Search results for: sound absorption and insulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2626

Search results for: sound absorption and insulation

2506 Evaluating the Benefits of Intelligent Acoustic Technology in Classrooms: A Case Study

Authors: Megan Burfoot, Ali GhaffarianHoseini, Nicola Naismith, Amirhosein GhaffarianHoseini

Abstract:

Intelligent Acoustic Technology (IAT) is a novel architectural device used in buildings to automatically vary the acoustic conditions of space. IAT is realized by integrating two components: Variable Acoustic Technology (VAT) and an intelligent system. The VAT passively alters the RT by changing the total sound absorption in a room. In doing so, the Reverberation Time (RT) is changed and thus, the sound strength and clarity are altered. The intelligent system detects sound waves in real-time to identify the aural situation, and the RT is adjusted accordingly based on pre-programmed algorithms. IAT - the synthesis of these two components - can dramatically improve acoustic comfort, as the acoustic condition is automatically optimized for any detected aural situation. This paper presents an evaluation of the improvements of acoustic comfort in an existing tertiary classroom located at Auckland University of Technology in New Zealand. This is a pilot case study, the first of its’ kind attempting to quantify the benefits of IAT. Naturally, the potential acoustic improvements from IAT can be actualized by only installing the VAT component of IAT and by manually adjusting it rather than utilizing an intelligent system. Such a simplified methodology is adopted for this case study to understand the potential significance of IAT without adopting a time and cost-intensive strategy. For this study, the VAT is built by overlaying reflective, rotating louvers over sound absorption panels. RT's are measured according to international standards before and after installing VAT in the classroom. The louvers are manually rotated in increments by the experimenter and further RT measurements are recorded. The results are compared with recommended guidelines and reference values from national standards for spaces intended for speech and communication. The results obtained from the measurements are used to quantify the potential improvements in classroom acoustic comfort, where IAT to be used. This evaluation reveals the current existence of poor acoustic conditions in the classroom caused by high RT's. The poor acoustics are also largely attributed to the classrooms’ inability to vary acoustic parameters for changing aural situations. The classroom experiences one static acoustic state, neglecting to recognize the nature of classrooms as flexible, dynamic spaces. Evidently, when using VAT the classroom is prescribed with a wide range of RTs it can achieve. Namely, acoustic requirements for varying teaching approaches are satisfied, and acoustic comfort is improved. By quantifying the benefits of using VAT, it can confidently suggest these same benefits are achieved with IAT. Nevertheless, it is encouraged that future studies continue this line of research toward the eventual development of IAT and its’ acceptance into mainstream architecture.

Keywords: acoustic comfort, classroom acoustics, intelligent acoustics, variable acoustics

Procedia PDF Downloads 168
2505 Effect of Strength Class of Concrete and Curing Conditions on Capillary Water Absorption of Self-Compacting and Conventional Concrete

Authors: E. Ebru Demirci, Remzi Şahin

Abstract:

The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC) in terms of their capillary water absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e curing condition) was determined as two levels: moisture and air curing. It was observed that, for both curing environments and all strength classes of concrete, SCCs had lower capillary water absorption values than that of CCs. It was also detected that, for both SCC and CC, capillary water absorption values of samples kept in moisture curing were significantly lower than that of samples stored in air curing. Additionally, it was determined that capillary water absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments.

Keywords: capillary water absorption, curing condition, reinforced concrete beam, self-compacting concrete

Procedia PDF Downloads 308
2504 Perception of Eco-Music From the Contents the Earth’s Sound Ecosystem

Authors: Joni Asitashvili, Eka Chabashvili, Maya Virsaladze, Alexander Chokhonelidze

Abstract:

Studying the soundscape is a major challenge in many countries of the civilized world today. The sound environment and music itself are part of the Earth's ecosystem. Therefore, researching its positive or negative impact is important for a clean and healthy environment. The acoustics of nature gave people many musical ideas, and people enriched musical features and performance skills with the ability to imitate the surrounding sound. For example, a population surrounded by mountains invented the technique of antiphonal singing, which mimics the effect of an echo. Canadian composer Raymond Murray Schafer viewed the world as a kind of musical instrument with ever-renewing tuning. He coined the term "Soundscape" as a name of a natural environmental sound, including the sound field of the Earth. It can be said that from which the “music of nature” is constructed. In the 21st century, a new field–Ecomusicology–has emerged in the field of musical art to study the sound ecosystem and various issues related to it. Ecomusicology considers the interconnections between music, culture, and nature–According to the Aaron Allen. Eco-music is a field of ecomusicology concerning with the depiction and realization of practical processes using modern composition techniques. Finding an artificial sound source (instrumental or electronic) for the piece that will blend into the soundscape of Sound Oases. Creating a composition, which sounds in harmony with the vibrations of human, nature, environment, and micro- macrocosm as a whole; Currently, we are exploring the ambient sound of the Georgian urban and suburban environment to discover “Sound Oases" and compose Eco-music works. We called “Sound Oases" an environment with a specific sound of the ecosystem to use in the musical piece as an instrument. The most interesting examples of Eco-music are the round dances, which were already created in the BC era. In round dances people would feel the united energy. This urge to get united revealed itself in our age too, manifesting itself in a variety of social media. The virtual world, however, is not enough for a healthy interaction; we created plan of “contemporary round dance” in sound oasis, found during expedition in Georgian caves, where people interacted with cave's soundscape and eco-music, they feel each other sharing energy and listen to earth sound. This project could be considered a contemporary round dance, a long improvisation, particular type of art therapy, where everyone can participate in an artistic process. We would like to present research result of our eco-music experimental performance.

Keywords: eco-music, environment, sound, oasis

Procedia PDF Downloads 43
2503 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network

Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita

Abstract:

In this paper, we have compared and analyzed the electron absorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for an optical fiber communication network. The electroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ratio have been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.

Keywords: exciton, refractive index change, extinction ratio, GaAs

Procedia PDF Downloads 553
2502 Estimation of Carbon Uptake of Seoul City Street Trees in Seoul and Plans for Increase Carbon Uptake by Improving Species

Authors: Min Woo Park, Jin Do Chung, Kyu Yeol Kim, Byoung Uk Im, Jang Woo Kim, Hae Yeul Ryu

Abstract:

Nine representative species of trees among all the street trees were selected to estimate the absorption amount of carbon dioxide emitted from street trees in Seoul calculating the biomass, amount of carbon saved, and annual absorption amount of carbon dioxide in each of the species. Planting distance of street trees in Seoul was 1,851,180 m, the number of planting lines was 1,287, the number of planted trees was 284,498 and 46 species of trees were planted as of 2013. According to the result of plugging the quantity of species of street trees in Seoul on the absorption amount of each of the species, 120,097 ton of biomass, 60,049.8 ton of amount of carbon saved, and 11,294 t CO2/year of annual absorption amount of carbon dioxide were calculated. Street ratio mentioned on the road statistics in Seoul in 2022 is 23.13%. If the street trees are assumed to be increased in the same rate, the number of street trees in Seoul was calculated to be 294,823. The planting distance was estimated to be 1,918,360 m, and the annual absorption amount of carbon dioxide was measured to be 11,704 t CO2/year. Plans for improving the annual absorption amount of carbon dioxide from street trees were established based on the expected amount of absorption. First of all, it is to improve the annual absorption amount of carbon dioxide by increasing the number of planted street trees after adjusting the planting distance of street trees. If adjusting the current planting distance to 6 m, it was turned out that 12,692.7 t CO2/year was absorbed on an annual basis. Secondly, it is to change the species of trees to tulip trees that represent high absorption rate. If increasing the proportion of tulip trees to 30% up to 2022, the annual absorption rate of carbon dioxide was calculated to be 17804.4 t CO2/year.

Keywords: absorption of carbon dioxide, source of absorbing carbon dioxide, trees in city, improving species

Procedia PDF Downloads 337
2501 Production of Low-Density Nanocellular Foam Based on PMMA/PEBAX Blends

Authors: Nigus Maregu Demewoz, Shu-Kai Yeh

Abstract:

Low-density nanocellular foam is a fascinating new-generation advanced material due to its mechanical strength and thermal insulation properties. In nanocellular foam, reducing the density increases the insulation ability. However, producing a nanocellular foam of densities less than 0.3 with a cell size of less than 100 nm is very challenging. In this study, poly (methyl methacrylate) (PMMA) was blended with Polyether block amide (PEBAX) to study the effects of PEBAX on the nanocellular foam structure of the PMMA matrix. We added 2 wt% of PEBAX in the PMMA matrix, and the PEBAX nanostructured domain size of 45 nm was well dispersed in the PMMA matrix. The foaming result produced a new generation special bouquet-like nanocellular foam of cell size less than 50 nm with a relative density of 0.24. Also, we were able to produce a nanocellular foam of a relative density of about 0.17. In addition to thermal insulation applications, bouquet-like nanocellular foam may be expected for filtration applications.

Keywords: nanocellular foam, low-density, cell size, relative density, PMMA/PEBAX

Procedia PDF Downloads 58
2500 Multi-Objective Discrete Optimization of External Thermal Insulation Composite Systems in Terms of Thermal and Embodied Energy Performance

Authors: Berfin Yildiz

Abstract:

These days, increasing global warming effects, limited amount of energy resources, etc., necessitates the awareness that must be present in every profession group. The architecture and construction sectors are responsible for both the embodied and operational energy of the materials. This responsibility has led designers to seek alternative solutions for energy-efficient material selection. The choice of energy-efficient material requires consideration of the entire life cycle, including the building's production, use, and disposal energy. The aim of this study is to investigate the method of material selection of external thermal insulation composite systems (ETICS). Embodied and in-use energy values of material alternatives were used for the evaluation in this study. The operational energy is calculated according to the u-value calculation method defined in the TS 825 (Thermal Insulation Requirements) standard for Turkey, and the embodied energy is calculated based on the manufacturer's Energy Performance Declaration (EPD). ETICS consists of a wall, adhesive, insulation, lining, mechanical, mesh, and exterior finishing materials. In this study, lining, mechanical, and mesh materials were ignored because EPD documents could not be obtained. The material selection problem is designed as a hypothetical volume area (5x5x3m) and defined as a multi-objective discrete optimization problem for external thermal insulation composite systems. Defining the problem as a discrete optimization problem is important in order to choose between materials of various thicknesses and sizes. Since production and use energy values, which are determined as optimization objectives in the study, are often conflicting values, material selection is defined as a multi-objective optimization problem, and it is aimed to obtain many solution alternatives by using Hypervolume (HypE) algorithm. The enrollment process started with 100 individuals and continued for 50 generations. According to the obtained results, it was observed that autoclaved aerated concrete and Ponce block as wall material, glass wool, as insulation material gave better results.

Keywords: embodied energy, multi-objective discrete optimization, performative design, thermal insulation

Procedia PDF Downloads 110
2499 Printing Thermal Performance: An Experimental Exploration of 3DP Polymers for Facade Applications

Authors: Valeria Piccioni, Matthias Leschok, Ina Cheibas, Illias Hischier, Benjamin Dillenburger, Arno Schlueter, Matthias Kohler, Fabio Gramazio

Abstract:

The decarbonisation of the building sector requires the development of building components that provide energy efficiency while producing minimal environmental impact. Recent advancements in large-scale 3D printing have shown that it is possible to fabricate components with embedded performances that can be tuned for their specific application. We investigate the potential of polymer 3D printing for the fabrication of translucent facade components. In this study, we explore the effect of geometry on thermal insulation of printed cavity structures following a Hot Box test method. The experimental results are used to calibrate a finite-element simulation model which can support the informed design of 3D printed insulation structures. We show that it is possible to fabricate components providing thermal insulation ranging from 1.7 to 0.95 W/m2K only by changing the internal cavity distribution and size. Moreover, we identify design guidelines that can be used to fabricate components for different climatic conditions and thermal insulation requirements. The research conducted provides the first insights into the thermal behaviour of polymer 3DP facades on a large scale. These can be used as design guidelines for further research toward performant and low-embodied energy 3D printed facade components.

Keywords: 3D printing, thermal performance, polymers, facade components, hot-box method

Procedia PDF Downloads 153
2498 Improving Tower Grounding and Insulation Level vs. Line Surge Arresters for Protection of Subtransmission Lines

Authors: Navid Eghtedarpour, Mohammad Reza Hasani

Abstract:

Since renewable wind power plants are usually installed in mountain regions and high-level lands, they are often prone to lightning strikes and their hazardous effects. Although the transmission line is protected using guard wires in order to prevent the lightning surges to strike the phase conductors, the back-flashover may also occur due to tower footing resistance. A combination of back-flashover corrective methods, tower-footing resistance reduction, insulation level improvement, and line arrester installation, are analyzed in this paper for back-flashover rate reduction of a double-circuit 63 kV line in the south region of Fars province. The line crosses a mountain region in some sections with a moderate keraunic level, whereas tower-footing resistance is substantially high at some towers. Consequently, an exceptionally high back-flashover rate is recorded. A new method for insulation improvement is studied and employed in the current study. The method consists of using a composite-type creepage extender in the string. The effectiveness of this method for insulation improvement of the string is evaluated through the experimental test. Simulation results besides monitoring the one-year operation of the 63-kV line show that due to technical, practical, and economic restrictions in operated sub-transmission lines, a combination of corrective methods can lead to an effective solution for the protection of transmission lines against lightning.

Keywords: lightning protection, BF rate, grounding system, insulation level, line surge arrester

Procedia PDF Downloads 106
2497 Flashover Voltage of Silicone Insulating Surface Covered by Water Drops under AC Voltage

Authors: Fatiha Aouabed, Abdelhafid Bayadi, Rabah Boudissa

Abstract:

Nowadays, silicone rubber insulation materials are widely used in high voltage outdoor insulation systems as they can combat pollution flashover problems. The difference in pollution flashover performance of silicone rubber and other insulating materials is due to the way that water wets their surfaces. It resides as discrete drops on silicone rubber, and the mechanism of flashover is due to the breakdown of the air between the water drops and the distortion of these drops in the direction of the electric field which brings the insulation to degradation and failure. The main objective of this work is to quantify the effect of different types of water drops arrangements, their position and dry bands width on the flashover voltage of the silicone insulating surface with non-uniform electric field systems. The tests were carried out on a rectangular sample under AC voltage. A rod-rod electrode system is used. The findings of this work indicate that the performance of the samples decreases with the presence of water drops on their surfaces. Further, these experimental findings show that there is a limiting number of rows from which the flashover voltage of the insulation is minimal and constant. This minimum is a function of the distance between two successive rows. Finally, it is concluded that the system withstand voltage increases when the row of droplets on the electrode axis is removed.

Keywords: contamination, flashover, testing, silicone rubber insulators, surface wettability, water droplets

Procedia PDF Downloads 418
2496 Production of Low-Density Nanocellular Foam Based on PMMA/PEBAX Blends

Authors: Nigus Maregu Demewoz, Shu-Kai Yeh

Abstract:

Low-density nanocellular foam is a fascinating new-generation advanced material due to its mechanical strength and thermal insulation properties. In nanocellular foam, reducing the density increases the insulation ability. However, producing a nanocellular foam of densities less than 0.3 with a cell size of less than 100 nm is very challenging. In this study, poly (methyl methacrylate) (PMMA) was blended with Polyether block amide (PEBAX) to study the effects of PEBAX on the nanocellular foam structure of the PMMA matrix. We added 2 wt% of PEBAX in the PMMA matrix, and the PEBAX nanostructured domain size of 45 nm was well dispersed in the PMMA matrix. The foaming result produced a new generation special bouquet-like nanocellular foam of cell size less than 50 nm with a relative density of 0.24. Also, we were able to produce a nanocellular foam of a relative density of about 0.17. In addition to thermal insulation applications, bouquet-like nanocellular foam may be expected for filtration applications.

Keywords: nanocellular foam, low-density, cell size, relative density, PMMA/PEBAX blend

Procedia PDF Downloads 64
2495 An Investigation of Raw Material Effects on Nano SiC Based Foam Glass Production

Authors: Aylin Sahin, Yasemin Kilic, Abdulkadir Sari, Burcu Duymaz, Mustafa Kara

Abstract:

Foam glass is an innovative material which composed of glass and carbon/carbonate based minerals; and has incomparable properties like light weight, high thermal insulation and cellular structure with sufficient rigidity. In the present study, the effects of the glass type and mineral addition on the foam glass properties were investigated. Nano sized SiC was fixed as foaming agent at the whole of the samples, mixed glass waste and sheet glass were selectively used as glass sources; finally Al₂O₃ was optionally used as mineral additive. These raw material powders were mixed homogenously, pressed at same pressure and sintered at same schedule. Finally, obtained samples were characterized based on the required properties of foam glass material, and optimum results were determined. At the end of the study, 0.049 W/mK thermal conductivity, 72 % porosity, and 0.21 kg/cm² apparent density with 2.41 MPa compressive strength values were achieved with using nano sized SiC, sheet glass and Al₂O₃ mineral additive. It can be said that the foam glass materials can be preferred as an alternative insulation material rather than polymeric based conventional insulation materials because of supplying high thermal insulation properties without containing unhealthy chemicals and burn risks.

Keywords: foam glass, foaming, silicon carbide, waste glass

Procedia PDF Downloads 344
2494 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes

Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad

Abstract:

Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.

Keywords: bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance

Procedia PDF Downloads 151
2493 An Investigation on the Energy Absorption of Sandwich Panels With Aluminium Foam Core under Perforation Test

Authors: Minoo Tavakoli, Mojtaba Zebarjad, Golestanipour

Abstract:

Metallic sandwich structures with aluminum foam core are good energy absorbers. In this paper, perforation test were carried out on different samples to study energy absorption. In the experiments, effect of several parameters, i.e. skin thickness and thickness of foam core, on the energy absorption, delamination zone of back faces and deformation strain(φ) are discussed. Results show that increasing plates thickness will results in more absorbed energy and delamination. Moreover, thickening foam core has the same effect.

Keywords: sandwich panel, aluminium foam, perforation, energy absorption

Procedia PDF Downloads 401
2492 Using Audio-Visual Aids and Computer-Assisted Language Instruction to Overcome Learning Difficulties of Sound System in Students of Special Needs

Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari

Abstract:

Background & Objectives: Audio-visual aids and computer-assisted language instruction (CALI) effects are strong in teaching language components (sound system, grammatical structures and vocabulary) to students of special needs. To explore the effects of the audio-visual aids and CALI in teaching sound system to this class of students by speech language therapists (SLTs), an experiment has been undertaken to evaluate their performance during their study of the sound system course. Methods: Forty students (males and females) of special needs at al-Malādh school for teaching students of special needs in Dhamar (Yemen) range between 8 and 18 years old underwent this experimental study while they were studying language sound system course. Pre-and-posttests have been administered at the begging and end of the semester. Students' treatment was compared to a similar group (control group) of the same number under the same environment. Whereas the first group was taught using audio-visual aids and CALI, the second was not. Students' performances were linguistically and statistically evaluated. Results & conclusions: Compared with the control group, the treatment group showed significantly higher scores in the posttest (72.32% vs. 31%). Compared with females, males scored higher marks (1421 vs. 1472). Thus, we should take the audio-visual aids and CALI into consideration in teaching sound system to students of special needs.

Keywords: language components, sound system, audio-visual aids, CALI, students, special needs, SLTs

Procedia PDF Downloads 12
2491 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments

Authors: Ana Londral, Burcu Demiray, Marcus Cheetham

Abstract:

Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.

Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation

Procedia PDF Downloads 262
2490 Enhancement in the Absorption Efficiency of GaAs/InAs Nanowire Solar Cells through a Decrease in Light Reflection

Authors: Latef M. Ali, Farah A. Abed, Zheen L. Mohammed

Abstract:

In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV. it explore the design and optimization of high-efficiency solar cells on low-reflective absorption efficiency of GaAs/InAs using simulation software tool. The changes in the core and shell diameters profoundly affects the generation and recombination process, thus affecting the conversion efficiency of solar cells.

Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, FDTD simulation

Procedia PDF Downloads 27
2489 The Effects of Spatial Dimensions and Relocation and Dimensions of Sound Absorbers in a Space on the Objective Parameters of Sound

Authors: Mustafa Kavraz

Abstract:

This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes. This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes.

Keywords: sound absorber, room model, objective parameters of sound, jnd

Procedia PDF Downloads 356
2488 Acoustic Characteristics of Ḫijaiyaḫ Letters Pronunciation by Indonesian Native Speaker

Authors: Romi Hardiyansyah, Raden Sugeng Joko Sarwono, Agus Samsi

Abstract:

Indonesian people have a mother language but not Arabic. Meanwhile, they must be able to pronounce the Arabic because Islam is the biggest religion in Indonesia. Arabic is composed by ḫijaiyaḫ letters which has its own pronunciation. Sound production process in humans can be divided into three physiological processes, namely: the formation of airflow from the lungs, the change in airflow from the lungs into the sound, and articulation (the modulation/sound setting into a specific sound). Ḫijaiyaḫ letters has its own articulation, some of which seem strange for most people in Indonesia. Those letters come out from the middle and upper throat so that the letters has its own acoustic characteristics. Acoustic characteristics of voice can be observed by source-filter approach that has parameters: pitch, formant, and formant bandwidth. Pitch is the basic tone in every human being. Formant is the resonance frequency of the human voice. Formant bandwidth is the time-width of a formant. After recording the sound from 21 subjects, data is processed by software Praat version 5.3.39. The analysis showed that each pronunciation, syakal (vowel changer), and the place of discharge letters has the same timbre which are determined by third and fourth formant.

Keywords: ḫijaiyaḫ, articulation, pitch, formant, formant bandwidth, timbre

Procedia PDF Downloads 371
2487 An Improved Visible Range Absorption Spectroscopy on Soil Macronutrient

Authors: Suhaila Isaak, Yusmeeraz Yusof, Khairunnisa Mohd Yusof, Ahmad Safuan Abdul Rashid

Abstract:

Soil fertility is commonly evaluated by soil macronutrients such as nitrate, potassium, and phosphorus contents. Optical spectroscopy is an emerging technology which is rapid and simple has been widely used in agriculture to measure soil fertility. For visible and near infrared absorption spectroscopy, the absorbed light level in is useful for soil macro-nutrient measurement. This is because the absorption of light in a soil sample influences sensitivity of the measurement. This paper reports the performance of visible and near infrared absorption spectroscopy in the 400–1400 nm wavelength range using light-emitting diode as the excitation light source to predict the soil macronutrient content of nitrate, potassium, and phosphorus. The experimental results show an improved linear regression analysis of various soil specimens based on the Beer–Lambert law to determine sensitivity of soil spectroscopy by evaluating the absorption of characteristic peaks emitted from a light-emitting diode and detected by high sensitivity optical spectrometer. This would denote in developing a simple and low-cost soil spectroscopy with light-emitting diode for future implementation.

Keywords: macronutrients absorption, optical spectroscopy, soil, absorption

Procedia PDF Downloads 268
2486 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption

Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez

Abstract:

In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.

Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap

Procedia PDF Downloads 373
2485 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing

Authors: Grzegorz Dolzyk, Sungmoon Jung

Abstract:

Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.

Keywords: axial crushing, energy absorption, grooving, thin-wall structures

Procedia PDF Downloads 121
2484 Rehabilitation of the Blind Using Sono-Visualization Tool

Authors: Ashwani Kumar

Abstract:

In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object.

Keywords: image processing, pixel, pitch, loudness, sound generation, edge detection, brightness

Procedia PDF Downloads 362
2483 Studying the Linguistics of Hungarian Luxurious Brands: Analysing the Sound Effects from a non-Hungarian Consumer’s Perspective

Authors: Syrine Bassi

Abstract:

Sound symbolism has been able to give us an exciting new tool to target consumers’ brand perception. It acts on a subconscious level making them less likely to reject the implicit message delivered by the sound of the brand name. Most of the research conducted in the field was focused on the English language as it is the language used for international branding campaigns and global companies. However, more research is examining the sound symbolism in other languages and comparing it to the English language findings. Besides, researchers have been able to study luxury brand names and spot out the patterns used in them to provoke luxury and sophistication. It stands to a reason to connect the luxury brand names and the local language’s sound effects since a considerable number of these brands are promoting the origin of the Maison, therefore, have names in foreign languages. This study was established around the Hungarian luxury brand names. It aims to spot out the patterns used in these names that connect to the previous findings of luxury sound effects and also the differences. We worked with a non-Hungarian speaking sample who had some basic knowledge of the language just to make sure they were able to correctly pronounce the names. The results have shown both similarities and differences when it comes to perceiving luxury based on the brand name. As the Hungarian language can be qualified as a saturated language, consonant wise, it was easy to feed the luxury feeling only by using designers' names, however, some complicated names were too difficult and repulsive to consider as luxurious. On the other hand, oversimplifying some names did not convey the desired image as it was too simple and easy. Overall, some sounds have been proved to be linked to luxury as the literature suggests, the difficulty of pronunciation has also proved effective since it highlights the distant feeling consumers crave when looking for luxury. These results suggest that sound symbolism can set up an aura of luxury when used properly, leveraging each languages’ convenient assets.

Keywords: hungarian language, linguistics, luxury brands, sound symbolism

Procedia PDF Downloads 94
2482 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable

Authors: T. Boonraksa, B. Marungsri

Abstract:

This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the cross-linked polyethylene (XLPE) in the presence of the applied electric field.

Keywords: ionic solutions, water treeing, water treeing expansion, cross-linked polyethylene (XLPE)

Procedia PDF Downloads 362
2481 Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction

Authors: Jitka Hroudova, Jiri Zach

Abstract:

The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.

Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction

Procedia PDF Downloads 312
2480 Vibrations of Thin Bio Composite Plates

Authors: Timo Avikainen, Tuukka Verho

Abstract:

The use of natural fibers as reinforcements is growing increasingly in polymers which are involved in e.g. structural, vibration, and acoustic applications. The use of bio composites is being investigated as lightweight materials with specific properties like the ability to dissipate vibration energy and positive environmental profile and are thus considered as potential replacements for synthetic composites. The macro-level mechanical properties of the biocomposite material depend on several parameters in the detailed architecture and morphology of the reinforcing fiber structure. The polymer matrix phase is often applied to remain the fiber structure in touch. A big role in the packaging details of the fibers is related to the used manufacturing processes like extrusion, injection molding and treatments. There are typically big variances in the detailed parameters of the microstructure fibers. The study addressed the question of how the multiscale simulation methodology works in bio composites with short pulp fibers. The target is to see how the vibro – acoustic performance of thin–walled panels can be controlled by the detailed characteristics of the fiber material. Panels can be used in sound-producing speakers or sound insulation applications. The multiscale analysis chain is tested starting from the microstructural level and continuing via macrostructural material parameters to the product component part/assembly levels. Another application is the dynamic impact type of loading, exposing the material to the crack type damages that is in this study modeled as the Charpy impact tests.

Keywords: bio composite, pulp fiber, vibration, acoustics, impact, FEM

Procedia PDF Downloads 51
2479 Polycaprolactone/Thermally Exfoliated Graphene Oxide Biocomposite Films: A Promising Moisture Absorption Behavior

Authors: Neetu Malik, Sharad Shrivastava, Subrata Bandhu Ghosh

Abstract:

Biocomposite materials were fabricated using mixing biodegradable polymer polycaprolactone (PCL) and Thermally Exfoliated Graphene Oxide (TEGO) through solution casting. Various samples of biocomposite films were prepared by varying the TEGO wt% composition by 0.1%, 0.5%, 1% and 1.5%. Thereafter, the density and water absorption of the composites were investigated with respect to immersion time in water. The moisture absorption results show that with an increase in weight percentage (from 0.1 to wt 1.5%) of TEGO within the biopolymer films, the absorption value of bio-nanocomposite films reduced rapidly from 27.4% to 14.3%. The density of hybrid composites also increased with increase in weight percentage of TEGO. These results indicate that the optimized composition of constituents in composite membrane could effectively reduce the anhydrous conditions of bio-composite film.

Keywords: thermally exfoliated graphene oxide, PCL, water absorption, density

Procedia PDF Downloads 285
2478 Efficacy of Phonological Awareness Intervention for People with Language Impairment

Authors: I. Wardana Ketut, I. Suparwa Nyoman

Abstract:

This study investigated the form and characteristic of speech sound produced by three Balinese subjects who have recovered from aphasia as well as intervened their language impairment on side of linguistic and neuronal aspects of views. The failure of judging the speech sound was caused by impairment of motor cortex that indicated there were lesions in left hemispheric language zone. Sound articulation phenomena were in the forms of phonemes deletion, replacement or assimilation in individual words and meaning building for anomic aphasia. Therefore, the Balinese sound patterns were stimulated by showing pictures to the subjects and recorded to recognize what individual consonants or vowels they unclearly produced and to find out how the sound disorder occurred. The physiology of sound production by subject’s speech organs could not only show the accuracy of articulation but also any level of severity the lesion they suffered from. The subjects’ speech sounds were investigated, classified and analyzed to know how poor the lingual units were and observed to clarify weaknesses of sound characters occurred either for place or manner of articulation. Many fricative and stopped consonants were replaced by glottal or palatal sounds because the cranial nerve, such as facial, trigeminal, and hypoglossal underwent impairment after the stroke. The phonological intervention was applied through a technique called phonemic articulation drill and the examination was conducted to know any change has been obtained. The finding informed that some weak articulation turned into clearer sound and simple meaning of language has been conveyed. The hierarchy of functional parts of brain played important role of language formulation and processing. From this finding, it can be clearly emphasized that this study supports the role of right hemisphere in recovery from aphasia is associated with functional brain reorganization.

Keywords: aphasia, intervention, phonology, stroke

Procedia PDF Downloads 178
2477 Aeronautical Noise Management inside an Aerodrome: Analysis of Sound Exposure on Aviation Professional’s Health

Authors: Rafael Felipe Guatura da Silva, José Luis Gomes da Silva, Luiz Antonio, Ferreira Perrone de Brito

Abstract:

Noise can cause serious damage to human health, such as hearing loss, stress, irritability, fatigue, and others. Aviation is a place where your entire process should be work out with the utmost attention and commitment of human resources, thus the need to study the effects of noise in this sector, as aeronautical noise levels are high. This study aimed to evaluate the impact of noise pollution on the performance of professionals regarding the fatigue generated by aeronautical noise and time to noise exposure. The methodology used consists of measurements of sound pressure levels at 42 points of the aerodrome. The selected points are located inside the hangars and outside the airfield hangars. All points chosen are close to the professionals' work areas, seeking to identify the sound pressure levels to which they submitted. The other part of the research used the principle on the application of a self-report questionnaire to a sample of 207 people working inside the aerodrome. The 207 professionals surveyed consist of aircraft mechanics, pilots, maintenance managers, and administrative professionals. The questionnaire was intended to evaluate the knowledge that professionals have about health risks caused by sound exposure as well as to identify diseases that professionals have, and that may be associated with exposure to high levels of sound pressure. Preliminary results identify points with sound pressure levels of up to 91.7 dB, thus highlighting the need for the use of personal protective equipment that reduces noise exposure. It was also identified a large number of professionals who are bothered by the sound exposure and approximately 25% of professionals interviewed reported having a hearing disorder.

Keywords: aeronautical noise, fatigue, noise and health, noise management

Procedia PDF Downloads 126