Search results for: behavioral-physical and visual methods
15383 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5
Procedia PDF Downloads 54815382 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches
Authors: Bin Liu
Abstract:
As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines
Procedia PDF Downloads 12515381 Optimizing Pick and Place Operations in a Simulated Work Cell for Deformable 3D Objects
Authors: Troels Bo Jørgensen, Preben Hagh Strunge Holm, Henrik Gordon Petersen, Norbert Kruger
Abstract:
This paper presents a simulation framework for using machine learning techniques to determine robust robotic motions for handling deformable objects. The main focus is on applications in the meat sector, which mainly handle three-dimensional objects. In order to optimize the robotic handling, the robot motions have been parameterized in terms of grasp points, robot trajectory and robot speed. The motions are evaluated based on a dynamic simulation environment for robotic control of deformable objects. The evaluation indicates certain parameter setups, which produce robust motions in the simulated environment, and based on a visual analysis indicate satisfactory solutions for a real world system.Keywords: deformable objects, robotic manipulation, simulation, real world system
Procedia PDF Downloads 28115380 Quantifying Product Impacts on Biodiversity: The Product Biodiversity Footprint
Authors: Leveque Benjamin, Rabaud Suzanne, Anest Hugo, Catalan Caroline, Neveux Guillaume
Abstract:
Human products consumption is one of the main drivers of biodiversity loss. However, few pertinent ecological indicators regarding product life cycle impact on species and ecosystems have been built. Life cycle assessment (LCA) methodologies are well under way to conceive standardized methods to assess this impact, by taking already partially into account three of the Millennium Ecosystem Assessment pressures (land use, pollutions, climate change). Coupling LCA and ecological data and methods is an emerging challenge to develop a product biodiversity footprint. This approach was tested on three case studies from food processing, textile, and cosmetic industries. It allowed first to improve the environmental relevance of the Potential Disappeared Fraction of species, end-point indicator typically used in life cycle analysis methods, and second to introduce new indicators on overexploitation and invasive species. This type of footprint is a major step in helping companies to identify their impacts on biodiversity and to propose potential improvements.Keywords: biodiversity, companies, footprint, life cycle assessment, products
Procedia PDF Downloads 32715379 Risk Measure from Investment in Finance by Value at Risk
Authors: Mohammed El-Arbi Khalfallah, Mohamed Lakhdar Hadji
Abstract:
Managing and controlling risk is a topic research in the world of finance. Before a risky situation, the stakeholders need to do comparison according to the positions and actions, and financial institutions must take measures of a particular market risk and credit. In this work, we study a model of risk measure in finance: Value at Risk (VaR), which is a new tool for measuring an entity's exposure risk. We explain the concept of value at risk, your average, tail, and describe the three methods for computing: Parametric method, Historical method, and numerical method of Monte Carlo. Finally, we briefly describe advantages and disadvantages of the three methods for computing value at risk.Keywords: average value at risk, conditional value at risk, tail value at risk, value at risk
Procedia PDF Downloads 44315378 Defending Indigenous Working Urban Spaces Trough Visual Activism in Quito
Authors: Katherine Anson
Abstract:
This paper takes a closer look at the use of day-to-day informal working practices in Latin American spatial, cultural activism against gentrification. Through a discursive analysis of the Ecuadorian communally made film documentary San Roque: A House for All (2015), and the study of the political conflict around the gentrification of the place, the essay illustrates how the purposeful showcase of indigenous uses of space claims ownership over the city’s downtown area. This argument concludes that by making visible everyday indigenous ways of production in relation to space, the video contests the neoliberalist aim to proletarianize the urban poor, and therefore, to transform them into a landless group. This approach demonstrates that through representations of their own cultural working practices grassroots organizations consciously deconstruct/contest the capitalist urbanization of space.Keywords: cultural activism, gentrification, indigenous working traditions, neoliberalism, urban displacement, everyday forms of resistance
Procedia PDF Downloads 15515377 Integrating Participatory Action and Arts-Based Research: A Methodology for Investigating Generative AI in Elementary Art Education
Authors: Jihane Mossalim
Abstract:
This study proposes a methodological framework that combines Participatory Action Research (PAR) with Arts-Based Research (ABR) to explore the potential of generative AI in elementary art education. By integrating PAR, this framework emphasizes elementary school students’ active participation as co-researchers, engaging with AI technologies and reflecting on their creative journeys. PAR’s iterative cycles of planning, action, observation, and reflection provide a solid structure for involving children in the research process, ensuring that the study is inclusive and reflective of the children’s perspectives. Arts-Based Research, on the other hand, allows for the exploration of AI not just as a tool but as a medium of creative expression. ABR’s emphasis on visual, performative, and creative outputs complements PAR’s inclusive approach, offering a dynamic and flexible way of studying the intersection of technology and art in educational contexts. This combination is particularly valuable as it encourages students to express their ideas and emotions through art, making the learning process more engaging and personally meaningful. Despite the recognized benefits of both PAR and ABR, there remains a notable gap in research that applies these methodologies in combination with elementary school students, particularly in the context of emerging technologies like generative AI. Addressing this gap is crucial, as integrating these approaches can lead to more inclusive and innovative educational practices that cater to the diverse needs of young learners. This chapter seeks to demonstrate how integrating PAR and ABR can empower young learners, giving them a voice in the research process while enriching their creative and critical thinking skills. This chapter will develop a methodology that integrates both theoretical and practical aspects of PAR and ABR, highlighting the challenges and opportunities that emerge when these approaches are integrated. It will also discuss how to adapt these methods for research in the elementary art education, providing a foundation for future inquiry. Further, the chapter will focus on situating these methodological developments in relation to a study that seeks to understand the potential of generative AI in fostering creativity, collaboration, and critical thinking among young learners. Ultimately, this work aims to provide a pioneering example that inspires further exploration and development of educational practices in the digital age.Keywords: participatory action research, arts-based research, generative AI, elementary art education
Procedia PDF Downloads 2715376 Meet Automotive Software Safety and Security Standards Expectations More Quickly
Authors: Jean-François Pouilly
Abstract:
This study addresses the growing complexity of embedded systems and the critical need for secure, reliable software. Traditional cybersecurity testing methods, often conducted late in the development cycle, struggle to keep pace. This talk explores how formal methods, integrated with advanced analysis tools, empower C/C++ developers to 1) Proactively address vulnerabilities and bugs, which includes formal methods and abstract interpretation techniques to identify potential weaknesses early in the development process, reducing the reliance on penetration and fuzz testing in later stages. 2) Streamline development by focusing on bugs that matter, with close to no false positives and catching flaws earlier, the need for rework and retesting is minimized, leading to faster development cycles, improved efficiency and cost savings. 3) Enhance software dependability which includes combining static analysis using abstract interpretation with full context sensitivity, with hardware memory awareness allows for a more comprehensive understanding of potential vulnerabilities, leading to more dependable and secure software. This approach aligns with industry best practices (ISO2626 or ISO 21434) and empowers C/C++ developers to deliver robust, secure embedded systems that meet the demands of today's and tomorrow's applications. We will illustrate this approach with the TrustInSoft analyzer to show how it accelerates verification for complex cases, reduces user fatigue, and improves developer efficiency, cost-effectiveness, and software cybersecurity. In summary, integrating formal methods and sound Analyzers enhances software reliability and cybersecurity, streamlining development in an increasingly complex environment.Keywords: safety, cybersecurity, ISO26262, ISO24434, formal methods
Procedia PDF Downloads 2215375 A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps
Authors: Yong Bum Shin
Abstract:
This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area.Keywords: multiple criteria decision making, rank inconsistency, unified commensurate multiple, analytic hierarchy process
Procedia PDF Downloads 8315374 Effects of a Head Mounted Display Adaptation on Reaching Behaviour: Implications for a Therapeutic Approach in Unilateral Neglect
Authors: Taku Numao, Kazu Amimoto, Tomoko Shimada, Kyohei Ichikawa
Abstract:
Background: Unilateral spatial neglect (USN) is a common syndrome following damage to one hemisphere of the brain (usually the right side), in which a patient fails to report or respond to stimulation from the contralesional side. These symptoms are not due to primary sensory or motor deficits, but instead, reflect an inability to process input from that side of their environment. Prism adaptation (PA) is a therapeutic treatment for USN, wherein a patient’s visual field is artificially shifted laterally, resulting in a sensory-motor adaptation. However, patients with USN also tend to perceive a left-leaning subjective vertical in the frontal plane. The traditional PA cannot be used to correct a tilt in the subjective vertical, because a prism can only polarize, not twist, the surroundings. However, this can be accomplished using a head mounted display (HMD) and a web-camera. Therefore, this study investigated whether an HMD system could be used to correct the spatial perception of USN patients in the frontal as well as the horizontal plane. We recruited healthy subjects in order to collect data for the refinement of USN patient therapy. Methods: Eight healthy subjects sat on a chair wearing a HMD (Oculus rift DK2), with a web-camera (Ovrvision) displaying a 10 degree leftward rotation and a 10 degree counter-clockwise rotation along the frontal plane. Subjects attempted to point a finger at one of four targets, assigned randomly, a total of 48 times. Before and after the intervention, each subject’s body-centre judgment (BCJ) was tested by asking them to point a finger at a touch panel straight in front of their xiphisternum, 10 times sight unseen. Results: Intervention caused the location pointed to during the BCJ to shift 35 ± 17 mm (Ave ± SD) leftward in the horizontal plane, and 46 ± 29 mm downward in the frontal plane. The results in both planes were significant by paired-t-test (p<.01). Conclusions: The results in the horizontal plane are consistent with those observed following PA. Furthermore, the HMD and web-camera were able to elicit 3D effects, including in both the horizontal and frontal planes. Future work will focus on applying this method to patients with and without USN, and investigating whether subject posture is also affected by the HMD system.Keywords: head mounted display, posture, prism adaptation, unilateral spatial neglect
Procedia PDF Downloads 28015373 Developing Learning in Organizations with Innovation Pedagogy Methods
Authors: T. Konst
Abstract:
Most jobs include training and communication tasks, but often the people in these jobs lack pedagogical competences to plan, implement and assess learning. This paper aims to discuss how a learning approach called innovation pedagogy developed in higher education can be utilized for learning development in various organizations. The methods presented how to implement innovation pedagogy such as process consultation and train the trainer model can provide added value to develop pedagogical knowhow in organizations and thus support their internal learning and development.Keywords: innovation pedagogy, learning, organizational development, process consultation
Procedia PDF Downloads 36915372 Arabic Handwriting Recognition Using Local Approach
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM
Procedia PDF Downloads 7415371 Exploring the Influences on Entrainment of Serpentines by Grinding and Reagents
Authors: M. Tang, S. M. Wen, D. W. Liu
Abstract:
This paper presents the influences on the entrainment of serpentines by grinding and reagents during copper–nickel sulfide flotation. The previous bench flotation tests were performed to extract the metallic values from the ore in Yunnan Mine, China and the relatively satisfied results with recoveries of 86.92% Cu, 54.92% Ni, and 74.73% Pt+Pd in the concentrate were harvested at their grades of 4.02%, 3.24% and 76.61 g/t, respectively. However, the content of MgO in the concentrate was still more than 19%. Micro-flotation tests were conducted with the objective of figuring out the influences on the entrainment of serpentines into the concentrate by particle size, flocculants or depressants and collectors, as well as visual observations in suspension by OLYMPUS camera. All the tests results pointed to the presences of both “entrapped-in” serpentines and its coating on the hydrophobic flocs resulted from strong collectors (combination of butyl xanthate, butyl ammonium dithophosphate, even after adding carboxymethyl cellulose as effective depressant. And fine grinding may escalate the entrainment of serpentines in the concentrate.Keywords: serpentine, copper and nickel sulfides, flotation, entrainment
Procedia PDF Downloads 30615370 Research of Data Cleaning Methods Based on Dependency Rules
Authors: Yang Bao, Shi Wei Deng, WangQun Lin
Abstract:
This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSQL), and gives 6 data cleaning methods based on these algorithms.Keywords: data cleaning, dependency rules, violation data discovery, data repair
Procedia PDF Downloads 56515369 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 1715368 Auditing of Building Information Modeling Application in Decoration Engineering Projects in China
Authors: Lan Luo
Abstract:
In China’s construction industry, it is a normal practice to separately subcontract the decoration engineering part from construction engineering, and Building Information Modeling (BIM) is also done separately. Application of BIM in decoration engineering should be integrated with other disciplines, but Chinese current practice makes this very difficult and complicated. Currently, there are three barriers in the auditing of BIM application in decoration engineering in China: heavy workload; scarcity of qualified professionals; and lack of literature concerning audit contents, standards, and methods. Therefore, it is significant to perform research on what (contents) should be evaluated, in which phase, and by whom (professional qualifications) in BIM application in decoration construction so that the application of BIM can be promoted in a better manner. Based on this consideration, four principles of BIM auditing are proposed: Comprehensiveness of information, accuracy of data, aesthetic attractiveness of appearance, and scheme optimization. In the model audit, three methods should be used: Collision, observation, and contrast. In addition, BIM auditing at six stages is discussed and a checklist for work items and results to be submitted is proposed. This checklist can be used for reference by decoration project participants.Keywords: audit, evaluation, dimensions, methods, standards, BIM application in decoration engineering projects
Procedia PDF Downloads 34315367 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer
Authors: Dimitrios Binas, Marianna Konidari, Charis Bourgioti, Lia Angela Moulopoulou, Theodore Economopoulos, George Matsopoulos
Abstract:
High grade ovarian epithelial cancer (OEC) is fatal gynecological cancer and the poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study proposes a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.Keywords: image segmentation, ovarian epithelial cancer, quantitative characteristics, image registration, tumor visualization
Procedia PDF Downloads 21415366 Parallel Multisplitting Methods for DAE’s
Authors: Ahmed Machmoum, Malika El Kyal
Abstract:
We consider iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays tobe substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.Keywords: computer, multi-splitting methods, asynchronous mode, differential algebraic systems
Procedia PDF Downloads 54915365 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation
Authors: Stephen Kirkup
Abstract:
This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.Keywords: boundary element method, Laplace’s equation, vector calculus, simulation, education
Procedia PDF Downloads 16415364 Effect of Brewing on the Bioactive Compounds of Coffee
Authors: Ceyda Dadali, Yeşim Elmaci
Abstract:
Coffee was introduced as an economic crop during the fifteenth century; nowadays it is the most important food commodity ranking second after crude oil. Desirable sensory properties make coffee one of the most often consumed and most popular beverages in the world. The coffee preparation method has a significant effect on flavor and composition of coffee brews. Three different extraction methodologies namely decoction, infusion and pressure methods have been used for coffee brew preparation. Each of these methods is related to specific granulation (coffee grind) of coffee powder, water-coffee ratio temperature and brewing time. Coffee is a mixture of 1500 chemical compounds. Chemical composition of coffee highly depends on brewing methods, coffee bean species and roasting time-temperature. Coffee contains a wide number of very important bioactive compounds, such as diterpenes: cafestol and kahweol, alkaloids: caffeine, theobromine and trigonelline, melanoidins, phenolic compounds. The phenolic compounds of coffee include chlorogenic acids (quinyl esters of hidroxycinnamic acids), caffeic, ferulic, p-coumaric acid. In coffee caffeoylquinic acids, feruloylquinic acids and di-caffeoylquinic acids are three main groups of chlorogenic acids constitues 6% -10% of dry weight of coffee. The bioavailability of chlorogenic acids in coffee depends on the absorption and metabolization to biomarkers in individuals. Also, the interaction of coffee polyphenols with other compounds such as dietary proteins affects the biomarkers. Since bioactive composition of coffee depends on brewing methods effect of coffee brewing method on bioactive compounds of coffee will be discussed in this study.Keywords: bioactive compounds of coffee, biomarkers, coffee brew, effect of brewing
Procedia PDF Downloads 19715363 Bayesian Parameter Inference for Continuous Time Markov Chains with Intractable Likelihood
Authors: Randa Alharbi, Vladislav Vyshemirsky
Abstract:
Systems biology is an important field in science which focuses on studying behaviour of biological systems. Modelling is required to produce detailed description of the elements of a biological system, their function, and their interactions. A well-designed model requires selecting a suitable mechanism which can capture the main features of the system, define the essential components of the system and represent an appropriate law that can define the interactions between its components. Complex biological systems exhibit stochastic behaviour. Thus, using probabilistic models are suitable to describe and analyse biological systems. Continuous-Time Markov Chain (CTMC) is one of the probabilistic models that describe the system as a set of discrete states with continuous time transitions between them. The system is then characterised by a set of probability distributions that describe the transition from one state to another at a given time. The evolution of these probabilities through time can be obtained by chemical master equation which is analytically intractable but it can be simulated. Uncertain parameters of such a model can be inferred using methods of Bayesian inference. Yet, inference in such a complex system is challenging as it requires the evaluation of the likelihood which is intractable in most cases. There are different statistical methods that allow simulating from the model despite intractability of the likelihood. Approximate Bayesian computation is a common approach for tackling inference which relies on simulation of the model to approximate the intractable likelihood. Particle Markov chain Monte Carlo (PMCMC) is another approach which is based on using sequential Monte Carlo to estimate intractable likelihood. However, both methods are computationally expensive. In this paper we discuss the efficiency and possible practical issues for each method, taking into account the computational time for these methods. We demonstrate likelihood-free inference by performing analysing a model of the Repressilator using both methods. Detailed investigation is performed to quantify the difference between these methods in terms of efficiency and computational cost.Keywords: Approximate Bayesian computation(ABC), Continuous-Time Markov Chains, Sequential Monte Carlo, Particle Markov chain Monte Carlo (PMCMC)
Procedia PDF Downloads 20615362 MIOM: A Mixed-Initiative Operational Model for Robots in Urban Search and Rescue
Authors: Mario Gianni, Federico Nardi, Federico Ferri, Filippo Cantucci, Manuel A. Ruiz Garcia, Karthik Pushparaj, Fiora Pirri
Abstract:
In this paper, we describe a Mixed-Initiative Operational Model (MIOM) which directly intervenes on the state of the functionalities embedded into a robot for Urban Search&Rescue (USAR) domain applications. MIOM extends the reasoning capabilities of the vehicle, i.e. mapping, path planning, visual perception and trajectory tracking, with operator knowledge. Especially in USAR scenarios, this coupled initiative has the main advantage of enhancing the overall performance of a rescue mission. In-field experiments with rescue responders have been carried out to evaluate the effectiveness of this operational model.Keywords: mixed-initiative planning and control, operator control interfaces for rescue robotics, situation awareness, urban search, rescue robotics
Procedia PDF Downloads 37615361 A Review on Application of Waste Tire in Concrete
Authors: M. A. Yazdi, J. Yang, L. Yihui, H. Su
Abstract:
The application of recycle waste tires into civil engineering practices, namely asphalt paving mixtures and cementbased materials has been gaining ground across the world. This review summarizes and compares the recent achievements in the area of plain rubberized concrete (PRC), in details. Different treatment methods have been discussed to improve the performance of rubberized Portland cement concrete. The review also includes the effects of size and amount of tire rubbers on mechanical and durability properties of PRC. The microstructure behaviour of the rubberized concrete was detailed.Keywords: waste rubber aggregates, microstructure, treatment methods, size and content effects
Procedia PDF Downloads 33515360 Optical Whitening of Textiles: Teaching and Learning Materials
Authors: C. W. Kan
Abstract:
This study examines the results of optical whitening process of different textiles such as cotton, wool and polyester. The optical whitening agents used are commercially available products, and the optical whitening agents were applied to the textiles with manufacturers’ suggested methods. The aim of this study is to illustrate the proper application methods of optical whitening agent to different textiles and hence to provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, optical whitening agent, wool, cotton, polyester
Procedia PDF Downloads 42815359 A Critical Reflection of Ableist Methodologies: Approaching Interviews and Go-Along Interviews
Authors: Hana Porkertová, Pavel Doboš
Abstract:
Based on a research project studying the experience of visually disabled people with urban space in the Czech Republic, the conference contribution discusses the limits of social-science methodologies used in sociology and human geography. It draws on actor-network theory, assuming that science does not describe reality but produces it. Methodology connects theory, research questions, ways to answer them (methods), and results. A research design utilizing ableist methodologies can produce ableist realities. Therefore, it was necessary to adjust the methods so that they could mediate blind experience to the scientific community without reproducing ableism. The researchers faced multiple challenges, ranging from questionable validity to how to research experience that differs from that of the researchers who are able-bodied. Finding a suitable theory that could be used as an analytical tool that would demonstrate space and blind experience as multiple, dynamic, and mutually constructed was the first step that could offer a range of potentially productive methods and research questions, as well as bring critically reflected results. Poststructural theory, mainly Deleuze-Guattarian philosophy, was chosen, and two methods were used: interviews and go-along interviews that had to be adjusted to be able to explore blind experience. In spite of a thorough preparation of these methods, new difficulties kept emerging, which exposed the ableist character of scientific knowledge. From the beginning of data collecting, there was an agreement to work in teams with slightly different roles of each of the researchers, which was significant especially during go-along interviews. In some cases, the anticipations of the researchers and participants differed, which led to unexpected and potentially dangerous situations. These were not caused only by the differences between scientific and lay communities but also between able-bodied and disabled people. Researchers were sometimes assigned to the assistants’ roles, and this new position – doing research together – required further negotiations, which also opened various ethical questions.Keywords: ableist methodology, blind experience, go-along interviews, research ethics, scientific knowledge
Procedia PDF Downloads 16615358 Enhancing Social Well-Being in Older Adults Through Tailored Technology Interventions: A Future Systematic Review
Authors: Rui Lin, Jimmy Xiangji Huang, Gary Spraakman
Abstract:
This forthcoming systematic review will underscore the imperative of leveraging technology to mitigate social isolation in older adults, particularly in the context of unprecedented global challenges such as the COVID-19 pandemic. With the continual evolution of technology, it becomes crucial to scrutinize the efficacy of interventions and discern how they can alleviate social isolation and augment social well-being among the elderly. This review will strive to clarify the best methods for older adults to utilize cost-effective and user-friendly technology and will investigate how the adaptation and execution of such interventions can be fine-tuned to maximize their positive outcomes. The study will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to filter pertinent studies. We foresee conducting an analysis of articles and executing a narrative analysis to discover themes and indicators related to quality of life and, technology use and well-being. The review will examine how involving older adults at the community level, applying top practices from community-based participatory research, can establish efficient strategies to implement technology-based interventions designed to diminish social isolation and boost digital use self-efficacy. Applications based on mobile technology and virtual platforms are set to assume a crucial role not only in enhancing connections within families but also in connecting older adults to vital healthcare resources, fostering both physical and mental well-being. The review will investigate how technological devices and platforms can address the cognitive, visual, and auditory requirements of older adults, thus strengthening their confidence and proficiency in digital use—a crucial factor during enforced social distancing or self-isolation periods during pandemics. This review will endeavor to provide insights into the multifaceted benefits of technology for older adults, focusing on how tailored technological interventions can be a beacon of social and mental wellness in times of social restrictions. It will contribute to the growing body of knowledge on the intersection of technology and elderly well-being, offering nuanced understandings and practical implications for developing user-centric, effective, and inclusive technological solutions for older populations.Keywords: older adults, health service delivery, digital health, social isolation, social well-being
Procedia PDF Downloads 6215357 Disease Characteristics of Neurofibromatosis Type II and Cochlear Implantation
Authors: Boxiang Zhuang
Abstract:
This study analyzes the clinical manifestations, hearing rehabilitation methods and outcomes of a complex case of neurofibromatosis type II (NF2). Methods: The clinical manifestations, medical history, clinical data, surgical methods and postoperative hearing rehabilitation outcomes of an NF2 patient were analyzed to determine the hearing reconstruction method and postoperative effect for a special type of NF2 acoustic neuroma. Results: The patient had bilateral acoustic neuromas with profound sensorineural hearing loss in both ears. Peripheral blood genetic testing did not reveal pathogenic gene mutations, suggesting mosaicism. The patient had an intracochlear schwannoma in the right ear and severely impaired vision in both eyes. Cochlear implantation with tumor retention was performed in the right ear. After 2 months of family-based auditory and speech rehabilitation, the Categories of Auditory Performance (CAP) score improved from 0 to 5. Conclusion: NF2 has complex clinical manifestations and poor prognosis. For NF2 patients with intracochlear tumors, cochlear implantation with tumor retention can be used to reconstruct hearing.Keywords: NF2, intracochlear schwannoma, hearing reconstruction, cochlear implantation
Procedia PDF Downloads 1615356 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 10315355 Study of Icons in Enterprise Application Software Context
Authors: Shiva Subhedar, Abhishek Jain, Shivin Mittal
Abstract:
Icons are not merely decorative elements in enterprise applications but very often used because of their many advantages such as compactness, visual appeal, etc. Despite these potential advantages, icons often cause usability problems when they are designed without consideration for their many potential downsides. The aim of the current study was to examine the effect of articulatory distance – the distance between the physical appearance of an interface element and what it actually means. In other words, will the subject find the association of the function and its appearance on the interface natural or is the icon difficult for them to associate with its function. We have calculated response time and quality of identification by varying icon concreteness, the context of usage and subject experience in the enterprise context. The subjects were asked to associate icons (prepared for study purpose) with given function options in context and out of context mode. Response time and their selection were recorded for analysis.Keywords: HCI, icons, icon concreteness, icon recognition
Procedia PDF Downloads 25815354 Effects of Coastal Structure Construction on Ecosystem
Authors: Afshin Jahangirzadeh, Shatirah Akib, Keyvan Kimiaei, Hossein Basser
Abstract:
Coastal defense structures were built to protect part of shore from beach erosion and flooding by sea water. Effects of coastal defense structures can be negative or positive. Some of the effects are beneficial in socioeconomic aspect, but environment matters should be given more concerns because it can bring bad consequences to the earth landscape and make the ecosystem be unbalanced. This study concerns on the negative impacts as they are dominant. Coastal structures can extremely impact the shoreline configuration. Artificial structures can influence sediment transport, split the coastal space, etc. This can result in habitats loss and lead to noise and visual disturbance of birds. There are two types of coastal defense structures, hard coastal structure and soft coastal structure. Both coastal structures have their own impacts. The impacts are induced during the construction, maintaining, and operation of the structures.Keywords: ecosystem, environmental impact, hard coastal structures, soft coastal structures
Procedia PDF Downloads 487