Search results for: transition metal sulfides
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4067

Search results for: transition metal sulfides

3947 Efficacy of Pisum sativum and Arbuscular Mycorrhizal Symbiosis for Phytoextraction of Heavy Metalloids from Soil

Authors: Ritu Chaturvedi, Manoj Paul

Abstract:

A pot experiment was conducted to investigate the effect of Arbuscular mycorrhizal fungus (AMF) on metal(loid) uptake and accumulation efficiency of Pisum sativum along with physiological and biochemical response. Plants were grown in soil spiked with 50 and 100 mg kg-1 Pb, 25 and 50 mg kg-1 Cd, 50 and 100 mg kg-1 As and a combination of all three metal(loid)s. A parallel set was maintained and inoculated with arbuscular mycorrhizal fungus for comparison. After 60 days, plants were harvested and analysed for metal(loid) content. A steady increase in metal(loid) accumulation was observed on increment of metal(loid) dose and also on AMF inoculation. Plant height, biomass, chlorophyll, carotenoid and carbohydrate content reduced upon metal(loid) exposure. Increase in enzymatic (CAT, SOD and APX) and nonenzymatic (Proline) defence proteins was observed on metal(loid) exposure. AMF inoculation leads to an increase in plant height, biomass, chlorophyll, carotenoids, carbohydrate and enzymatic defence proteins (p≤0.001) under study; whereas proline content was reduced. Considering the accumulation efficiency and adaptive response of plants and alleviation of stress by AMF, this symbiosis can be applied for on-site remediation of Pb and Cd contaminated soil.

Keywords: heavy metal, mycorrhiza, pea, phyroremediation

Procedia PDF Downloads 236
3946 A ZVT-ZCT-PWM DC-DC Boost Converter with Direct Power Transfer

Authors: Naim Suleyman Ting, Yakup Sahin, Ismail Aksoy

Abstract:

This paper presents a zero voltage transition-zero current transition (ZVT-ZCT)-PWM DC-DC boost converter with direct power transfer. In this converter, the main switch turns on with ZVT and turns off with ZCT. The auxiliary switch turns on and off with zero current switching (ZCS). The main diode turns on with ZVS and turns off with ZCS. Besides, the additional current or voltage stress does not occur on the main device. The converter has features as simple structure, fast dynamic response and easy control. Also, the proposed converter has direct power transfer feature as well as excellent soft switching techniques. In this study, the operating principle of the converter is presented and its operation is verified for 1 kW and 100 kHz model.

Keywords: direct power transfer, boost converter, zero-voltage transition, zero-current transition

Procedia PDF Downloads 825
3945 Identification of the Main Transition Velocities in a Bubble Column Based on a Modified Shannon Entropy

Authors: Stoyan Nedeltchev, Markus Schubert

Abstract:

The gas holdup fluctuations in a bubble column (0.15 m in ID) have been recorded by means of a conductivity wire-mesh sensor in order to extract information about the main transition velocities. These parameters are very important for bubble column design, operation and scale-up. For this purpose, the classical definition of the Shannon entropy was modified and used to identify both the onset (at UG=0.034 m/s) of the transition flow regime and the beginning (at UG=0.089 m/s) of the churn-turbulent flow regime. The results were compared with the Kolmogorov entropy (KE) results. A slight discrepancy was found, namely the transition velocities identified by means of the KE were shifted to somewhat higher (0.045 and 0.101 m/s) superficial gas velocities UG.

Keywords: bubble column, gas holdup fluctuations, modified Shannon entropy, Kolmogorov entropy

Procedia PDF Downloads 332
3944 De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution

Authors: Saroj Poudel, Joshua Mancini, Douglas Pike, Jennifer Timm, Alexei Tyryshkin, Vikas Nanda, Paul Falkowski

Abstract:

On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism

Keywords: hydrogenase, prebiotic enzyme, metalloenzyme, computational design

Procedia PDF Downloads 221
3943 Metal-Semiconductor Transition in Ultra-Thin Titanium Oxynitride Films Deposited by ALD

Authors: Farzan Gity, Lida Ansari, Ian M. Povey, Roger E. Nagle, James C. Greer

Abstract:

Titanium nitride (TiN) films have been widely used in variety of fields, due to its unique electrical, chemical, physical and mechanical properties, including low electrical resistivity, chemical stability, and high thermal conductivity. In microelectronic devices, thin continuous TiN films are commonly used as diffusion barrier and metal gate material. However, as the film thickness decreases below a few nanometers, electrical properties of the film alter considerably. In this study, the physical and electrical characteristics of 1.5nm to 22nm thin films deposited by Plasma-Enhanced Atomic Layer Deposition (PE-ALD) using Tetrakis(dimethylamino)titanium(IV), (TDMAT) chemistry and Ar/N2 plasma on 80nm SiO2 capped in-situ by 2nm Al2O3 are investigated. ALD technique allows uniformly-thick films at monolayer level in a highly controlled manner. The chemistry incorporates low level of oxygen into the TiN films forming titanium oxynitride (TiON). Thickness of the films is characterized by Transmission Electron Microscopy (TEM) which confirms the uniformity of the films. Surface morphology of the films is investigated by Atomic Force Microscopy (AFM) indicating sub-nanometer surface roughness. Hall measurements are performed to determine the parameters such as carrier mobility, type and concentration, as well as resistivity. The >5nm-thick films exhibit metallic behavior; however, we have observed that thin film resistivity is modulated significantly by film thickness such that there are more than 5 orders of magnitude increment in the sheet resistance at room temperature when comparing 5nm and 1.5nm films. Scattering effects at interfaces and grain boundaries could play a role in thickness-dependent resistivity in addition to quantum confinement effect that could occur at ultra-thin films: based on our measurements the carrier concentration is decreased from 1.5E22 1/cm3 to 5.5E17 1/cm3, while the mobility is increased from < 0.1 cm2/V.s to ~4 cm2/V.s for the 5nm and 1.5nm films, respectively. Also, measurements at different temperatures indicate that the resistivity is relatively constant for the 5nm film, while for the 1.5nm film more than 2 orders of magnitude reduction has been observed over the range of 220K to 400K. The activation energy of the 2.5nm and 1.5nm films is 30meV and 125meV, respectively, indicating that the TiON ultra-thin films are exhibiting semiconducting behaviour attributing this effect to a metal-semiconductor transition. By the same token, the contact is no longer Ohmic for the thinnest film (i.e., 1.5nm-thick film); hence, a modified lift-off process was developed to selectively deposit thicker films allowing us to perform electrical measurements with low contact resistance on the raised contact regions. Our atomic scale simulations based on molecular dynamic-generated amorphous TiON structures with low oxygen content confirm our experimental observations indicating highly n-type thin films.

Keywords: activation energy, ALD, metal-semiconductor transition, resistivity, titanium oxynitride, ultra-thin film

Procedia PDF Downloads 297
3942 Multipass Scratch Characterization of TiNbVN Thin Coatings Deposited by Magnetron Sputtering

Authors: Hikmet Cicek

Abstract:

Transition metal nitrides are widely used as protective coatings on machine parts and cutting tools to protect the surfaces from abrasion and corrosion for decades. In this study, the ternary TiNbVN thin coatings were produced with closed field unbalanced magnetron sputtering system and their structural, mechanical and fatigue-like (multi-pass scratch test) properties were investigated. Two different substrates (M2 and H13 steels) were used to explore substrates effects. X-Ray diffractometer, scanning electron microscope, and energy dispersive spectroscopy were used for the structural and chemical analysis of the coatings. Nanohardness tests were proceed for mechanical properties. The fatigue-like properties of the coatings obtained from the multi-scratch test under three different cycle passes. The results showed that TiNbVN films have excellent fatigue resistance and the coatings deposited on M2 steel substrate have higher hardness and better fatigue resistance.

Keywords: physical vapor deposition, fatigue, metal nitride, multipass scratch test

Procedia PDF Downloads 213
3941 Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data

Authors: Stoyan Nedeltchev, Markus Schubert

Abstract:

By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities UG in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at UG=0.025 m/s and UG=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at UG=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column.

Keywords: bubble column, ultrafast X-ray tomography, information entropy, reconstruction entropy

Procedia PDF Downloads 397
3940 The Effect on Rolling Mill of Waviness in Hot Rolled Steel

Authors: Sunthorn Sittisakuljaroen

Abstract:

The edge waviness in hot rolled steel is a common defect. Variables that effect for such defect include as raw material and machine. These variables are necessary to consider. This research studied the defect of edge waviness for SS 400 of metal sheet manufacture. Defect of metal sheets divided into two groups. The specimens were investigated on chemical composition and mechanical properties to find the difference. The results of investigate showed that not different to a standard significantly. Therefore the roll milled machine for sample need to adjustable rollers for press on metal sheet which was more appropriate to adjustable at both ends.

Keywords: edge waviness, hot rolling steel, metal sheet defect, SS 400, roll leveller

Procedia PDF Downloads 425
3939 Influence of Grain Shape, Size and Grain Boundary Diffusion on High Temperature Oxidation of Metal

Authors: Sneha Samal, Iva Petrikova, Bohdana Marvalova

Abstract:

Influence of grain size, shape and grain boundary diffusion at high temperature oxidation of pure metal is investigated as the function of microstructure evolution in this article. The oxidized scale depends on the geometrical parameter of the metal-scale system and grain shape, size, diffusion through boundary layers and influence of the contamination. The creation of the inner layer and the morphological structure develops from the internal stress generated during the growth of the scale. The oxidation rate depends on the cation and anion mobile transport of the metal in the inward and outward direction of the diffusion layer. Oxidation rate decreases with decreasing the grain size of the pure metal, whereas zinc deviates from this principle. A strong correlation between the surface roughness evolution, grain size, crystalline properties and oxidation mechanism of the oxidized metal was established.

Keywords: high temperature oxidation, pure metals, grain size, shape and grain boundary

Procedia PDF Downloads 499
3938 Synthesis, Characterization and Anti-Microbial Study of Urethanized Poly Vinyl Alcohol Metal Complexes

Authors: Maha A. Younus, Dhefaf H. Badri, Maha A. Al Abayaji, Taha M. Salih

Abstract:

Polymer metal complexes of poly vinyl alcohol and Cu (II), Ni (II), Mn (II) and Co (III) were prepared from the reaction of PVA with three different percentages of urea. The compound was characterized by fourier transform infrared spectrometry (FTIR) analysis and differential scanning calorimetric (DSC) Analysis. It has been established that the polymer and its metal complexes showed good activities against nine pathogenic bacteria (Escherichia coli, Klebsiellapneumonae, Staphylococcusaureus, Staphylococcus Albus, Salmonella Typhoid, Pseudomonas Aeruginosa, Shigella Dysentery, Proteus Morgani, Brucella Militensis). The polymer metal complexes show activity higher than that of the free polymer. The increasing activities were in the order (polymer < pol-Mn< pol-Co < pol-Ni ˂ pol-Cu). The ability of these compounds to show antimicrobial properties suggests that they can be further evaluated for medicinal and/or environmental applications.

Keywords: antimicrobial activity, PVA, polymer-metal complex, urea

Procedia PDF Downloads 340
3937 The Determination of Heavy Metal in Herb Used in Dusit Community to Develop a Sustainable Quality of Life

Authors: Chinnawat Satsananan

Abstract:

This research aimed to find amount of heavy metal in herb used in Dusit community and compare of heavy metal in each part by quantity in herb and standard determination in Thai herb books to develop a sustainable quality of life, the result of study in 14 herbs do not find sample of heavy metal., by quantity of heavy contamination of 4 kinds: Cd, Co, Fe and Pb have lower than standard of 2 organizations: Thai herb standard, and World Health Organization, from the test 14 herbs have Fe in every part of herbs and all 14 kinds has Fe that is necessary for our health.

Keywords: herbs plants, heavy metal, Dusit district, sustainable quality of life

Procedia PDF Downloads 376
3936 Gas Sensor Based on Carbon Nanotubes: A Review

Authors: Brian Yuliarto, Ni Luh Wulan Septiani

Abstract:

Carbon nanotubes are one of the carbon nanomaterial that very popular in the field of gas sensors. It has unique properties, large surface area and has hollow structure that makes its potentially used as a gas sensor. Several attempts have been made to improve the sensitivity and selectivity of CNTs by modifying CNTs with a noble metals, metal oxides and polymers. From these studies, there are evidents that modification of CNTs with these materials can improve the sensitivity and selectivity of CNTs against some harmful gases. Decorating carbon nano tubes with metal oxides improve CNTs with the highest sensitivity and increased sensitivity of polymer/CNTs is higher than the metal/CNTs. The used of metal in CNTs aims to accelerate the reaction surface and as channel for electrons path from or to the CNTs. The used of metal oxides on CNTs built a p-n junction that can increase sensitivity. While the addition of polymer can increase the charge carriers density in CNTs.

Keywords: carbon nanotubes, gas sensors, modification of CNT, sensitivity

Procedia PDF Downloads 488
3935 Experimental Investigation to Find Transition Temperature of VG 30 Binder

Authors: D. Latha, V. Sunitha, Samson Mathew

Abstract:

In India, most of the pavement is laid by bituminous road and the consumption of binder is high for pavement construction and also modified binders are used to satisfy any specific pavement requirement. Since the binders are visco-elastic material which is having the mechanical properties of binder transition from visco-elastic solid to visco-elastic fluid. In this paper, two different protocols were used to measure the viscosity property of binder using a Brookfield Viscometer and there is a need to find the appropriate mixing and compaction temperatures of various types of binders which can result in complete aggregate coating and adequate field density of HMA mixtures. The aim of this work is to find the transition temperature from Non-Newtonian behavior to Newtonian behavior of the binder by adopting a steady shear protocol and the shear rate ramp protocol. The transition from non-Newtonian to Newtonian can occur through an increase of temperature and shear of the material. The test has been conducted for unmodified binder VG 30. The transition temperature was found in the unmodified binder VG is 120oC. So the application of both modified binder and unmodified binder in the pavement construction needs to be studied properly by considering temperature and traffic loading factors of the respective project site.

Keywords: unmodified and modified binders, Brookfield viscometer, transition temperature, steady shear and shear rate protocol

Procedia PDF Downloads 216
3934 An Automatic Feature Extraction Technique for 2D Punch Shapes

Authors: Awais Ahmad Khan, Emad Abouel Nasr, H. M. A. Hussein, Abdulrahman Al-Ahmari

Abstract:

Sheet-metal parts have been widely applied in electronics, communication and mechanical industries in recent decades; but the advancement in sheet-metal part design and manufacturing is still behind in comparison with the increasing importance of sheet-metal parts in modern industry. This paper presents a methodology for automatic extraction of some common 2D internal sheet metal features. The features used in this study are taken from Unipunch ™ catalogue. The extraction process starts with the data extraction from STEP file using an object oriented approach and with the application of suitable algorithms and rules, all features contained in the catalogue are automatically extracted. Since the extracted features include geometry and engineering information, they will be effective for downstream application such as feature rebuilding and process planning.

Keywords: feature extraction, internal features, punch shapes, sheet metal

Procedia PDF Downloads 622
3933 Temperature-Dependent Structural Characterization of Type-II Dirac Semi-Metal nite₂ From Bulk to Exfoliated Thin Flakes Using Raman Spectroscopy

Authors: Minna Theres James, Nirmal K Sebastian, Shoubhik Mandal, Pramita Mishra, R Ganesan, P S Anil Kumar

Abstract:

We report the temperature-dependent evolution of Raman spectra of type-II Dirac semimetal (DSM) NiTe2 (001) in the form of bulk single crystal and a nanoflake (200 nm thick) for the first time. A physical model that can quantitatively explain the evolution of out of plane A1g and in-plane E1g Raman modes is used. The non-linear variation of peak positions of the Raman modes with temperature is explained by anharmonic three-phonon and four-phonon processes along with thermal expansion of the lattice. We also observe prominent effect of electron-phonon coupling from the variation of FWHM of the peaks with temperature, indicating the metallicity of the samples. Raman mode E1 1g corresponding to an in plane vibration disappears on decreasing the thickness from bulk to nanoflake.

Keywords: raman spectroscopy, type 2 dirac semimetal, nickel telluride, phonon-phonon coupling, electron phonon coupling, transition metal dichalcogonide

Procedia PDF Downloads 120
3932 Fertility Transition in Sub-Saharan Africa: The Role Family Planning Programs

Authors: Vincent Otieno, Alfred Agwanda, Anne Khasakhala

Abstract:

Among the neo-Malthusian adherents, it is believed that rapid population growth strain countries’ capacity and performance. Fertility have however decelerated in most of the countries in the recent past. Scholars have concentrated on wide range of factors associated with fertility majorly at the national scale with some opining that analysis of trends and differentials in the various fertility parameters have been discussed extensively. However, others believe that considerably less attention has been paid to the fertility preference- a pathway through which various variables act on fertility. The Sub-Saharan African countries’ disparities amid almost similarities in policies is a cause of concern to demographers. One would point at the meager synergies that have been focused on the fertility preference as well, especially at the macro scale. Using Bongaarts reformulation of Easterlin and Crimmins (1985) conceptual scheme, the understanding of the current transition based on the fertility preference in general would help to provide explanations to the observed latest dynamics. This study therefore is an attempt to explain the current fertility transition through women’s fertility preference. Results reveal that indeed fertility transition is on course in most of the sub-Saharan countries with huge disparities in fertility preferences and its implementation indices.

Keywords: fertility preference, the degree of implementation index, sub-Saharan Africa, transition

Procedia PDF Downloads 246
3931 Current Status and Influencing Factors of Transition Status of Newly Graduated Nurses in China: A Multi-center Cross-sectional Study

Authors: Jia Wang, Wanting Zhang, Yutong Xv, Zihan Guo, Weiguang Ma

Abstract:

Background: Before becoming qualified nurses, newly graduated nurses(NGNs) must experience a painful transition period, even transition shocks. Transition shocks are public health issues. To address the transition issue of NGNs, many programs or interventions have been developed and implemented. However, there are no studies to understand and assess the transition state of newly graduated nurses from work to life, from external abilities to internal emotions. Aims: Assess the transition status of newly graduated nurses in China. Identify the factors influencing the transition status of newly graduated nurses. Methods: The multi-center cross-sectional study design was adopted. From May 2022 to June 2023, 1261 newly graduated nurse in hospitals were surveyed online with the the Demographic Questionnaire and Transition Status Scale for Newly Graduated Nurses. SPSS 26.0 were used for data input and statistical analysis. Statistic description were adopted to evaluate the demographic characteristics and transition status of NGNs. Independent-samples T-test, Analysis of Variance and Multiple regression analysis was used to explore the influencing factors of transition status. Results: The total average score of Transition Status Scale for Newly Graduated Nurses was 4.00(SD = 0.61). Among the various dimensions of Transition Status, the highest dimension was competence for nursing work, while the lowest dimension was balance between work and life. The results showed factors influencing the transition status of NGNs include taught by senior nurses, night shift status, internship department, attribute of working hospital, province of work and residence, educational background, reasons for choosing nursing, types of hospital, and monthly income. Conclusion: At present, the transition status score of new nurses in China is relatively high, and NGNs are more likely to agree with their own transition status, especially the dimension of competence for nursing work. However, they have a poor level of excess in terms of life-work balance. Nursing managers should reasonably arrange the working hours of NGNs, promote their work-life balance, increase the salary and reward mechanism of NGNs, arrange experienced nursing mentors to teach, optimize the level of hospitals, provide suitable positions for NGNs with different educational backgrounds, pay attention to the culture shock of NGNs from other provinces, etc. Optimize human resource management by intervening in these factors that affect the transition of new nurses and promote a better transition of new nurses.

Keywords: newly graduated nurse, transition, humanistic car, nursing management, nursing practice education

Procedia PDF Downloads 92
3930 Briquetting of Metal Chips by Controlled Impact: Experimental Study

Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov

Abstract:

For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.

Keywords: briquetting, chips briquetting, impact briquetting, controlled impact

Procedia PDF Downloads 406
3929 Cladding Technology for Metal-Hybrid Composites with Network-Structure

Authors: Ha-Guk Jeong, Jong-Beom Lee

Abstract:

Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.

Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics

Procedia PDF Downloads 185
3928 Effect of Filler Metal Diameter on Weld Joint of Carbon Steel SA516 Gr 70 and Filler Metal SFA 5.17 in Submerged Arc Welding SAW

Authors: A. Nait Salah, M. Kaddami

Abstract:

This work describes an investigation on the effect of filler metals diameter to weld joint, and low alloy carbon steel A516 Grade 70 is the base metal. Commercially SA516 Grade70 is frequently used for the manufacturing of pressure vessels, boilers and storage tank, etc. In fabrication industry, the hardness of the weld joint is between the important parameters to check, after heat treatment of the weld. Submerged arc welding (SAW) is used with two filler metal diameters, and this solid wire electrode is used for SAW non-alloy and for fine grain steels (SFA 5.17). The different diameters were selected (Ø = 2.4 mm and Ø = 4 mm) to weld two specimens. Both specimens were subjected to the same preparation conditions, heat treatment, macrograph, metallurgy micrograph, and micro-hardness test. Samples show almost similar structure with highest hardness. It is important to indicate that the thickness used in the base metal is 22 mm, and all specifications, preparation and controls were according to the ASME section IX. It was observed that two different filler metal diameters performed on two similar specimens demonstrated that the mechanical property (hardness) increases with decreasing diameter. It means that even the heat treatment has the same effect with the same conditions, the filler metal diameter insures a depth weld penetration and better homogenization. Hence, the SAW welding technique mentioned in the present study is favorable to implicate for the industry using the small filler metal diameter.

Keywords: ASME, base metal, micro-hardness test, submerged arc welding

Procedia PDF Downloads 156
3927 Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat

Authors: Abhishek Kumar Chandra, Kaushal Kishor, Wasim Khan, Dhananjay Singh, M. S. Alam

Abstract:

Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration.

Keywords: contraction-expansion flow, integrated microchannel, microchannel network, single phase flow

Procedia PDF Downloads 286
3926 Factors of Successful Transition of Individuals with Intellectual Disabilities from School to Employment

Authors: Mubarak S. Aldosari

Abstract:

Transition of adolescents with mild intellectual disabilities (ID) from secondary level to post-school employment level is a critical step for them and their families. Transition of adolescents with mild ID to post secondary levels faces serious difficulties and challenges. The current research highlighted the important factors related to the success of transition of students with mild ID to post-school employment such as vocational training, Self-determination skills, Social skills, and family involvement.

Keywords: adolescents with mild intellectual disabilities, post-school employment, vocational training, self-determination skills, social skills, family involvement

Procedia PDF Downloads 294
3925 Binary Metal Oxide Catalysts for Low-Temperature Catalytic Oxidation of HCHO in Air

Authors: Hanjie Xie, Raphael Semiat, Ziyi Zhong

Abstract:

It is well known that many oxidation reactions in nature are closely related to the origin and life activities. One of the features of these natural reactions is that they can proceed under mild conditions employing the oxidant of molecular oxygen (O₂) in the air and enzymes as catalysts. Catalysis is also a necessary part of life for human beings, as many chemical and pharmaceutical industrial processes need to use catalysts. However, most heterogeneous catalytic reactions must be run at high operational reaction temperatures and pressures. It is not strange that, in recent years, research interest has been redirected to green catalysis, e.g., trying to run catalytic reactions under relatively mild conditions as much as possible, which needs to employ green solvents, green oxidants such O₂, particularly air, and novel catalysts. This work reports the efficient binary Fe-Mn metal oxide catalysts for low-temperature formaldehyde (HCHO) oxidation, a toxic pollutant in the air, particularly in indoor environments. We prepared a series of nanosized FeMn oxide catalysts and found that when the molar ratio of Fe/Mn = 1:1, the catalyst exhibited the highest catalytic activity. At room temperature, we realized the complete oxidation of HCHO on this catalyst for 20 h with a high GHSV of 150 L g⁻¹ h⁻¹. After a systematic investigation of the catalyst structure and the reaction, we identified the reaction intermediates, including dioxymethylene, formate, carbonate, etc. It is found that the oxygen vacancies and the derived active oxygen species contributed to this high-low-temperature catalytic activity. These findings deepen the understanding of the catalysis of these binary Fe-Mn metal oxide catalysts.

Keywords: oxygen vacancy, catalytic oxidation, binary transition oxide, formaldehyde

Procedia PDF Downloads 135
3924 Torque Magnetometry of Low Anisotropic CaCo2As2 Single Crystals

Authors: Kashif Nadeem, W. Zhang, X. G. Qiu

Abstract:

Role of Co spins in CaCo2As2 single crystal is systematically studied by using dc magnetization and magnetic torque measurements. A spin-flop transition in the antiferromagnetism (AFM) CaCo2As2 single crystal is studied by using dc magnetization and magnetic torque. Field dependent and angle dependent torque magnetometry confirmed the existence of spin-flop transition in this compound which is in agreement with the dc magnetization studies. A comparison of dc magnetization and torque magnetometry measurements for CaCo2As2 single crystal is done in detail. In conclusion, torque magnetometry can be a useful tool to study the spin flop transition in low anisotropic compounds analogous to dc magnetization studies.

Keywords: spin flop transition, torque magnetometry, magnetization, anisotropic

Procedia PDF Downloads 550
3923 A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-Metal Alloys (Ni-Cr-T3, Verabond, Super Cast) and One Noble Alloy (X-33) in Metal-Ceramic Restorations

Authors: Ammar Neshati, Elham Hamidi Shishavan

Abstract:

Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and which causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the common VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, Verabond) and one group of noble alloy (x-33) were selected. The number of alloys in each group was 15. All the groups went through the casting process and change from wax pattern into metal disks. Then, VMK Master Porcelain was fired on each group. All the specimens were put in the UTM and a shear force was loaded until a fracture occurred. The fracture force was then recorded by the machine. The data was subjected to SPSS Version 16 and One-Way ANOVA was run to compare shear strength between the groups. Furthermore, the groups were compared two by two through running Tukey test. Results: The findings of this study revealed that shear bond strength of Ni-Cr-T3 alloy was higher than the three other alloys (94 Mpa or 330 N). Super Cast alloy had the second greatest shear bond strength (80. 87 Mpa or 283.87 N). Both Verabond (69.66 Mpa or 245 N) and x-33 alloys (66.53 Mpa or 234 N) took the third place. Conclusion: Ni-Cr-T3 with VMK Master Porcelain has the greatest shear bond strength. Therefore, the use of this low-cost alloy is recommended in metal-ceramic restorations.

Keywords: shear bond, base-metal alloy, noble alloy, porcelain

Procedia PDF Downloads 491
3922 Advocating for and Implementing the Use of Advance Top Bar (ATB) for a More Than 100% Increase in Honey Yield in Top Bar Hives Owing to Honey Harvesting Without Comb Destruction

Authors: Perry Ayi Mankattah

Abstract:

Introduction: Africa, which should lead the world in honey production, is importing three times the honey it produces even though it has a healthy, industrious and large population of bees. This is due to the mechanism of honey harvesting that destroys the combs and thereby reducing honey production and rate of harvesting. For Africa to take its place in the world of honey production, Africa should adopt a method that enables a higher rate of honey harvesting. The Advance Top Bar is, therefore, a simplified framework that provides that answer. It can be made of wood, plastic and metal that can be fabricated by tin/metal smiths, wielders and carpenters at the village level without any very sophisticated machines. Material and Methods: ATB is a top bar-like hollow framework of dimension 3.2*48 cm that can be made of wood, plastic and metal. It is made up of three parts of a constant hollow top bar, a variable grooved bottom bar with both bars being joined through synchronized holes (that align both the top and bottom bars ) by either metal or plastic rods of length 22cm and diameter of 5 mm with rounded balls at both ends It could be used with foundation combs or without and also other accessories to have about ten (10) function which includes commercial propolis harvesting queen rearing etc. The variable bottom bar length depends on the width of the hive, as most African beehives are somehow not standardized. Results: Foundation combs are placed within the Advance Top Bar for the bees to form their combs over its mesh to prevent comb breakage during honey harvesting. Similarly, honeycombs on top bars will produce natural foundation combs when also placed in the Advance top bar system just as they are re-used in the Langstroth Frames. Discussions and Conclusions: Any modification that will promote non-comb destruction during honey harvesting in Top bars shall cause Africa to increase honey production by over 100% as beekeepers adopt the mechanism. Honey-laden combs from the current normal top bars could be placed in the Advance Top Bar to harvest without comb destruction; hence the same system could be used as a transition to the adoption of the Advance Top Bar with less cost.

Keywords: honey, harvest, increase, production

Procedia PDF Downloads 72
3921 Effect of Some Metal Ions on the Activity of Lipase Produced by Aspergillus Niger Cultured on Vitellaria Paradoxa Shells

Authors: Abdulhakeem Sulyman, Olukotun Zainab, Hammed Abdulquadri

Abstract:

Lipases (triacylglycerol acyl hydrolases) (EC 3.1.1.3) are class of enzymes that catalyses the hydrolysis of triglycerides to glycerol and free fatty acids. They account for up to 10% of the enzyme in the market and have a wide range of applications in biofuel production, detergent formulation, leather processing and in food and feed processing industry. This research was conducted to study the effect of some metal ions on the activity of purified lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells. Purified lipase in 12.5 mM p-NPL was incubated with different metal ions (Zn²⁺, Ca²⁺, Mn²⁺, Fe²⁺, Na⁺, K⁺ and Mg²⁺). The final concentrations of metal ions investigated were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mM. The results obtained from the study showed that Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ ions increased the activity of lipase up to 3.0, 3.0, 1.0, and 26.0 folds respectively. Lipase activity was partially inhibited by Na⁺ and Mg²⁺ with up to 88.5% and 83.7% loss of activity respectively. Lipase activity was also inhibited by K⁺ with up to 56.7% loss in the activity as compared to in the absence of metal ions. The study concluded that lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells can be activated by the presence of Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ and inhibited by Na⁺, K⁺ and Mg²⁺.

Keywords: Aspergillus niger, Vitellaria paradoxa, lipase, metal ions

Procedia PDF Downloads 155
3920 Real-Time Spatial Mapping of Metal Contamination in Environmental Waters for Sustainable Ecological Monitoring Using a Portable X-Ray Fluorescence Device

Authors: Mikhail Sandzhiev

Abstract:

The monitoring of metal pollution in environmental waters is crucial for the protection of ecosystems, human health and agricultural activities. Traditional laboratory-based metal analysis methods are time-consuming and expensive, which often leads to delays in the availability of information. This study presents an approach to real-time water quality monitoring using portable X-ray fluorescence (p-XRF) technology coupled with geographic information systems (GIS). Using a custom Python script, p-XRF data is processed and formatted into a GIS-compatible format, facilitating spatial visualization of metal concentrations in ǪGIS. Field-usable filters, especially bisphosphonate-functionalized thermally carbonized porous silicon (BP-TCPSi), preformed metals such as Mn, Ni, Cu, Zn, and Pb allow direct detection in the field by using p-XRF. Key objectives include robust data collection, spatial visualization and validation processes to ensure accuracy and efficiency. This provides quick and efficient insights into metal contamination trends and allows proactive decision-making.

Keywords: metal concentrations, predictive mapping, environmental monitoring, environmental waters

Procedia PDF Downloads 13
3919 Improving Biodegradation Behavior of Fabricated WE43 Magnesium Alloy by High-Temperature Oxidation

Authors: Jinge Liu, Shuyuan Min, Bingchuan Liu, Bangzhao Yin, Bo Peng, Peng Wen, Yun Tian

Abstract:

WE43 magnesium alloy can be additively manufactured via laser powder bed fusion (LPBF) for biodegradable applications, but the as-built WE43 exhibits an excessively rapid corrosion rate. High-temperature oxidation (HTO) was performed on the as-built WE43 to improve its biodegradation behavior. A sandwich structure including an oxide layer at the surface, a transition layer in the middle, and the matrix was generated influenced by the oxidation reaction and diffusion of RE atoms when heated at 525 ℃for 8 hours. The oxide layer consisted of Y₂O₃ and Nd₂O₃ oxides with a thickness of 2-3 μm. The transition layer is composed of α-Mg and Y₂O₃ with a thickness of 60-70 μm, while Mg24RE5 could be observed except α-Mg and Y₂O₃. The oxide layer and transition layer appeared to have an effective passivation effect. The as-built WE43 lost 40% weight after the in vitro immersion test for three days and finally broke into debris after seven days of immersion. The high-temperature oxidation samples kept the structural integrity and lost only 6.88 % weight after 28-day immersion. The corrosion rate of HTO samples was significantly controlled, which improved the biocompatibility of the as-built WE43 at the same time. The samples after HTO had better osteogenic capability according to ALP activity. Moreover, as built WE43 performed unqualified in cell adhesion and hemolytic test due to its excessively rapid corrosion rate. While as for HTO samples, cells adhered well, and the hemolysis ratio was only 1.59%.

Keywords: laser powder bed fusion, biodegradable metal, high temperature oxidation, biodegradation behavior, WE43

Procedia PDF Downloads 111
3918 Carbon Nanotubes Based Porous Framework for Filtration Applications Using Industrial Grinding Waste

Authors: V. J. Pillewan, D. N. Raut, K. N. Patil, D. K. Shinde

Abstract:

Forging, milling, turning, grinding and shaping etc. are the various industrial manufacturing processes which generate the metal waste. Grinding is extensively used in the finishing operation. The waste generated contains significant impurities apart from the metal particles. Due to these significant impurities, it becomes difficult to process and gets usually dumped in the landfills which create environmental problems. Therefore, it becomes essential to reuse metal waste to create value added products. Powder injection molding process is used for producing the porous metal matrix framework. This paper discusses the presented design of the porous framework to be used for the liquid filter application. Different parameters are optimized to obtain the better strength framework with variable porosity. Carbon nanotubes are used as reinforcing materials to enhance the strength of the metal matrix framework.

Keywords: grinding waste, powder injection molding (PIM), carbon nanotubes (CNTs), matrix composites (MMCs)

Procedia PDF Downloads 309