Search results for: automated vehicles
521 Jabodebek Light Rail Transit with Grade of Automation (GoA) No.3 (Driverless) Technology towards Jakarta Net-Zero Emissions (NZE) 2050
Authors: Nadilla Saskia, Octoria Nur, Assegaf Zareeva
Abstract:
Mass transport infrastructures are essential to enhance the connectivity between regions and regional equity in Indonesia. Indonesia’s capital city, Jakarta, ranked the 10th highest congestion rate in the world based on the 2019 traffic index, contributing to air pollution and energy consumption. Other than that, the World Air Quality Report in 2019 depicted Jakarta’s air pollutant concentration at 49.4 mg, the 5th highest in the world. Issues of severe traffic congestion, lack of sufficient urban infrastructure in Jakarta, and greenhouse gas emissions have to be addressed through mass transportation. Indonesia’s government is currently constructing The Greater Jakarta LRT (Light Rapid Transit) as convenient, efficient, and environmentally friendly transportation connecting Jakarta with Bekasi and Cibubur areas and plans to serve the passengers in August 2023. Greater Jakarta LRT is operated with Grade of Automation (GoA) No.3, Driverless Train Operation (DTO). Hence, the automated technology used in rail infrastructure is anticipated to address these issues with greater results. The paper will be validated and establish the extent to which the automation system would increase energy efficiency, help reduce carbon emissions, and benefit the environment. Based on the calculated CO2 emissions and fuel consumption for the existing condition (2015) during the feasibility study of the LRT Project and the predicted condition in 2030, it is obtained that Greater Jakarta LRT with GoA3 operation will reduce the CO2 emissions and fuel consumption by more than 50% in 2030. In the bigger picture, Greater Jakarta LRT supports the government's goal of achieving Jakarta Net-Zero Emissions (NZE) 2050.Keywords: LRT, Grade of Automation (GoA), energy efficiency, carbon emissions, railway infrastructure, DKI Jakarta
Procedia PDF Downloads 82520 Compost Bioremediation of Oil Refinery Sludge by Using Different Manures in a Laboratory Condition
Authors: O. Ubani, H. I. Atagana, M. S. Thantsha
Abstract:
This study was conducted to measure the reduction in polycyclic aromatic hydrocarbons (PAHs) content in oil sludge by co-composting the sludge with pig, cow, horse and poultry manures under laboratory conditions. Four kilograms of soil spiked with 800 g of oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil:manure and wood-chips in a ratio of 2:1 (w/v) spiked soil:wood-chips. Control was set up similar as the one above but without manure. Mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Bacteria capable of utilizing PAHs were isolated, purified and characterized by molecular techniques using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), amplification of the 16S rDNA gene using the specific primers (16S-P1 PCR and 16S-P2 PCR) and the amplicons were sequenced. Extent of reduction of PAHs was measured using automated soxhlet extractor with dichloromethane as the extraction solvent coupled with gas chromatography/mass spectrometry (GC/MS). Temperature did not exceed 27.5O°C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78 µg/dwt/day. Microbial growth and activities were enhanced. Bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Results from PAH measurements showed reduction between 77 and 99%. The results from the control experiments may be because it was invaded by fungi. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs. Interestingly, all bacteria isolated and identified in this study were present in all treatments, including the control.Keywords: bioremediation, co-composting, oil refinery sludge, PAHs, bacteria spp, animal manures, molecular techniques
Procedia PDF Downloads 475519 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks
Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas
Abstract:
This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems
Procedia PDF Downloads 134518 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack
Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo
Abstract:
The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications
Procedia PDF Downloads 123517 Brief Review of the Self-Tightening, Left-Handed Thread
Authors: Robert S. Giachetti, Emanuele Grossi
Abstract:
Loosening of bolted joints in rotating machines can adversely affect their performance, cause mechanical damage, and lead to injuries. In this paper, two potential loosening phenomena in rotating applications are discussed. First, ‘precession,’ is governed by thread/nut contact forces, while the second is based on inertial effects of the fastened assembly. These mechanisms are reviewed within the context of historical usage of left-handed fasteners in rotating machines which appears absent in the literature and common machine design texts. Historically, to prevent loosening of wheel nuts, vehicle manufacturers have used right-handed and left-handed threads on different sides of the vehicle, but most modern vehicles have abandoned this custom and only use right-handed, tapered lug nuts on all sides of the vehicle. Other classical machines such as the bicycle continue to use different handed threads on each side while other machines such as, bench grinders, circular saws and brush cutters still use left-handed threads to fasten rotating components. Despite the continued use of left-handed fasteners, the rationale and analysis of left-handed threads to mitigate self-loosening of fasteners in rotating applications is not commonly, if at all, discussed in the literature or design textbooks. Without scientific literature to support these design selections, these implementations may be the result of experimental findings or aged institutional knowledge. Based on a review of rotating applications, historical documents and mechanical design references, a formal study of the paradoxical nature of left-handed threads in various applications is merited.Keywords: rotating machinery, self-loosening fasteners, wheel fastening, vibration loosening
Procedia PDF Downloads 135516 Vehicle Routing Problem Considering Alternative Roads under Triple Bottom Line Accounting
Authors: Onur Kaya, Ilknur Tukenmez
Abstract:
In this study, we consider vehicle routing problems on networks with alternative direct links between nodes, and we analyze a multi-objective problem considering the financial, environmental and social objectives in this context. In real life, there might exist several alternative direct roads between two nodes, and these roads might have differences in terms of their lengths and durations. For example, a road might be shorter than another but might require longer time due to traffic and speed limits. Similarly, some toll roads might be shorter or faster but require additional payment, leading to higher costs. We consider such alternative links in our problem and develop a mixed integer linear programming model that determines which alternative link to use between two nodes, in addition to determining the optimal routes for different vehicles, depending on the model objectives and constraints. We consider the minimum cost routing as the financial objective for the company, minimizing the CO2 emissions and gas usage as the environmental objectives, and optimizing the driver working conditions/working hours, and minimizing the risks of accidents as the social objectives. With these objective functions, we aim to determine which routes, and which alternative links should be used in addition to the speed choices on each link. We discuss the results of the developed vehicle routing models and compare their results depending on the system parameters.Keywords: vehicle routing, alternative links between nodes, mixed integer linear programming, triple bottom line accounting
Procedia PDF Downloads 407515 Modern Construction Methods and Technologies and Their Impacts on Construction Projects
Authors: Michael Anthony Doherty
Abstract:
Modern Methods of Construction (MMC) is a significant topic in the construction industry; while reviewing (MMC) over different fields that are significant in the modern construction world, the following areas were assessed where (MMC) is developing, supply chain management, automation, digital technology, and new construction technologies. Different methods were considered as an approach to research and exploring areas highlighted within the construction industry that are making advancements using Modern Methods of Construction Methods and Technologies (MCMTs). The research was conducted using the following methodologies, literature review of academic sources, primary and secondary data sources, questionaries, and interviews. The paper is composed of two parts, firstly a literature review and secondly a questionnaire used as the basis for interviews were utilised to achieve the following key objectives: to identify (MCMTs) being implemented in the construction industry, research and compile information with regards to these methods, determine their purpose and their application in the industry, establishing what (MCMTs) are being used in the industry while also determining the success of the methods. The research considers the evolution and development of these methods in projects and within the industry itself. Major findings were as follows; automation technologies such as robotics, offsite fabrication utilising automated production lines are increasingly part of project execution, digital technologies such as AR and VR are increasingly utilised in project co-ordination, (MMCTs) are proving to be a solution to the construction industry problems such as a lack of skilled workforce, hazardous work tasks, and situations, new construction technologies are available and finding their place in mainstream construction, (SCM) and (GSCM) are evolving to new levels using new systems and technologies such as block chain technology as well as Company Size and Project size influence the use of (MMCTs) and the adoption of (MMCTS). In summary the paper endeavours to identify and detail how areas of (MMCTs) are developing and are gaining traction within mainstream construction.Keywords: automation, digital technology, new construction technologies, supply chain management
Procedia PDF Downloads 64514 An Application of Integrated Multi-Objective Particles Swarm Optimization and Genetic Algorithm Metaheuristic through Fuzzy Logic for Optimization of Vehicle Routing Problems in Sugar Industry
Authors: Mukhtiar Singh, Sumeet Nagar
Abstract:
Vehicle routing problem (VRP) is a combinatorial optimization and nonlinear programming problem aiming to optimize decisions regarding given set of routes for a fleet of vehicles in order to provide cost-effective and efficient delivery of both services and goods to the intended customers. This paper proposes the application of integrated particle swarm optimization (PSO) and genetic optimization algorithm (GA) to address the Vehicle routing problem in sugarcane industry in India. Suger industry is very prominent agro-based industry in India due to its impacts on rural livelihood and estimated to be employing around 5 lakhs workers directly in sugar mills. Due to various inadequacies, inefficiencies and inappropriateness associated with the current vehicle routing model it costs huge money loss to the industry which needs to be addressed in proper context. The proposed algorithm utilizes the crossover operation that originally appears in genetic algorithm (GA) to improve its flexibility and manipulation more readily and avoid being trapped in local optimum, and simultaneously for improving the convergence speed of the algorithm, level set theory is also added to it. We employ the hybrid approach to an example of VRP and compare its result with those generated by PSO, GA, and parallel PSO algorithms. The experimental comparison results indicate that the performance of hybrid algorithm is superior to others, and it will become an effective approach for solving discrete combinatory problems.Keywords: fuzzy logic, genetic algorithm, particle swarm optimization, vehicle routing problem
Procedia PDF Downloads 394513 Quantitative Evaluation of Supported Catalysts Key Properties from Electron Tomography Studies: Assessing Accuracy Using Material-Realistic 3D-Models
Authors: Ainouna Bouziane
Abstract:
The ability of Electron Tomography to recover the 3D structure of catalysts, with spatial resolution in the subnanometer scale, has been widely explored and reviewed in the last decades. A variety of experimental techniques, based either on Transmission Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy (STEM) have been used to reveal different features of nanostructured catalysts in 3D, but High Angle Annular Dark Field imaging in STEM mode (HAADF-STEM) stands out as the most frequently used, given its chemical sensitivity and avoidance of imaging artifacts related to diffraction phenomena when dealing with crystalline materials. In this regard, our group has developed a methodology that combines image denoising by undecimated wavelet transforms (UWT) with automated, advanced segmentation procedures and parameter selection methods using CS-TVM (Compressed Sensing-total variation minimization) algorithms to reveal more reliable quantitative information out of the 3D characterization studies. However, evaluating the accuracy of the magnitudes estimated from the segmented volumes is also an important issue that has not been properly addressed yet, because a perfectly known reference is needed. The problem particularly complicates in the case of multicomponent material systems. To tackle this key question, we have developed a methodology that incorporates volume reconstruction/segmentation methods. In particular, we have established an approach to evaluate, in quantitative terms, the accuracy of TVM reconstructions, which considers the influence of relevant experimental parameters like the range of tilt angles, image noise level or object orientation. The approach is based on the analysis of material-realistic, 3D phantoms, which include the most relevant features of the system under analysis.Keywords: electron tomography, supported catalysts, nanometrology, error assessment
Procedia PDF Downloads 85512 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis
Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal
Abstract:
Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix
Procedia PDF Downloads 96511 Applications of Drones in Infrastructures: Challenges and Opportunities
Authors: Jin Fan, M. Ala Saadeghvaziri
Abstract:
Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.Keywords: bridge, construction, drones, infrastructure, information
Procedia PDF Downloads 124510 Present and Future of Micromobility in the City of Medellin
Authors: Saul Emilio Rivero Mejia, Estefanya Marin Tabares, Carlos Andres Rodriguez Toro, Katherine Bolano Restrepo, Sarita Santa Cortes
Abstract:
Medellin is the Colombian city with the best public transportation system in the country, which is composed of two subway lines, five metro cables, two Bus Rapid Transit lines, and a streetcar. But despite the above, the Aburra Valley, the area in which the city is located, comparatively speaking, has a lower number of urban roads per inhabitant built, compared to the national average. In addition, since there is approximately one vehicle for every three inhabitants in Medellin, the problems of congestion and environmental pollution have become more acute over the years, and it has even been necessary to implement restrictive measures to the use of private vehicles on a permanent basis. In that sense, due to the limitations of physical space, the low public investment in road infrastructure, it is necessary to opt for mobility alternatives according to the above. Within the options for the city, there is what is known as micromobility. Micromobility is understood as those small and light means of transport used to travel short distances, which use electrical energy, such as skateboards and bicycles. These transport alternatives have a high potential for use by the city's young population, but this requires an adequate infrastructure and also state regulation. Taking into account the above, this paper will analyze the current state and future of micro mobility in the city of Medellin, making a prospective analysis, supported by a PEST (political, economic, social and technological) analysis. Based on the above, it is expected to identify the growth of demand for these alternative means and its impact on the mobility of the city in the medium and short term.Keywords: electric, micromobility, transport, sustainable
Procedia PDF Downloads 125509 Processing Studies and Challenges Faced in Development of High-Pressure Titanium Alloy Cryogenic Gas Bottles
Authors: Bhanu Pant, Sanjay H. Upadhyay
Abstract:
Frequently, the upper stage of high-performance launch vehicles utilizes cryogenic tank-submerged pressurization gas bottles with high volume-to-weight efficiency to achieve a direct gain in the satellite payload. Titanium alloys, owing to their high specific strength coupled with excellent compatibility with various fluids, are the materials of choice for these applications. Amongst the Titanium alloys, there are two alloys suitable for cryogenic applications, namely Ti6Al4V-ELI and Ti5Al2.5Sn-ELI. The two-phase alpha-beta alloy Ti6Al4V-ELI is usable up to LOX temperature of 90K, while the single-phase alpha alloy Ti5Al2.5Sn-ELI can be used down to LHe temperature of 4 K. The high-pressure gas bottles submerged in the LH2 (20K) can store more amount of gas in as compared to those submerged in LOX (90K) bottles the same volume. Thus, the use of these alpha alloy gas bottles stored at 20K gives a distinct advantage with respect to the need for a lesser number of gas bottles to store the same amount of high-pressure gas, which in turn leads to a one-to-one advantage in the payload in the satellite. The cost advantage to the tune of 15000$/ kg of weight is saved in the upper stages, and, thereby, the satellite payload gain is expected by this change. However, the processing of alpha Ti5Al2.5Sn-ELI alloy gas bottles poses challenges due to the lower forgeability of the alloy and mode of qualification for the critical severe application environment. The present paper describes the processing and challenges/ solutions during the development of these advanced gas bottles for LH2 (20K) applications.Keywords: titanium alloys, cryogenic gas bottles, alpha titanium alloy, alpha-beta titanium alloy
Procedia PDF Downloads 57508 Analysis of a Multiejector Cooling System in a Truck at Different Loads
Authors: Leonardo E. Pacheco, Carlos A. Díaz
Abstract:
An alternative way of addressing the difficult to recover the useless heat is through an ejector refrigeration cycle for vehicles applications. A group of thermo-compressor supply the mechanical compressor function at conventional refrigeration compression system. The thermo-compressor group recovers the thermal energy from waste streams (exhaust gases product in internal combustion motors, gases burned in wellhead among others) to eliminate the power consumption of the mechanical compressor. These types of alternative cooling system (air-conditioners) present a kind of advantages in both the increase in energy efficiency and the improvement of the COP of the system being studied from their its mechanical simplicity (decrease of moving parts). An ejector refrigeration cycle represents a significant step forward in the optimization of the efficient use of energy in the process of air conditioning and an alternative to reduce the environmental impacts. On one side, with the energy recycling decreases the temperature of the gases thrown into the atmosphere, which contributes to the principal beneficiaries of the average temperature of the planet. In parallel, mitigating the environmental impact caused by the production and handling of conventional cooling fluids commonly available in the market, causing the destruction of the ozone layer. This work had studied the operation of the multiejector cooling system for a truck with a 420 HP engine at different rotation speed. The operation condition limits and the COP of multi-ejector cooling systems applied in a truck are analyzed for a variable rpm range from to 800–1800 rpm.Keywords: ejector system, exhaust gas, multiejector cooling system, recovery energy
Procedia PDF Downloads 260507 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment
Authors: Maedeh Pourmajidian, Joseph R. McDermid
Abstract:
Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation
Procedia PDF Downloads 398506 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand
Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth
Abstract:
Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand
Procedia PDF Downloads 369505 Development of Automated Quality Management System for the Management of Heat Networks
Authors: Nigina Toktasynova, Sholpan Sagyndykova, Zhanat Kenzhebayeva, Maksat Kalimoldayev, Mariya Ishimova, Irbulat Utepbergenov
Abstract:
Any business needs a stable operation and continuous improvement, therefore it is necessary to constantly interact with the environment, to analyze the work of the enterprise in terms of employees, executives and consumers, as well as to correct any inconsistencies of certain types of processes and their aggregate. In the case of heat supply organizations, in addition to suppliers, local legislation must be considered which often is the main regulator of pricing of services. In this case, the process approach used to build a functional organizational structure in these types of businesses in Kazakhstan is a challenge not only in the implementation, but also in ways of analyzing the employee's salary. To solve these problems, we investigated the management system of heating enterprise, including strategic planning based on the balanced scorecard (BSC), quality management in accordance with the standards of the Quality Management System (QMS) ISO 9001 and analysis of the system based on expert judgment using fuzzy inference. To carry out our work we used the theory of fuzzy sets, the QMS in accordance with ISO 9001, BSC according to the method of Kaplan and Norton, method of construction of business processes according to the notation IDEF0, theory of modeling using Matlab software simulation tools and graphical programming LabVIEW. The results of the work are as follows: We determined possibilities of improving the management of heat-supply plant-based on QMS; after the justification and adaptation of software tool it has been used to automate a series of functions for the management and reduction of resources and for the maintenance of the system up to date; an application for the analysis of the QMS based on fuzzy inference has been created with novel organization of communication software with the application enabling the analysis of relevant data of enterprise management system.Keywords: balanced scorecard, heat supply, quality management system, the theory of fuzzy sets
Procedia PDF Downloads 367504 Slovenia Rider/Driver Gaze Behavior Comparative Analysis
Authors: Tomaž Tollazzi, Matjaž Šraml, Chiara Gruden, Marko Renčelj
Abstract:
Motorcycle riders are an increasing group of road users. The intrinsic characteristics of powered two-wheelers (PTW) allow them to be particularly flexible, both in urban and extra-urban environments. Nevertheless, crash statistics indicate that riders involved in road accidents are highly likely to suffer severe injuries, underlining the vulnerability of this group of road users. An element that can greatly affect the safety of PTW users is road design, as roads are usually designed for two-track vehicles (cars, buses, and lorries) and usually do not consider the needs of PTWs. Additionally, handling a motorcycle is quite different from driving a car; thus, the behavior of riders is different from that of drivers. The aim of this research was to compare how different road designs are perceived by riders and drivers and to preliminarily assess if riders’ behavior and attention allocation are related. For this research, an eye-tracking experiment was developed outdoors. Both drivers and riders travelled along a route comprising four different road designs and various road layouts, and the output was analyzed both qualitatively and quantitatively. Although it was not possible to carry out a statistical analysis due to the limited number of participants, the results demonstrate that there is a difference in the gaze behavior of drivers and riders, with the latter being far more focused on the left-hand side of the road and concentrating on defined elements of road design. Furthermore, the experiment demonstrated that a higher number of fixations is related to lower speeds. Finally, it was noted that both kinds of road users focus well on the carriageway, leading to the conclusion that the indications given through road markings may be much more effective than vertical signalization, which has rarely been observed.Keywords: road safety, powered two-wheelers, eye-tracking, gaze behavior
Procedia PDF Downloads 83503 Recent Progress in Wave Rotor Combustion
Authors: Mohamed Razi Nalim, Shahrzad Ghadiri
Abstract:
With current concerns regarding global warming, demand for a society with greater environmental awareness significantly increases. With gradual development in hybrid and electric vehicles and the availability of renewable energy resources, increasing efficiency in fossil fuel and combustion engines seems a faster solution toward sustainability and reducing greenhouse gas emissions. This paper aims to provide a comprehensive review of recent progress in wave rotor combustor, one of the combustion concepts with considerable potential to improve power output and emission standards. A wave rotor is an oscillatory flow device that uses the unsteady gas dynamic concept to transfer energy by generating pressure waves. From a thermodynamic point of view, unlike conventional positive-displacement piston engines which follow the Brayton cycle, wave rotors offer higher cycle efficiency due to pressure gain during the combustion process based on the Humphrey cycle. First, the paper covers all recent and ongoing computational and experimental studies around the world with a quick look at the milestones in the history of wave rotor development. Second, the main similarity and differences in the ignition system of the wave rotor with piston engines are considered. Also, the comparison is made with another pressure gain device, rotating detonation engines. Next, the main challenges and research needs for wave rotor combustor commercialization are discussed.Keywords: wave rotor combustor, unsteady gas dynamic, pre-chamber jet ignition, pressure gain combustion, constant-volume combustion
Procedia PDF Downloads 84502 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS
Authors: David A. Harness
Abstract:
Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks
Procedia PDF Downloads 179501 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 75500 Impact of Ventilation Systems on Indoor Air Quality in Swedish Primary School Classrooms
Authors: Sarka Langer, Despoina Teli, Blanka Cabovska, Jan-Olof Dalenbäck, Lars Ekberg, Gabriel Bekö, Pawel Wargocki, Natalia Giraldo Vasquez
Abstract:
The aim of the study was to investigate the impact of various ventilation systems on indoor climate, air pollution, chemistry, and perception. Measurements of thermal environment and indoor air quality were performed in 45 primary school classrooms in Gothenburg, Sweden. The classrooms were grouped into three categories according to their ventilation system: category A) natural or exhaust ventilation or automated window opening; category B) balanced mechanical ventilation systems with constant air volume (CAV); and category C) balanced mechanical ventilation systems with variable air volume (VAV). A questionnaire survey about indoor air quality, perception of temperature, odour, noise and light, and sensation of well-being, alertness focus, etc., was distributed among the 10-12 years old children attending the classrooms. The results (medians) showed statistically significant differences between ventilation category A and categories B and C, but not between categories B and C in air change rates, median concentrations of carbon dioxide, individual volatile organic compounds formaldehyde and isoprene, in-door-to-outdoor ozone ratios and products of ozonolysis of squalene, a constituent of human skin oils, 6-methyl-5-hepten-2-one and decanal. Median ozone concentration, ozone loss -a difference between outdoor and indoor ozone concentrations- were different only between categories A and C. Median concentration of total VOCs and a perception index based on survey responses on perceptions and sensations indoors were not significantly different. In conclusion, ventilation systems have an impact on air change rates, indoor air quality, and chemistry, but the Swedish primary school children’s perception did not differ with the ventilation systems of the classrooms.Keywords: indoor air pollutants, indoor climate, indoor chemistry, air change rate, perception
Procedia PDF Downloads 62499 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets
Authors: Kothuri Sriraman, Mattupalli Komal Teja
Abstract:
In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm
Procedia PDF Downloads 348498 Impact of Proposed Modal Shift from Private Users to Bus Rapid Transit System: An Indian City Case Study
Authors: Rakesh Kumar, Fatima Electricwala
Abstract:
One of the major thrusts of the Bus Rapid Transit System is to reduce the commuter’s dependency on private vehicles and increase the shares of public transport to make urban transportation system environmentally sustainable. In this study, commuter mode choice analysis is performed that examines behavioral responses to the proposed Bus Rapid Transit System (BRTS) in Surat, with estimation of the probable shift from private mode to public mode. Further, evaluation of the BRTS scenarios, using Surat’s transportation ecological footprint was done. A multi-modal simulation model was developed in Biogeme environment to explicitly consider private users behaviors and non-linear environmental impact. The data of the different factors (variables) and its impact that might cause modal shift of private mode users to proposed BRTS were collected through home-interview survey using revealed and stated preference approach. A multi modal logit model of mode-choice was then calibrated using the collected data and validated using proposed sample. From this study, a set of perception factors, with reliable and predictable data base, to explain the variation in modal shift behaviour and their impact on Surat’s ecological environment has been identified. A case study of the proposed BRTS connecting the Surat Industrial Hub to the coastal area is provided to illustrate the approach.Keywords: BRTS, private modes, mode choice models, ecological footprint
Procedia PDF Downloads 519497 Multi-Objective Optimization of Intersections
Authors: Xiang Li, Jian-Qiao Sun
Abstract:
As the crucial component of city traffic network, intersections have significant impacts on urban traffic performance. Despite of the rapid development in transportation systems, increasing traffic volumes result in severe congestions especially at intersections in urban areas. Effective regulation of vehicle flows at intersections has always been an important issue in the traffic control system. This study presents a multi-objective optimization method at intersections with cellular automata to achieve better traffic performance. Vehicle conflicts and pedestrian interference are considered. Three categories of the traffic performance are studied including transportation efficiency, energy consumption and road safety. The left-turn signal type, signal timing and lane assignment are optimized for different traffic flows. The multi-objective optimization problem is solved with the cell mapping method. The optimization results show the conflicting nature of different traffic performance. The influence of different traffic variables on the intersection performance is investigated. It is observed that the proposed optimization method is effective in regulating the traffic at the intersection to meet multiple objectives. Transportation efficiency can be usually improved by the permissive left-turn signal, which sacrifices safety. Right-turn traffic suffers significantly when the right-turn lanes are shared with the through vehicles. The effect of vehicle flow on the intersection performance is significant. The display pattern of the optimization results can be changed remarkably by the traffic volume variation. Pedestrians have strong interference with the traffic system.Keywords: cellular automata, intersection, multi-objective optimization, traffic system
Procedia PDF Downloads 580496 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology
Authors: Edison A. Bonifaz
Abstract:
In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler
Procedia PDF Downloads 69495 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection
Authors: Hamidullah Binol, Abdullah Bal
Abstract:
Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods
Procedia PDF Downloads 431494 Observations on the Eastern Red Sea Elasmobranchs: Data on Their Distribution and Ecology
Authors: Frappi Sofia, Nicolas Pilcher, Sander DenHaring, Royale Hardenstine, Luis Silva, Collin Williams, Mattie Rodrigue, Vincent Pieriborne, Mohammed Qurban, Carlos M. Duarte
Abstract:
Nowadays, elasmobranch populations are disappearing at a dangerous rate, mainly due to overexploitation, extensive fisheries, as well as climate change. The decline of these species can trigger a cascade effect, which may eventually lead to detrimental impacts on local ecosystems. The Elasmobranch in the Red Sea is facing one of the highest risks of extinction, mainly due to unregulated fisheries activities. Thus, it is of paramount importance to assess their current distribution and unveil their environmental preferences in order to improve conservation measures. Important data have been collected throughout the whole red Sea during the Red Sea Decade Expedition (RSDE) to achieve this goal. Elasmobranch sightings were gathered through the use of submarines, remotely operated underwater vehicles (ROV), scuba diving operations, and helicopter surveys. Over a period of 5 months, we collected 891 sightings, 52 with submarines, 138 with the ROV, 67 with the scuba diving teams, and 634 from helicopters. In total, we observed 657 and 234 individuals from the superorder Batoidea and Selachimorpha, respectively. The most common shark encountered was Iago omanensis, a deep-water shark of the order Carcharhiniformes. To each sighting, data on temperature, salinity density, and dissolved oxygen were integrated to reveal favorable conditions for each species. Additionally, an extensive literature review on elasmobranch research in the Eastern Red Sea has been carried out in order to obtain more data on local populations and to be able to highlight patterns of their distribution.Keywords: distribution, elasmobranchs, habitat, rays, red sea, sharks
Procedia PDF Downloads 85493 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering
Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause
Abstract:
In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.Keywords: image processing, illumination equalization, shadow filtering, object detection
Procedia PDF Downloads 216492 Air Quality Assessment for a Hot-Spot Station by Neural Network Modelling of the near-Traffic Emission-Immission Interaction
Authors: Tim Steinhaus, Christian Beidl
Abstract:
Urban air quality and climate protection are two major challenges for future mobility systems. Despite the steady reduction of pollutant emissions from vehicles over past decades, local immission load within cities partially still reaches heights, which are considered hazardous to human health. Although traffic-related emissions account for a major part of the overall urban pollution, modeling the exact interaction remains challenging. In this paper, a novel approach for the determination of the emission-immission interaction on the basis of neural network modeling for traffic induced NO2-immission load within a near-traffic hot-spot scenario is presented. In a detailed sensitivity analysis, the significance of relevant influencing variables on the prevailing NO2 concentration is initially analyzed. Based on this, the generation process of the model is described, in which not only environmental influences but also the vehicle fleet composition including its associated segment- and certification-specific real driving emission factors are derived and used as input quantities. The validity of this approach, which has been presented in the past, is re-examined in this paper using updated data on vehicle emissions and recent immission measurement data. Within the framework of a final scenario analysis, the future development of the immission load is forecast for different developments in the vehicle fleet composition. It is shown that immission levels of less than half of today’s yearly average limit values are technically feasible in hot-spot situations.Keywords: air quality, emission, emission-immission-interaction, immission, NO2, zero impact
Procedia PDF Downloads 126