders represent the most studied diseases, followed by Albinism and congenital cataracts, respectively. Conclusion: Despite the growing research from Tunisia, Morocco, Egypt and South Africa, Sub-Saharan Africa remains almost a virgin region to explore the genetics of eye diseases.Keywords: inherited eye diseases, Africa, scoping review, longitudinal eye study
Procedia PDF Downloads 571238 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization
Authors: Wenqi Liu, Reginald Bailey
Abstract:
This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.Keywords: machine learning, XGBoost, regression, decision making framework, system engineering
Procedia PDF Downloads 171237 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 791236 Heavy Metal Adsorption from Synthetic Wastewater Using Agro Waste-Based Nanoparticles: A Comparative Study
Authors: Nomthandazo Precious Sibiya, Thembisile Patience Mahlangu, Sudesh Rathilal
Abstract:
Heavy metal removal is critical in the wastewater treatment process due to its numerous harmful effects on human and aquatic life. There are several chemical and physical techniques for removing heavy metals from wastewater, including ion exchange, reverse osmosis, adsorption, electrodialysis, and ultrafiltration. However, adsorption technology has captivated researchers for years due to its low cost, high efficiency, and compatible with the environment. In this study, the adsorption effectiveness of three modified agro-waste materials was explored for the removal of lead from synthetic wastewater: banana peels (BP), orange peels (OP), and sugarcane bagasse (SB). The magnetite (Fe₃O₄) is incorporated with BP, OP, and SB at a ratio of 1:1 to create magnetic biosorbents. Characterization of biosorbents was carried out using and scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) to investigate surface morphology and elemental compositions, respectively. A series of batch experiments were carried out to investigate the effects of adsorbent mass, agitation time, and initial pH concentration on adsorption behaviour, as well as adsorption isotherms and kinetics. The removal efficiency of lead by the modified agro-waste materials proved to be superior to that of non-modified agro-waste materials. The proof of concept was achieved, and agro-waste materials can be paired with adsorption technology to effectively remove lead from aqueous media. The use of agricultural waste as biosorbents will aid in waste reduction and management.Keywords: adsorption, isotherms, kinetics, agro waste, nanoparticles, batch
Procedia PDF Downloads 671235 Case Study: Geomat Installation against Slope Erosion
Authors: Serap Kaymakci, Dogan Gundogdu, M. Bugra Yagcioglu
Abstract:
Erosion (soil erosion) is a phenomenon in which the soil on the slope surface is exposed to natural influences such as wind, rainfall, etc. in open areas. The most natural solution to prevent erosion is to plant surfaces exposed to erosion. However, proper ground and natural conditions must be provided in order for planting to occur. Erosion is prevented in a fast and natural way and the loss of soil is reduced mostly. Lead to allowing plants to hold onto the soil with its three-dimensional and hollow structure are as follows: The types of geomat called MacMat that is used in a case study in Turkey in order to prevent water carry over due to rainfall. The geosynthetic combined with double twisted steel wire mesh. That consists of 95% Zn–5% Al alloy coated double twisted steel wire based that is a reinforced MacMat (geosynthetic three-dimensional erosion control mat) obtained by a polypropylene consisted (mesh type 8x10-Wire diam. 2.70 mm–95% Zn–5% Al alloy coated). That is developed by the progress of the technology. When using reinforced MacMat on top clay liners, fixing pins should not be used as they will rupture the mats. Mats are simply anchored (J Type) in the top trench and, if necessary, in intermediate berm trenches. If the slope angle greater than 20°, it is necessary to use additional rebar depending soil properties also. These applications may have specific technical and installation requirements. In that project, the main purpose is erosion control after that is greening. There is a slope area around the factory which is located in Gebze, İstanbul.Keywords: erosion, GeoMat, geosynthetic, slope
Procedia PDF Downloads 1761234 Efficacy of Combined CHAp and Lanthanum Carbonate in Therapy for Hyperphosphatemia
Authors: Andreea Cârâc, Elena Morosan, Ana Corina Ionita, Rica Bosencu, Geta Carac
Abstract:
Lanthanum carbonate exhibits a considerable ability to bind phosphate and the substitution of Ca2+ ions by divalent or trivalent lanthanide metal ions attracted attention during the past few years. Although Lanthanum carbonate has not been approved by the FDA for treatment of hyperphosphatemia, we prospectively evaluated the efficacy of the combination of Calcium hydroxyapatite and Lanthanum carbonate for the treatment of hyperphosphatemia on mice. Calcium hydroxyapatite commonly referred as CHAp is a bioceramic material and is one of the most important implantable materials due to its biocompatibility and osteoconductivity. We prepared calcium hydroxyapatite and lanthanum carbonate. CHAp was prepared by co-precipitation method using Ca(OH)2, H3PO4, NH4OH with calcination at 1200ºC. Lanthanum carbonate was prepared by chemical method using NaHCO3 and LaCl3 at low pH environment , ph below 4.0 The confirmation of both substances structures was made using XRD characterization, FTIR spectra and SEM /EDX analysis. The study group included 20 subjects-mice divided into four groups according to the administered substance: lanthanum carbonate (group A), lanthanum carbonate + CHAp (group B), CHAp (group C) and salt water (group D). The results indicate a phosphate decrease when subjects (mice) were treated with CHAp and lanthanum carbonate (0.5 % CMC), in a single dose of 1500 mg/kg. Serum phosphate concentration decreased [from 4.5 ± 0.8 mg/dL) to 4.05 ± 0.2 mg/dL), P < 0.01] in group A and to 3.6 ± 0.2 mg/dL] only after the 24 hours of combination therapy. The combination of CHAp and lanthanum carbonate is a suitable regimen for hyperphosphatemia treatment subjects because it avoids both the hypercalcemia of CaCO3 and the adverse effects of CHAp. The ability of CHAp to decrease the serum phosphate concentration is 1/3 that of lanthanum carbonate.Keywords: calcium hydroxyapatite, hyperphosphatemia, lanthanum carbonate, phosphate, structures
Procedia PDF Downloads 3781233 Comparative Study Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine
Procedia PDF Downloads 4101232 The Functional Rehabilitation of Peri-Implant Tissue Defects: A Case Report
Authors: Özgür Öztürk, Cumhur Sipahi, Hande Yeşil
Abstract:
Implant retained restorations commonly consist of a metal-framework veneered with ceramic or composite facings. The increasing and expanding use of indirect resin composites in dentistry is a result of innovations in materials and processing techniques. Of special interest to the implant restorative field is the possibility that composites present significantly lower peak vertical and transverse forces transmitted at the peri-implant level compared to metal-ceramic supra structures in implant-supported restorations. A 43-year-old male patient referred to the department of prosthodontics for an implant retained fixed prosthesis. The clinical and radiographic examination of the patient demonstrated the presence of an implant in the right mandibular first molar tooth region. A considerable amount of marginal bone loss around the implant was detected in radiographic examinations combined with a remarkable peri-implant soft tissue deficiency. To minimize the chewing loads transmitted to the implant-bone interface it was decided to fabricate an indirect composite resin veneered single metal crown over a screw-retained abutment. At the end of the treatment, the functional and aesthetic deficiencies were fully compensated. After a 6 months clinical and radiographic follow-up period the not any additional pathologic invasion was detected in the implant-bone interface and implant retained restoration did not reveal any vehement complication.Keywords: dental implant, fixed partial dentures, indirect composite resin, peri-implant defects
Procedia PDF Downloads 2621231 Modeling Core Flooding Experiments for Co₂ Geological Storage Applications
Authors: Avinoam Rabinovich
Abstract:
CO₂ geological storage is a proven technology for reducing anthropogenic carbon emissions, which is paramount for achieving the ambitious net zero emissions goal. Core flooding experiments are an important step in any CO₂ storage project, allowing us to gain information on the flow of CO₂ and brine in the porous rock extracted from the reservoir. This information is important for understanding basic mechanisms related to CO₂ geological storage as well as for reservoir modeling, which is an integral part of a field project. In this work, a different method for constructing accurate models of CO₂-brine core flooding will be presented. Results for synthetic cases and real experiments will be shown and compared with numerical models to exhibit their predictive capabilities. Furthermore, the various mechanisms which impact the CO₂ distribution and trapping in the rock samples will be discussed, and examples from models and experiments will be provided. The new method entails solving an inverse problem to obtain a three-dimensional permeability distribution which, along with the relative permeability and capillary pressure functions, constitutes a model of the flow experiments. The model is more accurate when data from a number of experiments are combined to solve the inverse problem. This model can then be used to test various other injection flow rates and fluid fractions which have not been tested in experiments. The models can also be used to bridge the gap between small-scale capillary heterogeneity effects (sub-core and core scale) and large-scale (reservoir scale) effects, known as the upscaling problem.Keywords: CO₂ geological storage, residual trapping, capillary heterogeneity, core flooding, CO₂-brine flow
Procedia PDF Downloads 701230 Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes
Authors: Jihad Daba, Jean-Pierre Dubois
Abstract:
Multi path fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper have utilized a Poisson modulated and weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multi-diversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent specular Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.Keywords: cellular communication, femto and pico-cells, stochastically local area fading channel, triply stochastic filtered marked Poisson point process
Procedia PDF Downloads 4481229 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines
Authors: Nicolae Constantin, Ştefan Sorohan
Abstract:
The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities
Procedia PDF Downloads 3391228 Role of Mismatch Repair Protein Expression in Colorectal Cancer: A Study from North India
Authors: Alka Yadav, Mayank Jain, Rajan Saxena, Niraj Kumari, Narendra Krishnani, Ashok Kumar
Abstract:
Purpose: To study the mismatch repair (MMR) protein expression and its clinicopathological correlation in colorectal cancer patients in North India. Methods: A prospective study was conducted on histologically proven 52 (38 males and 14 females) patients with adenocarcinoma of colorectum. MMR protein loss was determined by using immunohistochemistry for MLH1, MSH2, PMS2 and MSH6. Results: 52 patients (38 males and 14 females) underwent resection for colorectal cancer with the median age of 52 years (16-81 years). 35% of the patients (n=18) were younger than 50 years of the age. 3 patients had associated history of malignancy in the family. 29 (56%) patients had right colon cancer, 9 (17%) left colon cancer and 14 (27%) rectal cancer. 2 patients each had synchronous and metachronous cancer. Histology revealed well-differentiated tumour in 16, moderately differentiated in 10 and poorly differentiated tumour in 26 patients. MMR protein loss was seen in 15 (29%) patients. Seven (46%) of these patients were less than 50 years of age. Combined loss of MSH2 and MSH6 was seen most commonly and it was found in 6 patients. 12 (80%) patients with MMR protein loss had tumour located proximal to the splenic flexure compared to 3 (20%) located distal to the splenic flexure. There was no difference in MMR protein loss based on patients' age, gender, degree of tumour differentiation, stage of the disease and tumour histological characteristics. Conclusions: This study revealed that there was less than 30% MMR protein loss in colorectal cancer patients. The loss was most commonly seen in right sided colon cancer than left. A larger study is further required to validate these findings.Keywords: colorectal cancer, mismatch repair protein, immunohitochemistry, clinicopathological correlation
Procedia PDF Downloads 2331227 High Efficacy of Combined Therapy with Microbicide BASANT and Triple Combination of Selected Probiotics for Treatment of Vaginosis and Restoration of Vaginal Health
Authors: Nishu Atrey, Priyanka Singh, G. P. Talwar, Jagdish Gupta, Alka Kriplani, Rohini Sehgal, Indrani Ganguli, Soni Sinha
Abstract:
Background: Vaginosis is a widely prevalent syndrome in India and elsewhere. Recurrence is frequent in women treated with antibiotics, whose vagina pH remains above 5.0 indicative of the loss of resident lactobacilli. The objective of the present trial was to determine whether a Polyherbal microbicide BASANT can regress Vaginosis. Another objective was to determine whether the three selected strains of Probiotics endowed with making high amounts of lactic acid can colonise and restore the pH of the vagina to the acidic healthy range. Materials and Procedure: BASANT, was employed in powder form in veg (cellulose) capsules. TRF#36 strain of Lactobacillus fermentum, TRF#8 strain of L.gasseri, and TRF#30 strain of L.salivarius (combination termed as Pro-vag-Health) were employed at 3x109 bacilli lyophilized, packaged in capsules. The trials were conducted in women suffering from vaginosis with vaginal pH above 5.0. Women were given intravaginally either BASANT, Pro-vag-Health or a combination of the two intravaginally for seven days and thereafter once weekly as a maintenance dose. Results: BASANT cleared vaginosis in 14/20 women and Pro-vag-Health in 13/20 women. Interestingly, the combination of BASANT plus Pro-vag-Health was effective in 19/20 women, in contrast to Placebo capsules effective only in 1/20 women. Interpretation and Conclusion: The combination of BASANT and Pro-veg-Health Probiotics taken together intravaginally for seven days relieves 19 out of 20 women from vaginosis to restore acidic pH and healthy vagina. Extension of trial with this combination in larger number is indicated.Keywords: microbicide, probiotics, vaginal pH, vaginosis
Procedia PDF Downloads 3081226 Building Information Modelling (BIM) and Unmanned Aerial Vehicles (UAV) Technologies in Road Construction Project Monitoring and Management: Case Study of a Project in Cyprus
Authors: Yiannis Vacanas, Kyriacos Themistocleous, Athos Agapiou, Diofantos Hadjimitsis
Abstract:
Building Information Modelling (BIM) technology is considered by construction professionals as a very valuable process in modern design, procurement and project management. Construction professionals of all disciplines can use a single 3D model which BIM technology provides, to design a project accurately and furthermore monitor the progress of construction works effectively and efficiently. Unmanned Aerial Vehicles (UAVs), a technology initially developed for military applications, is now without any difficulty accessible and has already been used by commercial industries, including the construction industry. UAV technology has mainly been used for collection of images that allow visual monitoring of building and civil engineering projects conditions in various circumstances. UAVs, nevertheless, have undergone significant advances in equipment capabilities and now have the capacity to acquire high-resolution imagery from many angles in a cost effective manner, and by using photogrammetry methods, someone can determine characteristics such as distances, angles, areas, volumes and elevations of an area within overlapping images. In order to examine the potential of using a combination of BIM and UAV technologies in construction project management, this paper presents the results of a case study of a typical road construction project where the combined use of the two technologies was used in order to achieve efficient and accurate as-built data collection of the works progress, with outcomes such as volumes, and production of sections and 3D models, information necessary in project progress monitoring and efficient project management.Keywords: BIM, project management, project monitoring, UAV
Procedia PDF Downloads 3031225 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker
Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro
Abstract:
Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor
Procedia PDF Downloads 2561224 Study of the Performances of an Environmental Concrete Based on Recycled Aggregates and Marble Waste Fillers Addition
Authors: Larbi Belagraa, Miloud Beddar, Abderrazak Bouzid
Abstract:
The needs of the construction sector still increasing for concrete. However, the shortage of natural resources of aggregate could be a problem for the concrete industry, in addition to the negative impact on the environment due to the demolition wastes. Recycling aggregate from construction and demolition (C&D) waste presents a major interest for users and researchers of concrete since this constituent can occupies more than 70% of concrete volume. The aim of the study here in is to assess the effect of sulfate resistant cement combined with the local mineral addition of marble waste fillers on the mechanical behavior of a recycled aggregate concrete (RAC). Physical and mechanical properties of RAC including the density, the flexural and the compressive strength were studied. The non destructive test methods (pulse-velocity, rebound hammer) were performed . The results obtained were compared to crushed aggregate concrete (CAC) using the normal compressive testing machine test method. The optimal content of 5% marble fillers showed an improvement for both used test methods (compression, flexion and NDT). Non-destructive methods (ultrasonic and rebound hammer test) can be used to assess the strength of RAC, but a correction coefficient is required to obtain a similar value to the compressive strength given by the compression tests. The study emphasizes that these waste materials can be successfully and economically utilized as additional inert filler in RAC formulation within similar performances compared to a conventional concrete.Keywords: marble waste fillers, mechanical strength, natural aggregate, non-destructive testing (NDT), recycled aggregate concrete
Procedia PDF Downloads 312