Search results for: accelerated failure time model
30881 Response Surface Methodology to Supercritical Carbon Dioxide Extraction of Microalgal Lipids
Authors: Yen-Hui Chen, Terry Walker
Abstract:
As the world experiences an energy crisis, investing in sustainable energy resources is a pressing mission for many countries. Microalgae-derived biodiesel has attracted intensive attention as an important biofuel, and microalgae Chlorella protothecoides lipid is recognized as a renewable source for microalgae-derived biodiesel production. Supercritical carbon dioxide (SC-CO₂) is a promising green solvent that may potentially substitute the use of organic solvents for lipid extraction; however, the efficiency of SC-CO₂ extraction may be affected by many variables, including temperature, pressure and extraction time individually or in combination. In this study, response surface methodology (RSM) was used to optimize the process parameters, including temperature, pressure and extraction time, on C. protothecoides lipid yield by SC-CO₂ extraction. A second order polynomial model provided a good fit (R-square value of 0.94) for the C. protothecoides lipid yield. The linear and quadratic terms of temperature, pressure and extraction time—as well as the interaction between temperature and pressure—showed significant effects on lipid yield during extraction. The optimal lipid yield from the model was predicted as the temperature of 59 °C, the pressure of 350.7 bar and the extraction time 2.8 hours. Under these conditions, the experimental lipid yield (25%) was close to the predicted value. The principal fatty acid methyl esters (FAME) of C. protothecoides lipid-derived biodiesel were oleic acid methyl ester (60.1%), linoleic acid methyl ester (18.6%) and palmitic acid methyl ester (11.4%), which made up more than 90% of the total FAMEs. In summary, this study indicated that RSM was useful to characterize the optimization the SC-CO₂ extraction process of C. protothecoides lipid yield, and the second-order polynomial model could be used for predicting and describing the lipid yield very well. In addition, C. protothecoides lipid, extracted by SC-CO₂, was suggested as a potential candidate for microalgae-derived biodiesel production.Keywords: Chlorella protothecoides, microalgal lipids, response surface methodology, supercritical carbon dioxide extraction
Procedia PDF Downloads 44330880 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 25730879 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach
Authors: Niyongabo Elyse
Abstract:
Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling
Procedia PDF Downloads 5030878 Motivating Factors to Use Electric Vehicles Based on Behavioral Intention Model in South Korea
Authors: Seyedsamad Tahani, Samira Ghorbanpour
Abstract:
The global warming crisis forced humans to consider their place in the world and the earth's future. In this regard, Electric Vehicles (EVs) are a significant step toward protecting the environment. By identifying factors that influence people's behavior intentions toward using Electric Vehicles (EV), we proposed a theoretical model by extending the Technology Acceptance Model (TAM), including three more concepts, Subjective Norm (SN), Self-Efficacy (SE), and Perceived Behavior Control (PBC). The study was conducted in South Korea, and a random sample was taken at a specific time. In order to collect data, a questionnaire was created in a Google Form and sent via Kakao Talk, a popular social media application used in Korea. There were about 220 participants in this survey. However, 201 surveys were completely done. The findings revealed that all factors in the TAM model and the other added concepts such as subjective norms, self-efficacy and perceived behavior control significantly affect the behavioral intention of using EVs.Keywords: electric vehicles, behavioral intention, perceived trust, perceived enjoyment, self-efficacy
Procedia PDF Downloads 13430877 Amniotic Fluid Stem Cells Ameliorate Cisplatin-Induced Acute Renal Failure through Autophagy Induction and Inhibition of Apoptosis
Authors: Soniya Nityanand, Ekta Minocha, Manali Jain, Rohit Anthony Sinha, Chandra Prakash Chaturvedi
Abstract:
Amniotic fluid stem cells (AFSC) have been shown to contribute towards the amelioration of Acute Renal Failure (ARF), but the mechanisms underlying the renoprotective effect are largely unknown. Therefore, the main goal of the current study was to evaluate the therapeutic efficacy of AFSC in a cisplatin-induced rat model of ARF and to investigate the underlying mechanisms responsible for its renoprotective effect. To study the therapeutic efficacy of AFSC, ARF was induced in Wistar rats by an intra-peritoneal injection of cisplatin, and five days after administration, the rats were randomized into two groups and injected with either AFSC or normal saline intravenously. On day 8 and 12 after cisplatin injection, i.e., day 3 and day7 post-therapy respectively, the blood biochemical parameters, histopathological changes, apoptosis and expression of pro-apoptotic, anti-apoptotic and autophagy-related proteins in renal tissues were studied in both groups of rats. Administration of AFSC in ARF rats resulted in improvement of renal function and attenuation of renal damage as reflected by significant decrease in blood urea nitrogen, serum creatinine levels, tubular cell apoptosis as assessed by Bax/Bcl2 ratio, and expression of the pro-apoptotic proteins viz. PUMA, Bax, cleaved caspase-3 and cleaved caspase-9 as compared to saline-treated group. Furthermore, in the AFSC-treated group as compared to saline-treated group, there was a significant increase in the activation of autophagy as evident by increased expression of LC3-II, ATG5, ATG7, Beclin1 and phospho-AMPK levels with a concomitant decrease in phospho-p70S6K and p62 expression levels. To further confirm whether the protective effects of AFSC on cisplatin-induced apoptosis were dependent on autophagy, chloroquine, an autophagy inhibitor was administered by the intra-peritoneal route. Chloroquine administration led to significant reduction in the anti-apoptotic effects of the AFSC therapy and further deterioration in the renal structure and function caused by cisplatin. Collectively, our results put forth that AFSC ameliorates cisplatin-induced ARF through induction of autophagy and inhibition of apoptosis. Furthermore, the protective effects of AFSC were blunted by chloroquine, highlighting that activation of autophagy is an important mechanism of action for the protective role of AFSC in cisplatin-induced renal injury.Keywords: amniotic fluid stem cells, acute renal failure, autophagy, cisplatin
Procedia PDF Downloads 10430876 Modeling a Closed Loop Supply Chain with Continuous Price Decrease and Dynamic Deterministic Demand
Authors: H. R. Kamali, A. Sadegheih, M. A. Vahdat-Zad, H. Khademi-Zare
Abstract:
In this paper, a single product, multi-echelon, multi-period closed loop supply chain is surveyed, including a variety of costs, time conditions, and capacities, to plan and determine the values and time of the components procurement, production, distribution, recycling and disposal specially for high-tech products that undergo a decreasing production cost and sale price over time. For this purpose, the mathematic model of the problem that is a kind of mixed integer linear programming is presented, and it is finally proved that the problem belongs to the category of NP-hard problems.Keywords: closed loop supply chain, continuous price decrease, NP-hard, planning
Procedia PDF Downloads 36430875 Circadian Disruption in Polycystic Ovary Syndrome Model Rats
Authors: Fangfang Wang, Fan Qu
Abstract:
Polycystic ovary syndrome (PCOS), the most common endocrinopathy among women of reproductive age, is characterized by ovarian dysfunction, hyperandrogenism and reduced fecundity. The aim of this study is to investigate whether the circadian disruption is involved in pathogenesis of PCOS in androgen-induced animal model. We established a rat model of PCOS using single subcutaneous injection with testosterone propionate on the ninth day after birth, and confirmed their PCOS-like phenotypes with vaginal smears, ovarian hematoxylin and eosin (HE) staining and serum androgen measurement. The control group rats received the vehicle only. Gene expression was detected by real-time quantitative PCR. (1) Compared with control group, PCOS model rats of 10-week group showed persistently keratinized vaginal cells, while all the control rats showed at least two consecutive estrous cycles. (2) Ovarian HE staining and histological examination showed that PCOS model rats of 10-week group presented many cystic follicles with decreased numbers of granulosa cells and corpora lutea in their ovaries, while the control rats had follicles with normal layers of granulosa cells at various stages of development and several generations of corpora lutea. (3) In the 10-week group, serum free androgen index was notably higher in PCOS model rats than controls. (4) Disturbed mRNA expression patterns of core clock genes were found in ovaries of PCOS model rats of 10-week group. Abnormal expression of key genes associated with circadian rhythm in ovary may be one of the mechanisms for ovarian dysfunction in PCOS model rats induced by androgen.Keywords: polycystic ovary syndrome, androgen, animal model, circadian disruption
Procedia PDF Downloads 23030874 Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test
Authors: Bernd Engel, Sara Salman Hassan Al-Maeeni
Abstract:
A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance.Keywords: deflection, FE analysis, shaft, stress, three-point bending
Procedia PDF Downloads 15830873 Memory and Narratives Rereading before and after One Week
Authors: Abigail M. Csik, Gabriel A. Radvansky
Abstract:
As people read through event-based narratives, they construct an event model that captures information about the characters, goals, location, time, and causality. For many reasons, memory for such narratives is represented at different levels, namely, the surface form, textbase, and event model levels. Rereading has been shown to decrease surface form memory, while, at the same time, increasing textbase and event model memories. More generally, distributed practice has consistently shown memory benefits over massed practice for different types of materials, including texts. However, little research has investigated distributed practice of narratives at different inter-study intervals and these effects on these three levels of memory. Recent work in our lab has indicated that there may be dramatic changes in patterns of forgetting around one week, which may affect the three levels of memory. The present experiment aimed to determine the effects of rereading on the three levels of memory as a factor of whether the texts were reread before versus after one week. Participants (N = 42) read a set of stories, re-read them either before or after one week (with an inter-study interval of three days, seven days, or fourteen days), and then took a recognition test, from which the three levels of representation were derived. Signal detection results from this study reveal that differential patterns at the three levels as a factor of whether the narratives were re-read prior to one week or after one week. In particular, an ANOVA revealed that surface form memory was lower (p = .08) while textbase (p = .02) and event model memory (p = .04) were greater if narratives were re-read 14 days later compared to memory when narratives were re-read 3 days later. These results have implications for what type of memory benefits from distributed practice at various inter-study intervals.Keywords: memory, event cognition, distributed practice, consolidation
Procedia PDF Downloads 22530872 Advanced Real-Time Fluorescence Imaging System for Rat's Femoral Vein Thrombosis Monitoring
Authors: Sang Hun Park, Chul Gyu Song
Abstract:
Artery and vein occlusion changes observed in patients and experimental animals are unexplainable symptoms. As the fat accumulated in cardiovascular ruptures, it causes vascular blocking. Likewise, early detection of cardiovascular disease can be useful for treatment. In this study, we used the mouse femoral occlusion model to observe the arterial and venous occlusion changes without darkroom. We observed the femoral arterial flow pattern changes by proposed fluorescent imaging system using an animal model of thrombosis. We adjusted the near-infrared light source current in order to control the intensity of the fluorescent substance light. We got the clear fluorescent images and femoral artery flow pattern were measured by a 5-minute interval. The result showed that the fluorescent substance flowing in the femoral arteries were accumulated in thrombus as time passed, and the fluorescence of other vessels gradually decreased.Keywords: thrombus, fluorescence, femoral, arteries
Procedia PDF Downloads 34430871 Model Averaging in a Multiplicative Heteroscedastic Model
Authors: Alan Wan
Abstract:
In recent years, the body of literature on frequentist model averaging in statistics has grown significantly. Most of this work focuses on models with different mean structures but leaves out the variance consideration. In this paper, we consider a regression model with multiplicative heteroscedasticity and develop a model averaging method that combines maximum likelihood estimators of unknown parameters in both the mean and variance functions of the model. Our weight choice criterion is based on a minimisation of a plug-in estimator of the model average estimator's squared prediction risk. We prove that the new estimator possesses an asymptotic optimality property. Our investigation of finite-sample performance by simulations demonstrates that the new estimator frequently exhibits very favourable properties compared to some existing heteroscedasticity-robust model average estimators. The model averaging method hedges against the selection of very bad models and serves as a remedy to variance function misspecification, which often discourages practitioners from modeling heteroscedasticity altogether. The proposed model average estimator is applied to the analysis of two real data sets.Keywords: heteroscedasticity-robust, model averaging, multiplicative heteroscedasticity, plug-in, squared prediction risk
Procedia PDF Downloads 38430870 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics
Authors: Ewa M. Laskowska, Jorn Vatn
Abstract:
Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL
Procedia PDF Downloads 9130869 Towards Resilient Cloud Computing through Cyber Risk Assessment
Authors: Hilalah Alturkistani, Alaa AlFaadhel, Nora AlJahani, Fatiha Djebbar
Abstract:
Cloud computing is one of the most widely used technology which provides opportunities and services to government entities, large companies, and standard users. However, cybersecurity risk management studies of cloud computing and resiliency approaches are lacking. This paper proposes resilient cloud cybersecurity risk assessment and management tailored specifically, to Dropbox with two approaches:1) technical-based solution motivated by a cybersecurity risk assessment of cloud services, and 2)a target personnel-based solution guided by cybersecurity-related survey among employees to identify their knowledge that qualifies them withstand to any cyberattack. The proposed work attempts to identify cloud vulnerabilities, assess threats and detect high risk components, to finally propose appropriate safeguards such as failure predicting and removing, redundancy or load balancing techniques for quick recovery and return to pre-attack state if failure happens.Keywords: cybersecurity risk management plan, resilient cloud computing, cyberattacks, cybersecurity risk assessment
Procedia PDF Downloads 14130868 Evaluation of the Impact of Reducing the Traffic Light Cycle for Cars to Improve Non-Vehicular Transportation: A Case of Study in Lima
Authors: Gheyder Concha Bendezu, Rodrigo Lescano Loli, Aldo Bravo Lizano
Abstract:
In big urbanized cities of Latin America, motor vehicles have priority over non-motor vehicles and pedestrians. There is an important problem that affects people's health and quality of life; lack of inclusion towards pedestrians makes it difficult for them to move smoothly and safely since the city has been planned for the transit of motor vehicles. Faced with the new trend for sustainable and economical transport, the city is forced to develop infrastructure in order to incorporate pedestrians and users with non-motorized vehicles in the transport system. The present research aims to study the influence of non-motorized vehicles on an avenue, the optimization of a cycle using traffic lights based on simulation in Synchro software, to improve the flow of non-motor vehicles. The evaluation is of the microscopic type; for this reason, field data was collected, such as vehicular, pedestrian, and non-motor vehicle user demand. With the values of speed and travel time, it is represented in the current scenario that contains the existing problem. These data allow to create a microsimulation model in Vissim software, later to be calibrated and validated so that it has a behavior similar to reality. The results of this model are compared with the efficiency parameters of the proposed model; these parameters are the queue length, the travel speed, and mainly the travel times of the users at this intersection. The results reflect a reduction of 27% in travel time, that is, an improvement between the proposed model and the current one for this great avenue. The tail length of motor vehicles is also reduced by 12.5%, a considerable improvement. All this represents an improvement in the level of service and in the quality of life of users.Keywords: bikeway, microsimulation, pedestrians, queue length, traffic light cycle, travel time
Procedia PDF Downloads 17330867 Effect on the Integrity of the DN300 Pipe and Valves in the Cooling Water System Imposed by the Pipes and Ventilation Pipes above in an Earthquake Situation
Authors: Liang Zhang, Gang Xu, Yue Wang, Chen Li, Shao Chong Zhou
Abstract:
Presently, more and more nuclear power plants are facing the issue of life extension. When a nuclear power plant applies for an extension of life, its condition needs to meet the current design standards, which is not fine for all old reactors, typically for seismic design. Seismic-grade equipment in nuclear power plants are now generally placed separately from the non-seismic-grade equipment, but it was not strictly required before. Therefore, it is very important to study whether non-seismic-grade equipment will affect the seismic-grade equipment when dropped down in an earthquake situation, which is related to the safety of nuclear power plants and future life extension applications. This research was based on the cooling water system with the seismic and non-seismic grade equipment installed together, as an example to study whether the non-seismic-grade equipment such as DN50 fire pipes and ventilation pipes arranged above will damage the DN300 pipes and valves arranged below when earthquakes occur. In the study, the simulation was carried out by ANSYS / LY-DYNA, and Johnson-Cook was used as the material model and failure model. For the experiments, the relative positions of objects in the room were restored by 1: 1. In the experiment, the pipes and valves were filled with water with a pressure of 0.785 MPa. The pressure-holding performance of the pipe was used as a criterion for damage. In addition to the pressure-holding performance, the opening torque was considered as well for the valves. The research results show that when the 10-meter-long DN50 pipe was dropped from the position of 8 meters height and the 8-meter-long air pipe dropped from a position of 3.6 meters height, they do not affect the integrity of DN300 pipe below. There is no failure phenomenon in the simulation as well. After the experiment, the pressure drop in two hours for the pipe is less than 0.1%. The main body of the valve does not fail either. The opening torque change after the experiment is less than 0.5%, but the handwheel of the valve may break, which affects the opening actions. In summary, impacts of the upper pipes and ventilation pipes dropdown on the integrity of the DN300 pipes and valves below in a cooling water system of a typical second-generation nuclear power plant under an earthquake was studied. As a result, the functionality of the DN300 pipeline and the valves themselves are not significantly affected, but the handwheel of the valve or similar articles can probably be broken and need to take care.Keywords: cooling water system, earthquake, integrity, pipe and valve
Procedia PDF Downloads 11230866 Project Risk Assessment of the Mining Industry of Ghana
Authors: Charles Amoatey
Abstract:
The issue of risk in the mining industry is a global phenomenon and the Ghanaian mining industry is not exempted. The main purpose of this study is to identify the critical risk factors affecting the mining industry. The study takes an integrated view of the mining industry by examining the contribution of various risk factors to mining project failure in Ghana. A questionnaire survey was conducted to solicit the critical risk factors from key mining practitioners. About 80 respondents from 11 mining firms participated in the survey. The study identified 22 risk factors contributing to mining project failure in Ghana. The five most critical risk factors based on both probability of occurrence and impact were: (1) unstable commodity prices, (2) inflation/exchange rate, (3) land degradation, (4) high cost of living and (5) government bureaucracy for obtaining licenses. Furthermore, the study found that risk assessment in the mining sector has a direct link with mining project sustainability. Mitigation measures for addressing the identified risk factors were discussed. The key findings emphasize the need for a comprehensive risk management culture in the entire mining industry.Keywords: risk, assessment, mining, Ghana
Procedia PDF Downloads 45230865 Development of 3D Laser Scanner for Robot Navigation
Authors: Ali Emre Öztürk, Ergun Ercelebi
Abstract:
Autonomous robotic systems needs an equipment like a human eye for their movement. Robotic camera systems, distance sensors and 3D laser scanners have been used in the literature. In this study a 3D laser scanner has been produced for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper. Furthermore for the laser scanner a motor driver, an embedded system control board has been used and at the same time a user interface card has been used to make the communication between those cards and computer. Due to this laser scanner, the density of the objects, the distance between the objects and the necessary path ways for the robot can be calculated. The data collected by the laser scanner system is converted in to cartesian coordinates to be modeled in AutoCAD program. This study shows also the synchronization between the computer user interface, AutoCAD and the embedded systems. As a result it makes the solution cheaper for such systems. The scanning results are enough for an autonomous robot but the scan cycle time should be developed. This study makes also contribution for further studies between the hardware and software needs since it has a powerful performance and a low cost.Keywords: 3D laser scanner, embedded system, 1D laser range finder, 3D model
Procedia PDF Downloads 27430864 The Improvement of Disease-Modifying Osteoarthritis Drugs Model Uptake and Retention within Two Cartilage Models
Authors: Polina Prokopovich
Abstract:
Disease-modifying osteoarthritis drugs (DMOADs) are a new therapeutic class for OA, preventing or inhibiting OA development. Unfortunately, none of the DMOADs have been clinically approved due to their poor therapeutic effects in clinical trials. The joint environment has played a role in the poor clinical performance of these drugs by limiting the amount of drug effectively delivered as well as the time that the drug spends within the joint space. The current study aims to enhance the cartilage uptake and retention time of the DMOADs-model (licofelone), which showed a significant therapeutic effect against OA progression and is currently in phase III. Licofelone will be covalently conjugated to the hydrolysable, cytocompatible, and cationic poly beta-amino ester polymers (PBAE). The cationic polymers (A16 and A87) can be electrostatically attached to the negatively charged cartilage component (glycosaminoglycan), which will increase the drug penetration through the cartilage and extend the drug time within the cartilage. In the cartilage uptake and retention time studies, an increase of 18 to 37 times of the total conjugated licofelone to A87 and A16 was observed when compared to the free licofelone. Furthermore, the conjugated licofelone to A87 was detectable within the cartilage at 120 minutes, while the free licofelone was not detectable after 60 minutes. Additionally, the A87-licofelone conjugate showed no effect on the chondrocyte viability. In conclusion, the cationic A87 and A16 polymers increased the percentage of licofelone within the cartilage, which could potentially enhance the therapeutic effect and pharmacokinetic performance of licofelone or other DMOADs clinically.Keywords: PBAE, cartilage., osteoarthritis, injectable biomaterials, drug delivery
Procedia PDF Downloads 7430863 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure
Authors: T. Nozu, K. Hibi, T. Nishiie
Abstract:
This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.Keywords: deflagration, large eddy simulation, turbulent combustion, vented enclosure
Procedia PDF Downloads 24430862 The On-Board Critical Message Transmission Design for Navigation Satellite Delay/Disruption Tolerant Network
Authors: Ji-yang Yu, Dan Huang, Guo-ping Feng, Xin Li, Lu-yuan Wang
Abstract:
The navigation satellite network, especially the Beidou MEO Constellation, can relay data effectively with wide coverage and is applied in navigation, detection, and position widely. But the constellation has not been completed, and the amount of satellites on-board is not enough to cover the earth, which makes the data-relay disrupted or delayed in the transition process. The data-relay function needs to tolerant the delay or disruption in some extension, which make the Beidou MEO Constellation a delay/disruption-tolerant network (DTN). The traditional DTN designs mainly employ the relay table as the basic of data path schedule computing. But in practical application, especially in critical condition, such as the war-time or the infliction heavy losses on the constellation, parts of the nodes may become invalid, then the traditional DTN design could be useless. Furthermore, when transmitting the critical message in the navigation system, the maximum priority strategy is used, but the nodes still inquiry the relay table to design the path, which makes the delay more than minutes. Under this circumstances, it needs a function which could compute the optimum data path on-board in real-time according to the constellation states. The on-board critical message transmission design for navigation satellite delay/disruption-tolerant network (DTN) is proposed, according to the characteristics of navigation satellite network. With the real-time computation of parameters in the network link, the least-delay transition path is deduced to retransmit the critical message in urgent conditions. First, the DTN model for constellation is established based on the time-varying matrix (TVM) instead of the time-varying graph (TVG); then, the least transition delay data path is deduced with the parameters of the current node; at last, the critical message transits to the next best node. For the on-board real-time computing, the time delay and misjudges of constellation states in ground stations are eliminated, and the residual information channel for each node can be used flexibly. Compare with the minute’s delay of traditional DTN; the proposed transmits the critical message in seconds, which improves the re-transition efficiency. The hardware is implemented in FPGA based on the proposed model, and the tests prove the validity.Keywords: critical message, DTN, navigation satellite, on-board, real-time
Procedia PDF Downloads 34330861 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions
Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers
Abstract:
Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.Keywords: carbon capture and storage, water solubility, equation of states, fluids engineering
Procedia PDF Downloads 30130860 Rail Degradation Modelling Using ARMAX: A Case Study Applied to Melbourne Tram System
Authors: M. Karimpour, N. Elkhoury, L. Hitihamillage, S. Moridpour, R. Hesami
Abstract:
There is a necessity among rail transportation authorities for a superior understanding of the rail track degradation overtime and the factors influencing rail degradation. They need an accurate technique to identify the time when rail tracks fail or need maintenance. In turn, this will help to increase the level of safety and comfort of the passengers and the vehicles as well as improve the cost effectiveness of maintenance activities. An accurate model can play a key role in prediction of the long-term behaviour of railroad tracks. An accurate model can decrease the cost of maintenance. In this research, the rail track degradation is predicted using an autoregressive moving average with exogenous input (ARMAX). An ARMAX has been implemented on Melbourne tram data to estimate the values for the tram track degradation. Gauge values and rail usage in Million Gross Tone (MGT) are the main parameters used in the model. The developed model can accurately predict the future status of the tram tracks.Keywords: ARMAX, dynamic systems, MGT, prediction, rail degradation
Procedia PDF Downloads 24830859 Design and Construction Demeanor of a Very High Embankment Using Geosynthetics
Authors: Mariya Dayana, Budhmal Jain
Abstract:
Kannur International Airport Ltd. (KIAL) is a new Greenfield airport project with airside development on an undulating terrain with an average height of 90m above Mean Sea Level (MSL) and a maximum height of 142m. To accommodate the desired Runway length and Runway End Safety Area (RESA) at both the ends along the proposed alignment, it resulted in 45.5 million cubic meters in cutting and filling. The insufficient availability of land for the construction of free slope embankment at RESA 07 end resulted in the design and construction of Reinforced Soil Slope (RSS) with a maximum slope of 65 degrees. An embankment fill of average 70m height with steep slopes located in high rainfall area is a unique feature of this project. The design and construction was challenging being asymmetrical with curves and bends. The fill was reinforced with high strength Uniaxial geogrids laid perpendicular to the slope. Weld mesh wrapped with coir mat acted as the facia units to protect it against surface failure. Face anchorage were also provided by wrapping the geogrids along the facia units where the slope angle was steeper than 45 degrees. Considering high rainfall received on this table top airport site, extensive drainage system was designed for the high embankment fill. Gabion wall up to 10m height were also designed and constructed along the boundary to accommodate the toe of the RSS fill beside the jeepable track at the base level. The design of RSS fill was done using ReSSA software and verified in PLAXIS 2D modeling. Both slip surface failure and wedge failure cases were considered in static and seismic analysis for local and global failure cases. The site won excavated laterite soil was used as the fill material for the construction. Extensive field and laboratory tests were conducted during the construction of RSS system for quality assurance. This paper represents a case study detailing the design and construction of a very high embankment using geosynthetics for the provision of Runway length and RESA area.Keywords: airport, embankment, gabion, high strength uniaxial geogrid, kial, laterite soil, plaxis 2d
Procedia PDF Downloads 16230858 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI
Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi
Abstract:
This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.Keywords: catchment characteristics model, GIS, synthetic data, ungauged basin
Procedia PDF Downloads 32730857 Spatiotemporal Modeling of Under-Five Mortality and Associated Risk Factors in Ethiopia
Authors: Melkamu A. Zeru, Aweke A. Mitiku, Endashaw Amuka
Abstract:
Background: Under-five mortality is the likelihood that a baby will pass away before turning exactly 5 years old, represented as a percentage per 1,000 live births. Exploring the spatial distribution and identifying the temporal pattern is important to reducing under-five child mortality globally, including in Ethiopia. Thus, this study aimed to identify the risk factors of under-five mortality and the spatiotemporal variation in Ethiopian administrative zones. Method: This study used the 2000-2016 Ethiopian Demographic and Health Survey (EDHS) data, which were collected using a two-stage sampling method. A total of 43,029 (10,873 in 2000, 9,861 in 2005, 11,654 in 2011, and 10,641 in 2016) weighted sample under-five child mortality was used. The space-time dynamic model was employed to account for spatial and time effects in 65 administrative zones in Ethiopia. Results: From the result of a general nesting spatial-temporal dynamic model, there was a significant space-time interaction effect [γ = -0.1444, 95 % CI (-0.6680, -0.1355)] for under-five mortality. The increase in the percentages of mothers illiteracy [𝛽 = 0.4501, 95% CI (0.2442, 0.6559)], not vaccinated[𝛽= 0.7681, 95% CI (0.5683, 0.9678)], unimproved water[𝛽= 0.5801, CI (0.3793, 0.7808)] were increased death rates for under five children while increased percentage of contraceptive use [𝛽= -0.6609, 95% CI (-0.8636, -0.4582)] and ANC visit > 4 times [𝛽= -0.1585, 95% CI(-0.1812, -0.1357)] were contributed to the decreased under-five mortality rate at the zone in Ethiopia. Conclusions: Even though the mortality rate for children under five has decreased over time, still there is still higher in different zones of Ethiopia. There exists spatial and temporal variation in under-five mortality among zones. Therefore, it is very important to consider spatial neighbourhoods and temporal context when aiming to avoid under-five mortality.Keywords: under-five children mortality, space-time dynamic, spatiotemporal, Ethiopia
Procedia PDF Downloads 3730856 General Architecture for Automation of Machine Learning Practices
Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain
Abstract:
Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler
Procedia PDF Downloads 5730855 Order Optimization of a Telecommunication Distribution Center through Service Lead Time
Authors: Tamás Hartványi, Ferenc Tóth
Abstract:
European telecommunication distribution center performance is measured by service lead time and quality. Operation model is CTO (customized to order) namely, a high mix customization of telecommunication network equipment and parts. CTO operation contains material receiving, warehousing, network and server assembly to order and configure based on customer specifications. Variety of the product and orders does not support mass production structure. One of the success factors to satisfy customer is to have a proper aggregated planning method for the operation in order to have optimized human resources and highly efficient asset utilization. Research will investigate several methods and find proper way to have an order book simulation where practical optimization problem may contain thousands of variables and the simulation running times of developed algorithms were taken into account with high importance. There are two operation research models that were developed, customer demand is given in orders, no change over time, customer demands are given for product types, and changeover time is constant.Keywords: CTO, aggregated planning, demand simulation, changeover time
Procedia PDF Downloads 26730854 Concrete Recycling in Egypt for Construction Applications: A Technical and Financial Feasibility Model
Authors: Omar Farahat Hassanein, A. Samer Ezeldin
Abstract:
The construction industry is a very dynamic field. Every day new technologies and methods are developing to fasten the process and increase its efficiency. Hence, if a project uses fewer resources, it will be more efficient. This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially. The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed.Keywords: construction wastes, recycling, sustainability, financial model, concrete recycling, concrete life cycle
Procedia PDF Downloads 41630853 An Interlock Model of Friction and Superlubricity
Authors: Azadeh Malekan, Shahin Rouhani
Abstract:
Superlubricity is a phenomenon where two surfaces in contact show negligible friction;this may be because the asperities of the two surfaces do not interlock. Two rough surfaces, when pressed against each other, can get into a formation where the summits of asperities of one surface lock into the valleys of the other surface. The amount of interlock depends on the geometry of the two surfaces. We suggest the friction force may then be proportional to the amount of interlock; this explains Superlubricity as the situation where there is little interlock. Then the friction force will be directly proportional to the normal force as it is related to the work necessary to lift the upper surface in order to clear the interlock. To investigate this model, we simulate the contact of two surfaces. In order to validate our model, we first investigate Amontons‘ law. Assuming that asperities retain deformations in the time scale while the top asperity moves across the lattice spacing Amonton’s law is observed. Structural superlubricity is examined by the hypothesis that surfaces are very rigid and there is no deformation in asperities. This may happen at small normal forces. When two identical surfaces come into contact, rotating the top surface we observe a peak in friction force near the angle of orientation where the two surfaces can interlock.Keywords: friction, amonton`s law, superlubricity, contact model
Procedia PDF Downloads 14730852 Two-Sided Information Dissemination in Takeovers: Disclosure and Media
Authors: Eda Orhun
Abstract:
Purpose: This paper analyzes a target firm’s decision to voluntarily disclose information during a takeover event and the effect of such disclosures on the outcome of the takeover. Such voluntary disclosures especially in the form of earnings forecasts made around takeover events may affect shareholders’ decisions about the target firm’s value and in return takeover result. This study aims to shed light on this question. Design/methodology/approach: The paper tries to understand the role of voluntary disclosures by target firms during a takeover event in the likelihood of takeover success both theoretically and empirically. A game-theoretical model is set up to analyze the voluntary disclosure decision of a target firm to inform the shareholders about its real worth. The empirical implication of model is tested by employing binary outcome models where the disclosure variable is obtained by identifying the target firms in the sample that provide positive news by issuing increasing management earnings forecasts. Findings: The model predicts that a voluntary disclosure of positive information by the target decreases the likelihood that the takeover succeeds. The empirical analysis confirms this prediction by showing that positive earnings forecasts by target firms during takeover events increase the probability of takeover failure. Overall, it is shown that information dissemination through voluntary disclosures by target firms is an important factor affecting takeover outcomes. Originality/Value: This study is the first to the author's knowledge that studies the impact of voluntary disclosures by the target firm during a takeover event on the likelihood of takeover success. The results contribute to information economics, corporate finance and M&As literatures.Keywords: takeovers, target firm, voluntary disclosures, earnings forecasts, takeover success
Procedia PDF Downloads 318