Search results for: wavelet coherence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 432

Search results for: wavelet coherence

312 New Iterative Algorithm for Improving Depth Resolution in Ionic Analysis: Effect of Iterations Number

Authors: N. Dahraoui, M. Boulakroune, D. Benatia

Abstract:

In this paper, the improvement by deconvolution of the depth resolution in Secondary Ion Mass Spectrometry (SIMS) analysis is considered. Indeed, we have developed a new Tikhonov-Miller deconvolution algorithm where a priori model of the solution is included. This is a denoisy and pre-deconvoluted signal obtained from: firstly, by the application of wavelet shrinkage algorithm, secondly by the introduction of the obtained denoisy signal in an iterative deconvolution algorithm. In particular, we have focused the light on the effect of the iterations number on the evolution of the deconvoluted signals. The SIMS profiles are multilayers of Boron in Silicon matrix.

Keywords: DRF, in-depth resolution, multiresolution deconvolution, SIMS, wavelet shrinkage

Procedia PDF Downloads 416
311 Adjustment of Parents of Children with Autism: A Multivariate Model

Authors: Ayelet Siman-Tov, Shlomo Kaniel

Abstract:

Objectives: The research validates a multivariate model that predicts parental adjustment to coping successfully with an autistic child. The model comprises four elements: parental stress, parental resources, parental adjustment and the child's autism symptoms. Background and aims: The purpose of the current study is the construction and validation of a model for the adjustment of parents and a child with autism. The suggested model is based on theoretical views on stress and links personal resources, stress, perception, parental mental health and quality of marriage and child adjustment with autism. The family stress approach focuses on the family as a system made up of a dynamic interaction between its members, who constitute interdependent parts of the system, and thus, a change in one family member brings about changes in the processes of the entire family system. From this perspective, a rise of new demands in the family and stress in the role of one family member affects the family system as a whole. Materials and methods: 176 parents of children aged between 6 to 16 diagnosed with ASD answered several questionnaires measuring parental stress, personal resources (sense of coherence, locus of control, social support), adjustment (mental health and marriage quality) and the child's autism symptoms. Results: Path analysis showed that a sense of coherence, internal locus of control, social support and quality of marriage increase the ability to cope with the stress of parenting an autistic child. Directions for further research are suggested.

Keywords: stress, adjustment, resources, Autism, parents, coherence

Procedia PDF Downloads 137
310 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data

Authors: Saurav Kumar Suman, P. Karthigayani

Abstract:

In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.

Keywords: RISAT-1, classification, forest, SAR data

Procedia PDF Downloads 404
309 Secure Message Transmission Using Meaningful Shares

Authors: Ajish Sreedharan

Abstract:

Visual cryptography encodes a secret image into shares of random binary patterns. If the shares are exerted onto transparencies, the secret image can be visually decoded by superimposing a qualified subset of transparencies, but no secret information can be obtained from the superposition of a forbidden subset. The binary patterns of the shares, however, have no visual meaning and hinder the objectives of visual cryptography. In the Secret Message Transmission through Meaningful Shares a secret message to be transmitted is converted to grey scale image. Then (2,2) visual cryptographic shares are generated from this converted gray scale image. The shares are encrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. Two separate color images which are of the same size of the shares, taken as cover image of the respective shares to hide the shares into them. The encrypted shares which are covered by meaningful images so that a potential eavesdropper wont know there is a message to be read. The meaningful shares are transmitted through two different transmission medium. During decoding shares are fetched from received meaningful images and decrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. The shares are combined to regenerate the grey scale image from where the secret message is obtained.

Keywords: visual cryptography, wavelet transform, meaningful shares, grey scale image

Procedia PDF Downloads 455
308 Higher Education for Sustainable Development and Proposed Performance-based Funding Model for Universities in Ontario: Tensions and Coherence Between Provincial and Federal Policies

Authors: Atiqa Marium

Abstract:

In 2015, all 193 UN Member countries adopted the 2030 Agenda for Sustainable Development, which is an ambitious 15- year plan to address some of the most pressing issues the world faces. Goal 4 is about Quality Education which highlights the importance of inclusive and quality education for sustainable development. Sustainable Development Goal 10 focuses on reducing inequalities within and among countries. In June 2019, Federal Government in Canada released “Towards Canada’s 2030 Agenda National Strategy”, which was an important step to move the 2030 Agenda forward. In April 2019, the Ontario government announced the performance-based funding model for publically assisted colleges and universities in Ontario, which is now part of the universities’ budget 2024-2025. The literature review has shown that the funding model has been implemented by different governments to achieve objectives. However, this model has also resulted in conflicting consequences like reducing university autonomy, education quality/ academic standards, and increased equity concerns. The primary focus of this paper will be to analyze the tensions and coherence between the proposed funding model for education for sustainable development goals and targets set by Canada’s 2030 Agenda National Strategy. Considering that the literature review has provided evidence that the performance-based funding model has resulted in reducing quality of education and increased equity issues in other countries, it will be interesting to see how this proposed funding will align with the SDGs of “Quality Education” and “Reduced Inequalities”. This paper will be well-suited for Volume 4, with the theme of re-visioning institutional impact and sustainability. This paper will underscore the importance of policy coherence between federal and provincial policies for higher education institutions in Ontario for better institutional impact and helping universities in the attainment of goals set in 2030 Agenda towards education for sustainable development.

Keywords: performance-based funding model, education for sustainable development, policy coherence, sustainable development gaols

Procedia PDF Downloads 113
307 Multiscale Edge Detection Based on Nonsubsampled Contourlet Transform

Authors: Enqing Chen, Jianbo Wang

Abstract:

It is well known that the wavelet transform provides a very effective framework for multiscale edges analysis. However, wavelets are not very effective in representing images containing distributed discontinuities such as edges. In this paper, we propose a novel multiscale edge detection method in nonsubsampled contourlet transform (NSCT) domain, which is based on the dominant multiscale, multidirection edge expression and outstanding edge location of NSCT. Through real images experiments, simulation results demonstrate that the proposed method is better than other edge detection methods based on Canny operator, wavelet and contourlet. Additionally, the proposed method also works well for noisy images.

Keywords: edge detection, NSCT, shift invariant, modulus maxima

Procedia PDF Downloads 487
306 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing

Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa

Abstract:

The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.

Keywords: flank wear, vibration, milling, signal processing, monitoring

Procedia PDF Downloads 596
305 Speckle Noise Reduction Using Anisotropic Filter Based on Wavelets

Authors: Kritika Bansal, Akwinder Kaur, Shruti Gujral

Abstract:

In this paper, the approach of denoising is solved by using a new hybrid technique which associates the different denoising methods. Wavelet thresholding and anisotropic diffusion filter are the two different filters in our hybrid techniques. The Wavelet thresholding removes the noise by removing the high frequency components with lesser edge preservation, whereas an anisotropic diffusion filters is based on partial differential equation, (PDE) to remove the speckle noise. This PDE approach is used to preserve the edges and provides better smoothing. So our new method proposes a combination of these two filtering methods which performs better results in terms of peak signal to noise ratio (PSNR), coefficient of correlation (COC) and equivalent no of looks (ENL).

Keywords: denoising, anisotropic diffusion filter, multiplicative noise, speckle, wavelets

Procedia PDF Downloads 510
304 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series

Authors: Mohammad H. Fattahi

Abstract:

Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.

Keywords: chaotic behavior, wavelet, noise reduction, river flow

Procedia PDF Downloads 466
303 Highly Conductive Polycrystalline Metallic Ring in a Magnetic Field

Authors: Isao Tomita

Abstract:

Electrical conduction in a quasi-one-dimensional polycrystalline metallic ring with a long electron phase coherence length realized at low temperature is investigated. In this situation, the wave nature of electrons is important in the ring, where the electrical current I can be induced by a vector potential that arises from a static magnetic field applied perpendicularly to the ring’s area. It is shown that if the average grain size of the polycrystalline ring becomes large (or comparable to the Fermi wavelength), the electrical current I increases to ~I0, where I0 is a current in a disorder-free ring. The cause of this increasing effect is examined, and this takes place if the electron localization length in the polycrystalline potential increases with increasing grain size, which gives rise to coherent connection of tails of a localized electron wave function in the ring and thus provides highly coherent electrical conduction.

Keywords: electrical conduction, electron phase coherence, polycrystalline metal, magnetic field

Procedia PDF Downloads 386
302 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 220
301 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices

Authors: Khosrow Maleknejad, Yaser Rostami

Abstract:

In this paper, semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions.

Keywords: ıntegro-differential equations, quartic B-spline wavelet, operational matrices, dual functions

Procedia PDF Downloads 454
300 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques

Authors: Gurmail Singh

Abstract:

Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).

Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility

Procedia PDF Downloads 127
299 Understanding Regional Circulations That Modulate Heavy Precipitations in the Kulfo Watershed

Authors: Tesfay Mekonnen Weldegerima

Abstract:

Analysis of precipitation time series is a fundamental undertaking in meteorology and hydrology. The extreme precipitation scenario of the Kulfo River watershed is studied using wavelet analysis and atmospheric transport, a lagrangian trajectory model. Daily rainfall data for the 1991-2020 study periods are collected from the office of the Ethiopian Meteorology Institute. Meteorological fields on a three-dimensional grid at 0.5o x 0.5o spatial resolution and daily temporal resolution are also obtained from the Global Data Assimilation System (GDAS). Wavelet analysis of the daily precipitation processed with the lag-1 coefficient reveals some high power recurred once every 38 to 60 days with greater than 95% confidence for red noise. The analysis also identified inter-annual periodicity in the periods 2002 - 2005 and 2017 - 2019. Back trajectory analysis for 3-day periods up to May 19/2011, indicates the Indian Ocean source; trajectories crossed the eastern African escarpment to arrive at the Kulfo watershed. Atmospheric flows associated with the Western Indian monsoon redirected by the low-level Somali winds and Arabian ridge are responsible for the moisture supply. The time-localization of the wavelet power spectrum yields valuable hydrological information, and the back trajectory approaches provide useful characterization of air mass source.

Keywords: extreme precipitation events, power spectrum, back trajectory, kulfo watershed

Procedia PDF Downloads 68
298 Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data

Authors: Phumelele Kubheka, Pius Owolawi, Gbolahan Aiyetoro

Abstract:

Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model.

Keywords: big data, latent Dirichlet allocation, latent semantic indexing, telco, topic modeling, twitter

Procedia PDF Downloads 148
297 Bayesian Inference for High Dimensional Dynamic Spatio-Temporal Models

Authors: Sofia M. Karadimitriou, Kostas Triantafyllopoulos, Timothy Heaton

Abstract:

Reduced dimension Dynamic Spatio-Temporal Models (DSTMs) jointly describe the spatial and temporal evolution of a function observed subject to noise. A basic state space model is adopted for the discrete temporal variation, while a continuous autoregressive structure describes the continuous spatial evolution. Application of such a DSTM relies upon the pre-selection of a suitable reduced set of basic functions and this can present a challenge in practice. In this talk, we propose an online estimation method for high dimensional spatio-temporal data based upon DSTM and we attempt to resolve this issue by allowing the basis to adapt to the observed data. Specifically, we present a wavelet decomposition in order to obtain a parsimonious approximation of the spatial continuous process. This parsimony can be achieved by placing a Laplace prior distribution on the wavelet coefficients. The aim of using the Laplace prior, is to filter wavelet coefficients with low contribution, and thus achieve the dimension reduction with significant computation savings. We then propose a Hierarchical Bayesian State Space model, for the estimation of which we offer an appropriate particle filter algorithm. The proposed methodology is illustrated using real environmental data.

Keywords: multidimensional Laplace prior, particle filtering, spatio-temporal modelling, wavelets

Procedia PDF Downloads 424
296 Digital Cinema Watermarking State of Art and Comparison

Authors: H. Kelkoul, Y. Zaz

Abstract:

Nowadays, the vigorous popularity of video processing techniques has resulted in an explosive growth of multimedia data illegal use. So, watermarking security has received much more attention. The purpose of this paper is to explore some watermarking techniques in order to observe their specificities and select the finest methods to apply in digital cinema domain against movie piracy by creating an invisible watermark that includes the date, time and the place where the hacking was done. We have studied three principal watermarking techniques in the frequency domain: Spread spectrum, Wavelet transform domain and finally the digital cinema watermarking transform domain. In this paper, a detailed technique is presented where embedding is performed using direct sequence spread spectrum technique in DWT transform domain. Experiment results shows that the algorithm provides high robustness and good imperceptibility.

Keywords: digital cinema, watermarking, wavelet DWT, spread spectrum, JPEG2000 MPEG4

Procedia PDF Downloads 250
295 Pneumoperitoneum Creation Assisted with Optical Coherence Tomography and Automatic Identification

Authors: Eric Yi-Hsiu Huang, Meng-Chun Kao, Wen-Chuan Kuo

Abstract:

For every laparoscopic surgery, a safe pneumoperitoneumcreation (gaining access to the peritoneal cavity) is the first and essential step. However, closed pneumoperitoneum is usually obtained by blind insertion of a Veress needle into the peritoneal cavity, which may carry potential risks suchas bowel and vascular injury.Until now, there remains no definite measure to visually confirm the position of the needle tip inside the peritoneal cavity. Therefore, this study established an image-guided Veress needle method by combining a fiber probe with optical coherence tomography (OCT). An algorithm was also proposed for determining the exact location of the needle tip through the acquisition of OCT images. Our method not only generates a series of “live” two-dimensional (2D) images during the needle puncture toward the peritoneal cavity but also can eliminate operator variation in image judgment, thus improving peritoneal access safety. This study was approved by the Ethics Committee of Taipei Veterans General Hospital (Taipei VGH IACUC 2020-144). A total of 2400 in vivo OCT images, independent of each other, were acquired from experiments of forty peritoneal punctures on two piglets. Characteristic OCT image patterns could be observed during the puncturing process. The ROC curve demonstrates the discrimination capability of these quantitative image features of the classifier, showing the accuracy of the classifier for determining the inside vs. outside of the peritoneal was 98% (AUC=0.98). In summary, the present study demonstrates the ability of the combination of our proposed automatic identification method and OCT imaging for automatically and objectively identifying the location of the needle tip. OCT images translate the blind closed technique of peritoneal access into a visualized procedure, thus improving peritoneal access safety.

Keywords: pneumoperitoneum, optical coherence tomography, automatic identification, veress needle

Procedia PDF Downloads 133
294 Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform

Authors: Hana Rabbouch

Abstract:

In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD.

Keywords: medical imaging, non local means, denoising, multiscaled analysis, empirical mode decomposition, wavelets

Procedia PDF Downloads 139
293 Spatiotemporal Variability in Rainfall Trends over Sinai Peninsula Using Nonparametric Methods and Discrete Wavelet Transforms

Authors: Mosaad Khadr

Abstract:

Knowledge of the temporal and spatial variability of rainfall trends has been of great concern for efficient water resource planning, management. In this study annual, seasonal and monthly rainfall trends over the Sinai Peninsula were analyzed by using absolute homogeneity tests, nonparametric Mann–Kendall (MK) test and Sen’s slope estimator methods. The homogeneity of rainfall time-series was examined using four absolute homogeneity tests namely, the Pettitt test, standard normal homogeneity test, Buishand range test, and von Neumann ratio test. Further, the sequential change in the trend of annual and seasonal rainfalls is conducted using sequential MK (SQMK) method. Then the trend analysis based on discrete wavelet transform technique (DWT) in conjunction with SQMK method is performed. The spatial patterns of the detected rainfall trends were investigated using a geostatistical and deterministic spatial interpolation technique. The results achieved from the Mann–Kendall test to the data series (using the 5% significance level) highlighted that rainfall was generally decreasing in January, February, March, November, December, wet season, and annual rainfall. A significant decreasing trend in the winter and annual rainfall with significant levels were inferred based on the Mann-Kendall rank statistics and linear trend. Further, the discrete wavelet transform (DWT) analysis reveal that in general, intra- and inter-annual events (up to 4 years) are more influential in affecting the observed trends. The nature of the trend captured by both methods is similar for all of the cases. On the basis of spatial trend analysis, significant rainfall decreases were also noted in the investigated stations. Overall, significant downward trends in winter and annual rainfall over the Sinai Peninsula was observed during the study period.

Keywords: trend analysis, rainfall, Mann–Kendall test, discrete wavelet transform, Sinai Peninsula

Procedia PDF Downloads 168
292 Reversible and Adaptive Watermarking for MRI Medical Images

Authors: Nisar Ahmed Memon

Abstract:

A new medical image watermarking scheme delivering high embedding capacity is presented in this paper. Integer Wavelet Transform (IWT), Companding technique and adaptive thresholding are used in this scheme. The proposed scheme implants, recovers the hidden information and restores the input image to its pristine state at the receiving end. Magnetic Resonance Imaging (MRI) images are used for experimental purposes. The scheme first segment the MRI medical image into non-overlapping blocks and then inserts watermark into wavelet coefficients having a high frequency of each block. The scheme uses block-based watermarking adopting iterative optimization of threshold for companding in order to avoid the histogram pre and post processing. Results show that proposed scheme performs better than other reversible medical image watermarking schemes available in literature for MRI medical images.

Keywords: adaptive thresholding, companding technique, data authentication, reversible watermarking

Procedia PDF Downloads 294
291 Risk Factors’ Analysis on Shanghai Carbon Trading

Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu

Abstract:

First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.

Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model

Procedia PDF Downloads 390
290 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi

Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault

Abstract:

Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.

Keywords: deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering

Procedia PDF Downloads 477
289 Robust and Transparent Spread Spectrum Audio Watermarking

Authors: Ali Akbar Attari, Ali Asghar Beheshti Shirazi

Abstract:

In this paper, we propose a blind and robust audio watermarking scheme based on spread spectrum in Discrete Wavelet Transform (DWT) domain. Watermarks are embedded in the low-frequency coefficients, which is less audible. The key idea is dividing the audio signal into small frames, and magnitude of the 6th level of DWT approximation coefficients is modifying based upon the Direct Sequence Spread Spectrum (DSSS) technique. Also, the psychoacoustic model for enhancing in imperceptibility, as well as Savitsky-Golay filter for increasing accuracy in extraction, is used. The experimental results illustrate high robustness against most common attacks, i.e. Gaussian noise addition, Low pass filter, Resampling, Requantizing, MP3 compression, without significant perceptual distortion (ODG is higher than -1). The proposed scheme has about 83 bps data payload.

Keywords: audio watermarking, spread spectrum, discrete wavelet transform, psychoacoustic, Savitsky-Golay filter

Procedia PDF Downloads 198
288 Improvement in Quality-Factor Superconducting Co-Planer Waveguide Resonators by Passivation Air-Interfaces Using Self-Assembled Monolayers

Authors: Saleem Rao, Mohammed Al-Ghadeer, Archan Banerjee, Hossein Fariborzi

Abstract:

Materials imperfection, particularly two-level-system (TLS) defects in planer superconducting quantum circuits, contributes significantly to decoherence, ultimately limiting the performance of quantum computation and sensing. Oxides at air interfaces are among the host of TLS, and different material has been used to reduce TLS losses. Passivation with an inorganic layer is not an option to reduce these interface oxides; however, they can be etched away, but their regrowth remains a problem. Here, we report the chemisorption of molecular self-assembled monolayers (SAMs) at air interfaces of superconducting co-planer waveguide (CPW) resonators that suppress the regrowth of oxides and also modify the dielectric constant of the interface. With SAMs, we observed sustained order of magnitude improvement in quality factor -better than oxide etched interfaces. Quality factor measurements at millikelvin temperature and at single photon, XPS data, and TEM images of SAM passivated air interface sustenance our claim. Compatibility of SAM with micro-/nano-fabrication processes opens new ways to improve the coherence time in cQED.

Keywords: superconducting circuits, quality-factor, self-assembled monolayer, coherence

Procedia PDF Downloads 80
287 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet

Authors: Amir Moslemi, Amir movafeghi, Shahab Moradi

Abstract:

One of the most important challenging factors in medical images is nominated as noise.Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjected to low quality due to the noise. The quality of CT images is dependent on the absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on the purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete wavelet transform(DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result in good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).

Keywords: computed tomography (CT), noise reduction, curve-let, contour-let, signal to noise peak-peak ratio (PSNR), structure similarity (Ssim), absorbed dose to patient (ADP)

Procedia PDF Downloads 438
286 Performance Evaluation and Comparison between the Empirical Mode Decomposition, Wavelet Analysis, and Singular Spectrum Analysis Applied to the Time Series Analysis in Atmospheric Science

Authors: Olivier Delage, Hassan Bencherif, Alain Bourdier

Abstract:

Signal decomposition approaches represent an important step in time series analysis, providing useful knowledge and insight into the data and underlying dynamics characteristics while also facilitating tasks such as noise removal and feature extraction. As most of observational time series are nonlinear and nonstationary, resulting of several physical processes interaction at different time scales, experimental time series have fluctuations at all time scales and requires the development of specific signal decomposition techniques. Most commonly used techniques are data driven, enabling to obtain well-behaved signal components without making any prior-assumptions on input data. Among the most popular time series decomposition techniques, most cited in the literature, are the empirical mode decomposition and its variants, the empirical wavelet transform and singular spectrum analysis. With increasing popularity and utility of these methods in wide ranging applications, it is imperative to gain a good understanding and insight into the operation of these algorithms. In this work, we describe all of the techniques mentioned above as well as their ability to denoise signals, to capture trends, to identify components corresponding to the physical processes involved in the evolution of the observed system and deduce the dimensionality of the underlying dynamics. Results obtained with all of these methods on experimental total ozone columns and rainfall time series will be discussed and compared

Keywords: denoising, empirical mode decomposition, singular spectrum analysis, time series, underlying dynamics, wavelet analysis

Procedia PDF Downloads 113
285 Hybrid Approach for Face Recognition Combining Gabor Wavelet and Linear Discriminant Analysis

Authors: A: Annis Fathima, V. Vaidehi, S. Ajitha

Abstract:

Face recognition system finds many applications in surveillance and human computer interaction systems. As the applications using face recognition systems are of much importance and demand more accuracy, more robustness in the face recognition system is expected with less computation time. In this paper, a hybrid approach for face recognition combining Gabor Wavelet and Linear Discriminant Analysis (HGWLDA) is proposed. The normalized input grayscale image is approximated and reduced in dimension to lower the processing overhead for Gabor filters. This image is convolved with bank of Gabor filters with varying scales and orientations. LDA, a subspace analysis techniques are used to reduce the intra-class space and maximize the inter-class space. The techniques used are 2-dimensional Linear Discriminant Analysis (2D-LDA), 2-dimensional bidirectional LDA ((2D)2LDA), Weighted 2-dimensional bidirectional Linear Discriminant Analysis (Wt (2D)2 LDA). LDA reduces the feature dimension by extracting the features with greater variance. k-Nearest Neighbour (k-NN) classifier is used to classify and recognize the test image by comparing its feature with each of the training set features. The HGWLDA approach is robust against illumination conditions as the Gabor features are illumination invariant. This approach also aims at a better recognition rate using less number of features for varying expressions. The performance of the proposed HGWLDA approaches is evaluated using AT&T database, MIT-India face database and faces94 database. It is found that the proposed HGWLDA approach provides better results than the existing Gabor approach.

Keywords: face recognition, Gabor wavelet, LDA, k-NN classifier

Procedia PDF Downloads 466
284 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform

Authors: Omaima N. Ahmad AL-Allaf

Abstract:

Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.

Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform

Procedia PDF Downloads 225
283 Efficient Feature Fusion for Noise Iris in Unconstrained Environment

Authors: Yao-Hong Tsai

Abstract:

This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.

Keywords: image fusion, iris recognition, local binary pattern, wavelet

Procedia PDF Downloads 366