Search results for: wavelet domain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1977

Search results for: wavelet domain

1857 Insomnia and Depression in Outpatients of Dementia Center

Authors: Jun Hong Lee

Abstract:

Background: Many dementia patients complain insomnia and depressive mood, and hypnotics and antidepressants are being prescribed. As prevalence of dementia is increasing, insomnia and depressive mood are becoming more important. Objective: We evaluated insomnia and depression in outpatients of dementia center. Patients and Methods/Material and Methods: We reviewed medical records of the patients who visited outpatients clinic of NHIS Ilsan Hospital Dementia Center during 2016. Results: Total 716 patients are included; Subjective Memory Impairment (SMI) : 143 patients (20%), non-amnestic Mild Cognitive Impairment (MCI): single domain 70 (10%), multiple domain 34 (5%), amnestic MCI: single domain 74 (10%), multiple domain 159 (22%), Early onset Alzheimer´s disease (AD): 9 (1%), AD 121 (17%), Vascular dementia: 62 (9%), Mixed dementia 44 (6%). Hypnotics and antidepressants are prescribed as follows; SMI : hypnotics 14 patients (10%), antidepressants 27 (19%), non-amnestic MCI: single domain hypnotics 9 (13%), antidepressants 12 (17%), multiple domain hypnotics 4 (12%), antidepressants 6 (18%), amnestic MCI: single domain hypnotics 10 (14%), antidepressants 16 (22%), multiple domain hypnotics 22 (14%), antidepressants 24 (15%), Early onset Alzheimer´s disease (AD): hypnotics 1 (11%), antidepressants 2 (22%), AD: hypnotics 10 (8%), antidepressants 36 (30%), Vascular dementia: hypnotics 8 (13%), antidepressants 20 (32%), Mixed dementia: hypnotics 4 (9%), antidepressants 17 (39%). Conclusion: Among the outpatients of Dementia Center, MCI and SMI are majorities, and the number of MCI patients are almost half. Depression is more prevalent in AD, and Vascular dementia than MCI and SMI, and about 22% of patients are being prescribed by antidepressants and 11% by hypnotics.

Keywords: insomnia, depression, dementia, antidepressants, hypnotics

Procedia PDF Downloads 168
1856 PH.WQT as a Web Quality Model for Websites of Government Domain

Authors: Rupinder Pal Kaur, Vishal Goyal

Abstract:

In this research, a systematic and quantitative engineering-based approach is followed by applying well-known international standards and guidelines to develop a web quality model (PH.WQT- Punjabi and Hindi Website Quality Tester) to measure external quality for websites of government domain that are developed in Punjabi and Hindi. Correspondingly, the model can be used for websites developed in other languages also. The research is valuable to researchers and practitioners interested in designing, implementing and managing websites of government domain Also, by implementing PH.WQT analysis and comparisons among web sites of government domain can be performed in a consistent way.

Keywords: external quality, PH.WQT, indian languages, punjabi and hindi, quality model, websites of government

Procedia PDF Downloads 306
1855 Chaotic Sequence Noise Reduction and Chaotic Recognition Rate Improvement Based on Improved Local Geometric Projection

Authors: Rubin Dan, Xingcai Wang, Ziyang Chen

Abstract:

A chaotic time series noise reduction method based on the fusion of the local projection method, wavelet transform, and particle swarm algorithm (referred to as the LW-PSO method) is proposed to address the problem of false recognition due to noise in the recognition process of chaotic time series containing noise. The method first uses phase space reconstruction to recover the original dynamical system characteristics and removes the noise subspace by selecting the neighborhood radius; then it uses wavelet transform to remove D1-D3 high-frequency components to maximize the retention of signal information while least-squares optimization is performed by the particle swarm algorithm. The Lorenz system containing 30% Gaussian white noise is simulated and verified, and the phase space, SNR value, RMSE value, and K value of the 0-1 test method before and after noise reduction of the Schreiber method, local projection method, wavelet transform method, and LW-PSO method are compared and analyzed, which proves that the LW-PSO method has a better noise reduction effect compared with the other three common methods. The method is also applied to the classical system to evaluate the noise reduction effect of the four methods and the original system identification effect, which further verifies the superiority of the LW-PSO method. Finally, it is applied to the Chengdu rainfall chaotic sequence for research, and the results prove that the LW-PSO method can effectively reduce the noise and improve the chaos recognition rate.

Keywords: Schreiber noise reduction, wavelet transform, particle swarm optimization, 0-1 test method, chaotic sequence denoising

Procedia PDF Downloads 199
1854 Red Blood Cells Deformability: A Chaotic Process

Authors: Ana M. Korol, Bibiana Riquelme, Osvaldo A. Rosso

Abstract:

Since erythrocyte deformability analysis is mostly qualitative, the development of quantitative nonlinear methods is crucial for restricting subjectivity in the study of cell behaviour. An electro-optic mechanic system called erythrodeformeter has been developed and constructed in our laboratory in order to evaluate the erythrocytes' viscoelasticity. A numerical method formulated on the basis of fractal approximation for ordinary (OBM) and fractionary Brownian motion (FBM), as well as wavelet transform analysis, are proposed to distinguish chaos from noise based on the assumption that diffractometric data involves both deterministic and stochastic components, so it could be modelled as a system of bounded correlated random walk. Here we report studies on 25 donors: 4 alpha thalassaemic patients, 11 beta thalassaemic patients, and 10 healthy controls non-alcoholic and non-smoker individuals. The Correlation Coefficient, a nonlinear parameter, showed evidence of the changes in the erythrocyte deformability; the Wavelet Entropy could quantify those differences which are detected by the light diffraction patterns. Such quantifiers allow a good deal of promise and the possibility of a better understanding of the rheological erythrocytes aspects and also could help in clinical diagnosis.

Keywords: red blood cells, deformability, nonlinear dynamics, chaos theory, wavelet trannsform

Procedia PDF Downloads 59
1853 Wavelets Contribution on Textual Data Analysis

Authors: Habiba Ben Abdessalem

Abstract:

The emergence of giant set of textual data was the push that has encouraged researchers to invest in this field. The purpose of textual data analysis methods is to facilitate access to such type of data by providing various graphic visualizations. Applying these methods requires a corpus pretreatment step, whose standards are set according to the objective of the problem studied. This step determines the forms list contained in contingency table by keeping only those information carriers. This step may, however, lead to noisy contingency tables, so the use of wavelet denoising function. The validity of the proposed approach is tested on a text database that offers economic and political events in Tunisia for a well definite period.

Keywords: textual data, wavelet, denoising, contingency table

Procedia PDF Downloads 277
1852 Visualization Tool for EEG Signal Segmentation

Authors: Sweeti, Anoop Kant Godiyal, Neha Singh, Sneh Anand, B. K. Panigrahi, Jayasree Santhosh

Abstract:

This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length.

Keywords: de-noising, multi-channel data, PCA, power spectra, segmentation

Procedia PDF Downloads 397
1851 The Bernstein Expansion for Exponentials in Taylor Functions: Approximation of Fixed Points

Authors: Tareq Hamadneh, Jochen Merker, Hassan Al-Zoubi

Abstract:

Bernstein's expansion for exponentials in Taylor functions provides lower and upper optimization values for the range of its original function. these values converge to the original functions if the degree is elevated or the domain subdivided. Taylor polynomial can be applied so that the exponential is a polynomial of finite degree over a given domain. Bernstein's basis has two main properties: its sum equals 1, and positive for all x 2 (0; 1). In this work, we prove the existence of fixed points for exponential functions in a given domain using the optimization values of Bernstein. The Bernstein basis of finite degree T over a domain D is defined non-negatively. Any polynomial p of degree t can be expanded into the Bernstein form of maximum degree t ≤ T, where we only need to compute the coefficients of Bernstein in order to optimize the original polynomial. The main property is that p(x) is approximated by the minimum and maximum Bernstein coefficients (Bernstein bound). If the bound is contained in the given domain, then we say that p(x) has fixed points in the same domain.

Keywords: Bernstein polynomials, Stability of control functions, numerical optimization, Taylor function

Procedia PDF Downloads 135
1850 Human Action Recognition Using Wavelets of Derived Beta Distributions

Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel

Abstract:

In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.

Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet

Procedia PDF Downloads 411
1849 Tail-Binding Effect of Kinesin-1 Auto Inhibition Using Elastic Network Model

Authors: Hyun Joon Chang, Jae In Kim, Sungsoo Na

Abstract:

Kinesin-1 (hereafter called kinesin) is a molecular motor protein that moves cargos toward the end of microtubules using the energy of adenosine triphosphate (ATP) hydrolysis. When kinesin is inactive, its tail autoinhibits the motor chain in order to prevent from reacting with the ATP by cross-linking of the tail domain to the motor domains at two positions. However, the morphological study of kinesin during autoinhibition is yet remained obscured. In this study, we report the effect of the binding site of the tail domain using the normal mode analysis of the elastic network model on kinesin in the tail-free form and tail-bind form. Considering the relationship between the connectivity of conventional network model with respect to the cutoff length and the functionality of the binding site of the tail, we revaluated the network model to observe the key role of the tail domain in its structural aspect. Contingent on the existence of the tail domain, the results suggest the morphological stability of the motor domain. Furthermore, employing the results from normal mode analysis, we have determined the strain energy of the neck linker, an essential portion of the motor domain for ATP hydrolysis. The results of the neck linker also converge to the same indication, i.e. the morphological analysis of the motor domain.

Keywords: elastic network model, Kinesin-1, autoinhibition

Procedia PDF Downloads 455
1848 Dynamic Web-Based 2D Medical Image Visualization and Processing Software

Authors: Abdelhalim. N. Mohammed, Mohammed. Y. Esmail

Abstract:

In the course of recent decades, medical imaging has been dominated by the use of costly film media for review and archival of medical investigation, however due to developments in networks technologies and common acceptance of a standard digital imaging and communication in medicine (DICOM) another approach in light of World Wide Web was produced. Web technologies successfully used in telemedicine applications, the combination of web technologies together with DICOM used to design a web-based and open source DICOM viewer. The Web server allowance to inquiry and recovery of images and the images viewed/manipulated inside a Web browser without need for any preinstalling software. The dynamic site page for medical images visualization and processing created by using JavaScript and HTML5 advancements. The XAMPP ‘apache server’ is used to create a local web server for testing and deployment of the dynamic site. The web-based viewer connected to multiples devices through local area network (LAN) to distribute the images inside healthcare facilities. The system offers a few focal points over ordinary picture archiving and communication systems (PACS): easy to introduce, maintain and independently platforms that allow images to display and manipulated efficiently, the system also user-friendly and easy to integrate with an existing system that have already been making use of web technologies. The wavelet-based image compression technique on which 2-D discrete wavelet transform used to decompose the image then wavelet coefficients are transmitted by entropy encoding after threshold to decrease transmission time, stockpiling cost and capacity. The performance of compression was estimated by using images quality metrics such as mean square error ‘MSE’, peak signal to noise ratio ‘PSNR’ and compression ratio ‘CR’ that achieved (83.86%) when ‘coif3’ wavelet filter is used.

Keywords: DICOM, discrete wavelet transform, PACS, HIS, LAN

Procedia PDF Downloads 160
1847 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform

Authors: Sadam Alwadi

Abstract:

Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.

Keywords: outlier values, imputation, stock market data, detecting, estimation

Procedia PDF Downloads 81
1846 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection

Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour

Abstract:

The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.

Keywords: EEG, wavelet, epilepsy, detection

Procedia PDF Downloads 538
1845 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.

Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 448
1844 Power System Modeling for Calculations in Frequency and Steady State Domain

Authors: G. Levacic, A. Zupan

Abstract:

Application of new technological solutions and installation of new elements into the network requires special attention when investigating its interaction with the existing power system. Special attention needs to be devoted to the occurrence of harmonic resonance. Sources of increasing harmonic penetration could be wind power plants, Flexible Alternating Current Transmission System (FACTS) devices, underground and submarine cable installations etc. Calculation in frequency domain with various software, for example, the software for power systems transients EMTP-RV presents one of the most common ways to obtain the harmonic impedance of the system. Along calculations in frequency domain, such software allows performing of different type of calculations as well as steady-state domain. This paper describes a power system modeling with software EMTP-RV based on data from SCADA/EMS system. The power flow results on 220 kV and 400 kV voltage levels retrieved from EMTP-RV are verified by comparing with power flow results from power transmissions system planning software PSS/E. The determination of the harmonic impedance for the case of remote power plant connection with cable up to 2500 Hz is presented as an example of calculations in frequency domain.

Keywords: power system modeling, frequency domain, steady state, EMTP-RV, PSS/E

Procedia PDF Downloads 322
1843 New Iterative Algorithm for Improving Depth Resolution in Ionic Analysis: Effect of Iterations Number

Authors: N. Dahraoui, M. Boulakroune, D. Benatia

Abstract:

In this paper, the improvement by deconvolution of the depth resolution in Secondary Ion Mass Spectrometry (SIMS) analysis is considered. Indeed, we have developed a new Tikhonov-Miller deconvolution algorithm where a priori model of the solution is included. This is a denoisy and pre-deconvoluted signal obtained from: firstly, by the application of wavelet shrinkage algorithm, secondly by the introduction of the obtained denoisy signal in an iterative deconvolution algorithm. In particular, we have focused the light on the effect of the iterations number on the evolution of the deconvoluted signals. The SIMS profiles are multilayers of Boron in Silicon matrix.

Keywords: DRF, in-depth resolution, multiresolution deconvolution, SIMS, wavelet shrinkage

Procedia PDF Downloads 418
1842 Needs Analysis Survey of Hearing Impaired Students’ Teachers in Elementary Schools for Designing Curriculum Plans and Improving Human Resources

Authors: F. Rashno Seydari, M. Nikafrooz

Abstract:

This paper intends to study needs analysis of hearing-impaired students’ teachers in elementary schools all over Iran. The subjects of this study were 275 teachers who were teaching hearing-impaired students in elementary schools. The participants were selected by a quota sampling method. To collect the data, questionnaires of training needs consisting of 41 knowledge items and 31 performance items were used. The collected data were analyzed by using SPSS software in the form of descriptive analyses (frequency and mean) and inferential analyses (one sample t-test, paired t-test, independent t-test, and Pearson correlation coefficient). The findings of the study indicated that teachers generally have considerable needs in knowledge and performance domains. In 32 items out of the total 41 knowledge domain items and in the 27 items out of the total 31 performance domain items, the teachers had considerable needs. From the quantitative point of view, the needs of the performance domain were more than those of the knowledge domain, so they have to be considered as the first priority in training these teachers. There was no difference between the level of the needs of male and female teachers. There was a significant difference between the knowledge and performance domain needs and the teachers’ teaching experience, 0.354 and 0.322 respectively. The teachers who had been trained in working with hearing-impaired students expressed more training needs (both knowledge and performance).

Keywords: educational needs analysis, teachers of hearing impaired students, knowledge domain, function domain

Procedia PDF Downloads 96
1841 Vibrations of Springboards: Mode Shape and Time Domain Analysis

Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich

Abstract:

Diving is an important Olympic sport. In this sport, the effective performance of the athlete is related to his capability to interact correctly with the springboard. In fact, the elevation of the jump and the correctness of the dive are influenced by the vibrations of the board. In this paper, the vibrations of the springboard will be analyzed by means of typical tools for vibration analysis: Firstly, a modal analysis will be done on two different models of the springboard, then, these two model and another one will be analyzed with a time analysis, done integrating the equations of motion od deformable bodies. All these analyses will be compared with experimental data measured on a real springboard by means of a 6-axis accelerometer; these measurements are aimed to assess the models proposed. The acquired data will be analyzed both in frequency domain and in time domain.

Keywords: springboard analysis, modal analysis, time domain analysis, vibrations

Procedia PDF Downloads 460
1840 Secure Message Transmission Using Meaningful Shares

Authors: Ajish Sreedharan

Abstract:

Visual cryptography encodes a secret image into shares of random binary patterns. If the shares are exerted onto transparencies, the secret image can be visually decoded by superimposing a qualified subset of transparencies, but no secret information can be obtained from the superposition of a forbidden subset. The binary patterns of the shares, however, have no visual meaning and hinder the objectives of visual cryptography. In the Secret Message Transmission through Meaningful Shares a secret message to be transmitted is converted to grey scale image. Then (2,2) visual cryptographic shares are generated from this converted gray scale image. The shares are encrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. Two separate color images which are of the same size of the shares, taken as cover image of the respective shares to hide the shares into them. The encrypted shares which are covered by meaningful images so that a potential eavesdropper wont know there is a message to be read. The meaningful shares are transmitted through two different transmission medium. During decoding shares are fetched from received meaningful images and decrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. The shares are combined to regenerate the grey scale image from where the secret message is obtained.

Keywords: visual cryptography, wavelet transform, meaningful shares, grey scale image

Procedia PDF Downloads 455
1839 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation

Authors: Simiao Ren, En Wei

Abstract:

Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.

Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN

Procedia PDF Downloads 101
1838 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing

Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa

Abstract:

The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.

Keywords: flank wear, vibration, milling, signal processing, monitoring

Procedia PDF Downloads 598
1837 Speckle Noise Reduction Using Anisotropic Filter Based on Wavelets

Authors: Kritika Bansal, Akwinder Kaur, Shruti Gujral

Abstract:

In this paper, the approach of denoising is solved by using a new hybrid technique which associates the different denoising methods. Wavelet thresholding and anisotropic diffusion filter are the two different filters in our hybrid techniques. The Wavelet thresholding removes the noise by removing the high frequency components with lesser edge preservation, whereas an anisotropic diffusion filters is based on partial differential equation, (PDE) to remove the speckle noise. This PDE approach is used to preserve the edges and provides better smoothing. So our new method proposes a combination of these two filtering methods which performs better results in terms of peak signal to noise ratio (PSNR), coefficient of correlation (COC) and equivalent no of looks (ENL).

Keywords: denoising, anisotropic diffusion filter, multiplicative noise, speckle, wavelets

Procedia PDF Downloads 512
1836 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series

Authors: Mohammad H. Fattahi

Abstract:

Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.

Keywords: chaotic behavior, wavelet, noise reduction, river flow

Procedia PDF Downloads 468
1835 A Framework for Designing Complex Product-Service Systems with a Multi-Domain Matrix

Authors: Yoonjung An, Yongtae Park

Abstract:

Offering a Product-Service System (PSS) is a well-accepted strategy that companies may adopt to provide a set of systemic solutions to customers. PSSs were initially provided in a simple form but now take diversified and complex forms involving multiple services, products and technologies. With the growing interest in the PSS, frameworks for the PSS development have been introduced by many researchers. However, most of the existing frameworks fail to examine various relations existing in a complex PSS. Since designing a complex PSS involves full integration of multiple products and services, it is essential to identify not only product-service relations but also product-product/ service-service relations. It is also equally important to specify how they are related for better understanding of the system. Moreover, as customers tend to view their purchase from a more holistic perspective, a PSS should be developed based on the whole system’s requirements, rather than focusing only on the product requirements or service requirements. Thus, we propose a framework to develop a complex PSS that is coordinated fully with the requirements of both worlds. Specifically, our approach adopts a multi-domain matrix (MDM). A MDM identifies not only inter-domain relations but also intra-domain relations so that it helps to design a PSS that includes highly desired and closely related core functions/ features. Also, various dependency types and rating schemes proposed in our approach would help the integration process.

Keywords: inter-domain relations, intra-domain relations, multi-domain matrix, product-service system design

Procedia PDF Downloads 641
1834 Molecular Cloning and Identification of a Double WAP Domain–Containing Protein 3 Gene from Chinese Mitten Crab Eriocheir sinensis

Authors: Fengmei Li, Li Xu, Guoliang Xia

Abstract:

Whey acidic proteins (WAP) domain-containing proteins in crustacean are involved in innate immune response against microbial invasion. In the present study, a novel double WAP domain (DWD)-containing protein gene 3 was identified from Chinese mitten crab Eriocheir sinensis (designated EsDWD3) by expressed sequence tag (EST) analysis and PCR techniques. The full-length cDNA of EsDWD3 was of 1223 bp, consisting of a 5′-terminal untranslated region (UTR) of 74 bp, a 3′ UTR of 727 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 423 bp. The ORF encoded a polypeptide of 140 amino acids with a signal peptide of 22 amino acids. The deduced protein sequence EsDWD3 showed 96.4 % amino acid similar to other reported EsDWD1 from E. sinensis, and phylogenetic tree analysis revealed that EsDWD3 had closer relationships with the reported two double WAP domain-containing proteins of E. sinensis species.

Keywords: Chinese mitten crab, Eriocheir sinensis, cloning, double WAP domain-containing protein

Procedia PDF Downloads 355
1833 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy

Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao

Abstract:

As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.

Keywords: coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain

Procedia PDF Downloads 408
1832 Effective Method of Paneling for Source/Vortex/Doublet Panel Methods Using Conformal Mapping

Authors: K. C. R. Perera, B. M. Hapuwatte

Abstract:

This paper presents an effective method to divide panels for mesh-less methods of source, vortex and doublet panel methods. In this research study the physical domain of air-foils were transformed into computational domain of a circle using conformal mapping technique of Joukowsky transformation. Then the circle is divided into panels of equal length and the co-ordinates were remapped into physical domain of the air-foil. With this method the leading edge and the trailing edge of the air-foil is panelled with a high density of panels and the rest of the body is panelled with low density of panels. The high density of panels in the leading edge and the trailing edge will increase the accuracy of the solutions obtained from panel methods where the fluid flow at the leading and trailing edges are complex.

Keywords: conformal mapping, Joukowsky transformation, physical domain, computational domain

Procedia PDF Downloads 376
1831 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 223
1830 Effect of Al Contents on Magnetic Domains of {100} Grains in Electrical Steels

Authors: Hyunseo Choi, Jaewan Hong, Seil Lee, Yang Mo Koo

Abstract:

Non-oriented (NO) electrical steel is one of the most important soft magnetic materials for rotating machines. Si has usually been added to electrical steels to reduce eddy current loss by increasing the electrical resistivity. Si content more than 3.5 wt% causes cracks during cold rolling due to increase of brittleness. Al also increases the electrical resistivity of the materials as much as Si. In addition, cold workability of Fe-Al is better than Fe-Si, so that Al can be added up to 6.0 wt%. However, the effect of Al contents on magnetic properties of electrical steels has not been studied in detail. Magnetic domains of {100} grains in electrical steels, ranging from 1.85 to 6.54 wt% Al, were observed by magneto-optic Kerr microscopy. Furthermore, the correlation of magnetic domains with magnetic properties was investigated. As Al contents increased, the magnetic domain size of {100} grains decreased due to lowered domain wall energy. Reorganization of magnetic domain structure became more complex as domain size decreased. Therefore, the addition of Al to electrical steel caused hysteresis loss to increase. Anomalous loss decreased and saturated after 4.68% Al.

Keywords: electrical steel, magnetic domain structure, Al addition, core loss, rearrangement of domains

Procedia PDF Downloads 243
1829 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices

Authors: Khosrow Maleknejad, Yaser Rostami

Abstract:

In this paper, semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions.

Keywords: ıntegro-differential equations, quartic B-spline wavelet, operational matrices, dual functions

Procedia PDF Downloads 456
1828 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques

Authors: Gurmail Singh

Abstract:

Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).

Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility

Procedia PDF Downloads 127