Search results for: printing material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6907

Search results for: printing material

6787 Fused Deposition Modelling as the Manufacturing Method of Fully Bio-Based Water Purification Filters

Authors: Natalia Fijol, Aji P. Mathew

Abstract:

We present the processing and characterisation of three-dimensional (3D) monolith filters based on polylactic acid (PLA) reinforced with various nature-derived nanospecies such as hydroxyapatite, modified cellulose fibers and chitin fibers. The nanospecies of choice were dispersed in PLA through Thermally Induced Phase Separation (TIPS) method. The biocomposites were developed via solvent-assisted blending and the obtained pellets were further single-screw extruded into 3D-printing filaments and processed into various geometries using Fused Deposition Modelling (FDM) technique. The printed prototypes included cubic, cylindrical and hour-glass shapes with diverse patterns of printing infill as well as varying pore structure including uniform and multiple level gradual pore structure. The pores and channel structure as well as overall shape of the prototypes were designed in attempt to optimize the flux and maximize the adsorption-active time. FDM is a cost and energy-efficient method, which does not require expensive tools and elaborated post-processing maintenance. Therefore, FDM offers the possibility to produce customized, highly functional water purification filters with tuned porous structures suitable for removal of wide range of common water pollutants. Moreover, as 3D printing becomes more and more available worldwide, it allows producing portable filters at the place and time where they are most needed. The study demonstrates preparation route for the PLA-based, fully biobased composite and their processing via FDM technique into water purification filters, addressing water treatment challenges on an industrial scale.

Keywords: fused deposition modelling, water treatment, biomaterials, 3D printing, nanocellulose, nanochitin, polylactic acid

Procedia PDF Downloads 115
6786 An Assessment of Existing Material Management Process in Building Construction Projects in Nepal

Authors: Uttam Neupane, Narendra Budha, Subash Kumar Bhattarai

Abstract:

Material management is an essential part in construction project management. There are a number of material management problems in the Nepalese construction industry, which contribute to an inefficient material management system. Ineffective material management can cause waste of time and money thus increasing the problem of time and cost overrun. An assessment of material management system with gap and solution was carried out on 20 construction projects implemented by the Federal Level Project Implementation Unit (FPIU); Kaski district of Nepal. To improve the material management process, the respondents have provided possible solutions to overcome the gaps seen in the current material management process. The possible solutions are preparation of material schedule in line with the construction schedule for material requirement planning, verifications of material and locating of source, purchasing of the required material in advance before commencement of work, classifying the materials, and managing the inventory based on their usage value and eliminating and reduction in wastages during the overall material management process.

Keywords: material management, construction site, inventory, construction project

Procedia PDF Downloads 68
6785 Programmable Microfluidic Device Based on Stimuli Responsive Hydrogels

Authors: Martin Elstner

Abstract:

Processing of information by means of handling chemicals is a ubiquitous phenomenon in nature. Technical implementations of chemical information processing lack of low integration densities compared to electronic devices. Stimuli responsive hydrogels are promising candidates for materials with information processing capabilities. These hydrogels are sensitive toward chemical stimuli like metal ions or amino acids. The binding of an analyte molecule induces conformational changes inside the polymer network and subsequently the water content and volume of the hydrogel varies. This volume change can control material flows, and concurrently information flows, in microfluidic devices. The combination of this technology with powerful chemical logic gates yields in a platform for highly integrated chemical circuits. The manufacturing process of such devices is very challenging and rapid prototyping is a key technology used in the study. 3D printing allows generating three-dimensional defined structures of high complexity in a single and fast process step. This thermoplastic master is molded into PDMS and the master is removed by dissolution in an organic solvent. A variety of hydrogel materials is prepared by dispenser printing of pre-polymer solutions. By a variation of functional groups or cross-linking units, the functionality of the hole circuit can be programmed. Finally, applications in the field of bio-molecular analytics were demonstrated with an autonomously operating microfluidic chip.

Keywords: bioanalytics, hydrogels, information processing, microvalve

Procedia PDF Downloads 309
6784 Experimental Study of Tunable Layout Printed Fresnel Lens Structure Based on Dye Doped Liquid Crystal

Authors: M. Javadzadeh, H. Khoshsima

Abstract:

In this article, we present a layout printing way for producing Fresnel zone on 1294-1b doped liquid crystal with Methyl-Red azo dye. We made a Fresnel zone mask with 25 zones and radius of 5 mm using lithography technique. With layout printing way, we recorded mask’s pattern on cell with λ=532 nm solid-state diode pump laser. By recording Fresnel zone pattern on cell and making Fresnel pattern on the surface of cell, odd and even zones, will form. The printed pattern, because of Azo dye’s photoisomerization, was permanent. Experimentally, we saw focal length tunability from 32 cm to 43 cm.

Keywords: liquid crystal, lens, Fresnel zone, diffraction, Fresnel lens

Procedia PDF Downloads 204
6783 Modification of ZnMgO NPs for Improving Device Performance of Quantum Dot Light-emitting Diodes

Authors: Juyon Lee, Myoungjin Park, Jonghoon Kim, Jaekook Ha, Chanhee Lee

Abstract:

We demonstrated a new positive aging methods of QLEDs devices that can apply in large size inkjet printing display. Conventional positive aging method using photo-curable resin remains unclear mechanism of the phenomenon and also there are many limitations to apply large size panels in commercial process. Through the photo acid generator (PAG) in ETL Ink, we achieved 90% of the efficiency of the conventional method and up to 1000h life time stability (T80). This techniques could be applied to next generation of QLEDs panels and also can prove the working mechanism of positive aging in QLED related to modification of ZnMgO NPs.

Keywords: quantum dots, QLED, printing, positive aging, ZnMgO NPs

Procedia PDF Downloads 140
6782 Designing and Using a 3-D Printed Dynamic Upper Extremity Orthosis (DUEO) with Children with Cerebral Palsy and Severe Upper Extremity Involvement

Authors: Justin Lee, Siraj Shaikh, Alice Chu MD

Abstract:

Children with cerebral palsy (CP) commonly present with upper extremity impairment, affecting one or both extremities, and are classified using the Manual Ability Classification Scale (MACS). The MACS defines bimanual hand abilities for children ages 4-18 years in everyday tasks and is a gradient scale, with I being nearly normal and V requiring total assistance. Children with more severe upper extremity impairment (MACS III-V) are often underrepresented, and relatively few effective therapies have been identified for these patients. Current orthoses are static and are only meant to prevent the progression of contractures in these patients. Other limitations include cost, comfort, accessibility, and longevity of the orthoses. Taking advantage of advances in 3D printing technology, we have created a highly customizable upper extremity orthotic that can be produced at a low cost. Iterations in our design have resulted in an orthotic that is custom fit to the patient based on scans of their arm, made of rigid polymer when needed to provide support, flexible material where appropriate to allow for comfort, and designed with a mechanical pulley system to allow for some functional use of the arm while in the orthotic. Preliminary data has shown that our orthotic can be built at a fraction of the cost of current orthoses and provide clinically significant improvement in assisting hand assessment (AHA) and pediatric quality of life scores (PedsQL).

Keywords: upper extremity orthosis, upper extremity, orthosis, 3-D printing, cerebral palsy, occupational therapy, spasticity, customizable

Procedia PDF Downloads 307
6781 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 62
6780 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application

Authors: Paweł Żur, Alicja Żur, Andrzej Baier

Abstract:

Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.

Keywords: 3D printing, composite bushing, modal analysis, multi-material

Procedia PDF Downloads 109
6779 The Curvature of Bending Analysis and Motion of Soft Robotic Fingers by Full 3D Printing with MC-Cells Technique for Hand Rehabilitation

Authors: Chaiyawat Musikapan, Ratchatin Chancharoen, Saknan Bongsebandhu-Phubhakdi

Abstract:

For many recent years, soft robotic fingers were used for supporting the patients who had survived the neurological diseases that resulted in muscular disorders and neural network damages, such as stroke and Parkinson’s disease, and inflammatory symptoms such as De Quervain and trigger finger. Generally, the major hand function is significant to manipulate objects in activities of daily living (ADL). In this work, we proposed the model of soft actuator that manufactured by full 3D printing without the molding process and one material for use. Furthermore, we designed the model with a technique of multi cavitation cells (MC-Cells). Then, we demonstrated the curvature bending, fluidic pressure and force that generated to the model for assistive finger flexor and hand grasping. Also, the soft actuators were characterized in mathematics solving by the length of chord and arc length. In addition, we used an adaptive push-button switch machine to measure the force in our experiment. Consequently, we evaluated biomechanics efficiency by the range of motion (ROM) that affected to metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and distal interphalangeal joint (DIP). Finally, the model achieved to exhibit the corresponding fluidic pressure with force and ROM to assist the finger flexor and hand grasping.

Keywords: biomechanics efficiency, curvature bending, hand functional assistance, multi cavitation cells (MC-Cells), range of motion (ROM)

Procedia PDF Downloads 260
6778 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 67
6777 Investigation of the Effects of Processing Parameters on Pla Based 3D Printed Tensile Samples

Authors: Saifullah Karimullah

Abstract:

Additive manufacturing techniques are becoming more common with the latest technological advancements. It is composed to bring a revolution in the way products are designed, planned, manufactured, and distributed to end users. Fused deposition modeling (FDM) based 3D printing is one of those promising aspects that have revolutionized the prototyping processes. The purpose of this design and study project is to design a customized laboratory-scale FDM-based 3D printer from locally available sources. The primary goal is to design and fabricate the FDM-based 3D printer. After the fabrication, a tensile test specimen would be designed in Solid Works or [Creo computer-aided design (CAD)] software. A .stl file is generated of the tensile test specimen through slicing software and the G-codes are inserted via a computer for the test specimen to be printed. Different parameters were under studies like printing speed, layer thickness and infill density of the printed object. Some parameters were kept constant such as temperature, extrusion rate, raster orientation etc. Different tensile test specimens were printed for a different sets of parameters of the FDM-based 3d printer. The tensile test specimen were subjected to tensile tests using a universal testing machine (UTM). Design Expert software has been used for analyses, So Different results were obtained from the different tensile test specimens. The best, average and worst specimen were also observed under a compound microscope to investigate the layer bonding in between.

Keywords: additive manufacturing techniques, 3D printing, CAD software, UTM machine

Procedia PDF Downloads 103
6776 Evaluation of Bagh Printing Motifs and Processes of Madhya Pradesh: From Past to Contemporary

Authors: Kaveri Dutta, Ratna Sharma

Abstract:

Indian traditional textile is a synthesis of various cultures. Art and crafts of a country showcases the rich cultural and artistic history of that nation. Prehistorically Indian handicrafts were basically made for day to day use; the yearning for aesthetic application soon saw the development of flooding designs and motifs. Similarly, Bagh print a traditional hand block Print with natural colours an Indian handicraft practiced in Bagh, Madhya Pradesh(India). Bagh print has its roots in Sindh, which is now a part of Pakistan. The present form of Bagh printing actually started in 1962 when the craftsmen migrated from Manavar to the neighboring town of Bagh situated in Madhya Pradesh and hence Bagh has always been associated with this printing style. Bagh printing basically involved blocks that are carved onto motifs that represent flora such as Jasmine, Mushroom leheriya and so on. There are some prints that were inspired by the jaali work that embellished the Taj Mahal and various other forts. Inspiration is also drawn from the landscapes and geometrical figures. The motifs evoke various moods in the serenity of the prints and that is the catchy element of Bagh prints. The development in this traditional textile is as essential as in another field. Nowadays fashion trends are fragile and innovative changes over existing fashion field in the short span is the demand of times. We must make efforts to preserve this cultural heritage of arts and crafts and this is done either by documenting the various ancient traditions or by making a blend of it. Since this craft is well known over the world, but the need is to document the original motif, fabric, technology and colors used in contemporary fashion. Hence keeping above points in mind this study on bagh print textiles of Madhya Pradesh work has been formulated. The information incorporated in the paper was based on secondary data taken from relevant books, journals, museum visit and articles. Besides for the demographic details and working profile of the artisans dealt with printing, an interview schedule was carried out in three regions of Madhya Pradesh. This work of art was expressed in Cotton fabric. For this study selected traditional motifs for Bang printing was used. Some of the popular traditional Bagh motifs are Jasmine, Mushroom leheriya, geometrical figures and jaali work. The Bagh printed cotton fabrics were developed into a range of men’s ethic wear in combination with embroideries from Rajasthan. Products developed were bandhgala jackets, kurtas, serwani and dupattas. From the present study, it can be observed that the embellished traditional Bang printed range of ethnic men’s wear resulted in the fresh and colourful pattern. The embroidered Bagh printed cotton fabric also created a huge change in a positive way among artisans of the three regions.

Keywords: art and craft of Madhya Pradesh, evolution of printing in India, history of Bagh printing, sources of inspiration

Procedia PDF Downloads 353
6775 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing

Authors: Yohann R. J. Thomas, Sébastien Solan

Abstract:

Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.

Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes

Procedia PDF Downloads 251
6774 Design for Sustainability as a Key Driver for Exploring the Potential of Cork Material

Authors: Spase Janevski

Abstract:

We, as designers, should be aware of the consequences of our material selection, at the early stages of the design process. Some of the designer’s decisions can have a very significant impact on design for sustainability. The influence of this concept has led to years of research studies into eco-friendly materials and their potentials for creating new sustainable products. In order to answer the question, 'how cork has become a design trend', this paper will present an overview of the implications of the concept of design for sustainability on the potential uses of cork material. A decade ago, cork as a material had an association with wine stoppers, but with the evolution of sustainable product design as part of the concept of design for sustainability, cork now offers product designers a wide range of new materials and applications. The purpose of this paper is to show how the phenomenon of sustainability has had an impact on the progress of the material which is currently not being an integral component of the design material palette. At the beginning, the nature of the relationship between cork and sustainability will be explained through the following stages: 1) fundamental understanding of the concept of Design for Sustainability and the importance of material selection for sustainable product design, and 2) the importance of cork oak trees for the environment and the environmental impacts of cork products. In order to examine and present the influence of the sustainability on the innovation in cork applications, the paper will provide a historical overview of designing with cork. The overview will consist of four stages: 1) pre-industrial period - the period when ancient nations used cork and amphoras to store their wine; 2) industrial period - emergence and industrialization of well-known wine stoppers; 3) post-industrial period - commercializing cork products in the area of floors and coverings and first developments in industrial research; and 4) the period when large cork realized the importance of sustainability and started to focus more markedly on research and development. The existence of new cork materials, the investigation in new applications and the investment in new innovations have proved that the sustainability approach has had a great influence on the revival of this material. In addition, the paper will present some of the new cork innovative materials and applications and their potentials for designing promising and sustainable solutions with additive manufacturing technologies, such as 3D printing. Lastly, the paper will introduce some questions for further study, such as the environmental impacts of the new hybrid materials and the gap between cork industry and cork research and development teams. The paper concludes by stating that cork is not only a material for wine stoppers anymore, thanks to the awareness of the concept of design for sustainability.

Keywords: cork, design for sustainability, innovation, sustainable materials

Procedia PDF Downloads 111
6773 Numerical Analysis of Wire Laser Additive Manufacturing for Low Carbon Steels+

Authors: Juan Manuel Martinez Alvarez, Michele Chiumenti

Abstract:

This work explores the benefit of the thermo-metallurgical simulation to tackle the Wire Laser Additive Manufacturing (WLAM) of low-carbon steel components. The Finite Element Analysis is calibrated by process monitoring via thermal imaging and thermocouples measurements, to study the complex thermo-metallurgical behavior inherent to the WLAM process of low carbon steel parts.A critical aspect is the analysis of the heterogeneity in the resulting microstructure. This heterogeneity depends on both the thermal history and the residual stresses experienced during the WLAM process. Because of low carbon grades are highly sensitive to quenching, a high-gradient microstructure often arises due to the layer-by-layer metal deposition in WLAM. The different phases have been identified by scanning electron microscope. A clear influence of the heterogeneities on the final mechanical performance has been established by the subsequent mechanical characterization. The thermo-metallurgical analysis has been used to determine the actual thermal history and the corresponding thermal gradients during the printing process. The correlation between the thermos-mechanical evolution, the printing parameters and scanning sequence has been established. Therefore, an enhanced printing strategy, including optimized process window has been used to minimize the microstructure heterogeneity at ArcelorMittal.

Keywords: additive manufacturing, numerical simulation, metallurgy, steel

Procedia PDF Downloads 71
6772 Elaboration of Ceramic Metal Accident Tolerant Fuels by Additive Manufacturing

Authors: O. Fiquet, P. Lemarignier

Abstract:

Additive manufacturing may find numerous applications in the nuclear industry, for the same reason as for other industries, to enlarge design possibilities and performances and develop fabrication methods as a flexible route for future innovation. Additive Manufacturing applications in the design of structural metallic components for reactors are already developed at a high Technology Readiness Level (TRL). In the case of a Pressured Water Reactor using uranium oxide fuel pellets, which are ceramics, the transposition of already optimized Additive Manufacturing (AM) processes to UO₂ remains a challenge, and the progress remains slow because, to our best knowledge, only a few laboratories have the capability of developing processes applicable to UO₂. After the Fukushima accident, numerous research fields emerged with the study of ATF (Accident tolerant Fuel) fuel concepts, which aimed to improve fuel behaviour. One item concerns the increase of the pellet thermal performance by, for example, the addition of high thermal conductivity material into fissile UO₂. This additive phase may be metallic, and the end product will constitute a CERMET composite. Innovative designs of an internal metallic framework are proposed based on predictive calculations. However, because the well-known reference pellet manufacturing methods impose many limitations, manufacturing such a composite remains an arduous task. Therefore, the AM process appears as a means of broadening the design possibilities of CERMET manufacturing. If the external form remains a standard cylindrical fuel pellet, the internal metallic design remains to be optimized based on process capabilities. This project also considers the limitation to a maximum of 10% volume of metal, which is a constraint neutron physics considerations impose. The AM technique chosen for this development is robocasting because of its simplicity and low-cost equipment. It remains, however, a challenge to adapt a ceramic 3D printing process for the fabrication of UO₂ fuel. The investigation starts with surrogate material, and the optimization of slurry feedstock is based on alumina. The paper will present the first printing of Al2O3-Mo CERMET and the expected transition from ceramic-based alumina to UO₂ CERMET.

Keywords: nuclear, fuel, CERMET, robocasting

Procedia PDF Downloads 68
6771 Effectiveness Evaluation of a Machine Design Process Based on the Computation of the Specific Output

Authors: Barenten Suciu

Abstract:

In this paper, effectiveness of a machine design process is evaluated on the basis of the specific output calculus. Concretely, a screw-worm gear mechanical transmission is designed by using the classical and the 3D-CAD methods. Strength analysis and drawing of the designed parts is substantially aided by employing the SolidWorks software. Quality of the design process is assessed by manufacturing (printing) the parts, and by computing the efficiency, specific load, as well as the specific output (work) of the mechanical transmission. Influence of the stroke, travelling velocity and load on the mechanical output, is emphasized. Optimal design of the mechanical transmission becomes possible by the appropriate usage of the acquired results.

Keywords: mechanical transmission, design, screw, worm-gear, efficiency, specific output, 3D-printing

Procedia PDF Downloads 143
6770 Development and Evaluation of a Gut-Brain Axis Chip Based on 3D Printing Interconnecting Microchannel Scaffolds

Authors: Zhuohan Li, Jing Yang, Yaoyuan Cui

Abstract:

The gut-brain axis (GBA), a communication network between gut microbiota and the brain, benefits for investigation of brain diseases. Currently, organ chips are considered one of the potential tools for GBA research. However, most of the available GBA chips have limitations in replicating the three-dimensional (3D) growth environment of cells and lack the required cell types for barrier function. In the present study, a microfluidic chip was developed for GBA interaction. Blood-brain barrier (BBB) module was prepared with HBMEC, HBVP, U87 cells and decellularized matrix (dECM). Intestinal epithelial barrier (IEB) was prepared with Caco-2 and vascular endothelial cells and dECM. GBA microfluidic device was integrated with IEB and BBB modules using 3D printing interconnecting microchannel scaffolds. BBB and IEB interaction on this GBA chip were evaluated with lipopolysaccharide (LPS) exposure. The present GBA chip achieved multicellular three-dimensional cultivation. Compared with the co-culture cell model in the transwell, fluorescein was absorbed more slowly by 5.16-fold (IEB module) and 4.69-fold (BBB module) on the GBA chip. Accumulation of Rhodamine 123 and Hoechst33342 was dramatically decreased. The efflux function of transporters on IEB and BBB was significantly increased on the GBA chip. After lipopolysaccharide (LPS) disrupted the IEB, and then BBB dysfunction was further observed, which confirmed the interaction between IEB and BBB modules. These results demonstrated that this GBA chip may offer a promising tool for gut-brain interaction study.

Keywords: decellularized matrix, gut-brain axis, organ-on-chip, three-dimensional printing.

Procedia PDF Downloads 36
6769 Fabrication of Eco-Friendly Pigment Printed Textiles by Reducing Formaldehyde Content

Authors: Sidra Saleemi, Raja Fahad Qureshi, Farooq Ahmed, Rabia Almas, Tahir Jameel

Abstract:

This research aimed to decrease formaldehyde content in substrates printed by pigments using different fixation temperature and concentration of urea in order to produce eco-friendly textiles. Substrates were printed by hand screen printing method as per recipe followed by drying and curing. Standard test methods were adapted to measure formaldehyde content washing and rubbing fastness. Formaldehyde content is instantaneously decreased by raising the temperature during curing printed fabric. Good results of both dry and wet rubbing fastness were found at 160˚C slightly improved dry rubbing results are achieved with 2% urea at a curing temperature of 150˚C.

Keywords: formaldehyde content, pigment printing, urea, washing fastness, rubbing fastness

Procedia PDF Downloads 311
6768 Influence of 3D Printing Parameters on Surface Finish of Ceramic Hip Prostheses Fixed by Means of Osteointegration

Authors: Irene Buj-Corral, Ali Bagheri, Alejandro Dominguez-Fernandez

Abstract:

In recent years, use of ceramic prostheses as an implant in some parts of body has become common. In the present study, research has focused on replacement of the acetabulum bone, which is a part of the pelvis bone. Metallic prostheses have shown some problems such as release of metal ions into patient's blood. In addition, fracture of liners and squeezing between surface of femoral head and inner surface of acetabulum have been reported. Ceramic prostheses have the advantage of low debris and high strength, although they are more difficult to be manufactured than metallic ones. Specifically, new designs try to attempt an acetabulum in which the outer surface will be porous for proliferation of cells and fixation of the prostheses by means of osteointegration, while inner surface must be smooth enough to assure that the movement between femoral head and inner surface will be carried out with on feasibility. In the present study, 3D printing technologies are used for manufacturing ceramic prostheses. In Fused Deposition Modelling (FDM) process, 3D printed plastic prostheses are obtained by means of melting of a plastic filament and subsequent deposition on a glass surface. A similar process is applied to ceramics in which ceramic powders need to be mixed with a liquid polymer before depositing them. After 3D printing, parts are subjected to a sintering process in an oven so that they can achieve final strength. In the present paper, influence of printing parameters on surface roughness 3D printed ceramic parts are presented. Three parameter full factorial design of experiments was used. Selected variables were layer height, infill and nozzle diameter. Responses were average roughness Ra and mean roughness depth Rz. Regression analysis was applied to responses in order to obtain mathematical models for responses. Results showed that surface roughness depends mainly on layer height and nozzle diameter employed, while infill was found not to be significant. In order to get low surface roughness, low layer height and low infill should be selected. As a conclusion, layer height and infill are important parameters for obtaining good surface finish in ceramic 3D printed prostheses. However, use of too low infill could lead to prostheses with low mechanical strength. Such prostheses could not be able to bear the static and dynamic charges to which they are subjected once they are implanted in the body. This issue will be addressed in further research.

Keywords: ceramic, hip prostheses, surface roughness, 3D printing

Procedia PDF Downloads 197
6767 Advancement in Adhesion and Osteogenesis of Stem Cells with Histatin Coated 3D-Printed Bio-Ceramics

Authors: Haiyan Wang, Dongyun Wang, Yongyong Yan, Richard T. Jaspers, Gang Wu

Abstract:

Mesenchymal stem cell and 3D printing-based bone tissue engineering present a promising technique to repair large-volume bone defects. Its success is highly dependent on cell attachment, spreading, osteogenic differentiation, and in vivo survival of stem cells on 3D-printed scaffolds. In this study, human salivary histatin-1 (Hst1) was utilized to enhance the interactions between human adipose-derived stem cells (hASCs) and 3D-printed β-tricalcium phosphate (β-TCP) bioceramic scaffolds. Fluorescent images showed that Hst1 significantly enhanced the adhesion of hASCs to both bioinert glass and 3D-printed β-TCP scaffold. In addition, Hst1 was associated with significantly higher proliferation and osteogenic differentiation of hASCs on 3D-printed β-TCP scaffolds. Moreover, coating 3D-printed β-TCP scaffolds with histatin significantly promotes the survival of hASCs in vivo. The ERK and p38 but not JNK signaling was found to be involved in the superior adhesion of hASCs to β-TCP scaffolds with the aid of Hst1. In conclusion, Hst1 could significantly promote the adhesion, spreading, osteogenic differentiation, and in vivo survival of hASCs on 3D-printed β-TCP scaffolds, bearing a promising application in stem cell/3D printing-based constructs for bone tissue engineering.

Keywords: 3d printing, adipose-derived stem cells, bone tissue engineering, histatin-1, osteogenesis

Procedia PDF Downloads 63
6766 Comparative Study of Titanium and Polyetheretherketone Cranial Implant Using Finite Element Model

Authors: Khaja Moiduddin, Sherif Mohammed Elseufy, Hisham Alkhalefah

Abstract:

Recent advances in three-dimensional (3D) printing, medical imaging, and implant design may alter how craniomaxillofacial surgeons construct individualized treatments using patient data. By utilizing medical image data, medical professionals can obtain detailed information about a patient's injuries, enabling them to conduct a thorough preoperative assessment while ensuring the implant's accuracy. However, selecting the right implant material requires careful consideration of various mechanical properties. This study aims to compare the two commonly used implant material for cranial reconstruction which includes titanium (Ti6Al4V) and Polyetheretherketone (PEEK). Biomechanical analysis was performed to study the implant behavior, by keeping the implant design and fixation constant in both cases. A finite element model was created and analyzed under loading conditions. The finite element analysis proves that although Ti6Al4V is stronger than PEEK but, its mechanical strength is adequate to bear the loads of the adjacent bone tissue.

Keywords: cranial reconstruction, titanium implants, PEEK, finite element model

Procedia PDF Downloads 68
6765 Characterization of 3D Printed Re-Entrant Chiral Auxetic Geometries

Authors: Tatheer Zahra

Abstract:

Auxetic materials have counteractive properties due to re-entrant geometry that enables them to possess Negative Poisson’s Ratio (NPR). These materials have better energy absorbing and shock resistance capabilities as compared to conventional positive Poisson’s ratio materials. The re-entrant geometry can be created through 3D printing for convenient application of these materials. This paper investigates the mechanical properties of 3D printed chiral auxetic geometries of various sizes. Small scale samples were printed using an ordinary 3D printer and were tested under compression and tension to ascertain their strength and deformation characteristics. A maximum NPR of -9 was obtained under compression and tension. The re-entrant chiral cell size has been shown to affect the mechanical properties of the re-entrant chiral auxetics.

Keywords: auxetic materials, 3D printing, Negative Poisson’s Ratio, re-entrant chiral auxetics

Procedia PDF Downloads 122
6764 The Next Game Changer: 3-D Printed Musical Instruments

Authors: Leonardo Ko

Abstract:

In an era marked by rapid technological innovation, the classical instrument industry nonetheless has not seen significant change. Is this a matter of stubborn traditionalism, or do old, conventional instruments really sound better? Because of the widespread use of 3-D printing, it seems feasible to produce modern, 3-D printed instruments that adhere to the basic conventions of standard construction. This study aimed to design and create a practical, effective 3-D printed acoustic violin. A cost-benefit analysis of materials and design is presented in addition to a report on sound tests in which a pool of professional musicians compared the traditional violin to its synthetic counterpart with regard to acoustic properties. With a low-cost yet functional instrument, musicians of all levels would be able to afford instruments with much greater ease; the present study thus hopes to contribute to efforts to increase the accessibility of classical music education.

Keywords: acoustic musical instrument, classical musical education, low-cost, 3-D printing

Procedia PDF Downloads 229
6763 Selection and Preparation of High Performance, Natural and Cost-Effective Hydrogel as a Bio-Ink for 3D Bio-Printing and Organ on Chip Applications

Authors: Rawan Ashraf, Ahmed E. Gomaa, Gehan Safwat, Ayman Diab

Abstract:

Background: Three-dimensional (3D) bio-printing has become a versatile and powerful method for generating a variety of biological constructs, including bone or extracellular matrix scaffolds endo- or epithelial, muscle tissue, as well as organoids. Aim of the study: Fabricate a low cost DIY 3D bio-printer to produce 3D bio-printed products such as anti-microbial packaging or multi-organs on chips. We demonstrate the alignment between two types of 3D printer technology (3D Bio-printer and DLP) on Multi-organ-on-a-chip (multi-OoC) devices fabrication. Methods: First, Design and Fabrication of the Syringe Unit for Modification of an Off-the-Shelf 3D Printer, then Preparation of Hydrogel based on natural polymers Sodium Alginate and Gelatin, followed by acquisition of the cell suspension, then modeling the desired 3D structure. Preparation for 3D printing, then Cell-free and cell-laden hydrogels went through the printing process at room temperature under sterile conditions and finally post printing curing process and studying the printed structure regards physical and chemical characteristics. The hard scaffold of the Organ on chip devices was designed and fabricated using the DLP-3D printer, following similar approaches as the Microfluidics system fabrication. Results: The fabricated Bio-Ink was based onHydrogel polymer mix of sodium alginate and gelatin 15% to 0.5%, respectively. Later the 3D printing process was conducted using a higher percentage of alginate-based hydrogels because of it viscosity and the controllable crosslinking, unlike the thermal crosslinking of Gelatin. The hydrogels were colored to simulate the representation of two types of cells. The adaption of the hard scaffold, whether for the Microfluidics system or the hard-tissues, has been acquired by the DLP 3D printers with fabricated natural bioactive essential oils that contain antimicrobial activity, followed by printing in Situ three complex layers of soft-hydrogel as a cell-free Bio-Ink to simulate the real-life tissue engineering process. The final product was a proof of concept for a rapid 3D cell culturing approaches that uses an engineered hard scaffold along with soft-tissues, thus, several applications were offered as products of the current prototype, including the Organ-On-Chip as a successful integration between DLP and 3D bioprinter. Conclusion: Multiple designs for the organ-on-a-chip (multi-OoC) devices have been acquired in our study with main focus on the low cost fabrication of such technology and the potential to revolutionize human health research and development. We describe circumstances in which multi-organ models are useful after briefly examining the requirement for full multi-organ models with a systemic component. Following that, we took a look at the current multi-OoC platforms, such as integrated body-on-a-chip devices and modular techniques that use linked organ-specific modules.

Keywords: 3d bio-printer, hydrogel, multi-organ on chip, bio-inks

Procedia PDF Downloads 174
6762 Indoor Air Pollution of the Flexographic Printing Environment

Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević

Abstract:

The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.

Keywords: flexographic printing, indoor air, multiple regression analysis, pollution emission

Procedia PDF Downloads 197
6761 Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric

Authors: N. Najafi, Laleh Maleknia , M. E. Olya

Abstract:

An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink.

Keywords: ink-jet printing, carbon nanotube, fabric ink, cotton fabric, raman spectroscopy, fourier transform infrared spectroscopy, dozen printings

Procedia PDF Downloads 422
6760 A Study and Design Scarf Collection Applied Vietnamese Traditional Patterns by Using Printing Method on Fabric

Authors: Mai Anh Pham Ho

Abstract:

Scarf products today is a symbol of fashion to decorate, to make our life more beautiful and bring new features to our living space. It also shows the cultural identity by using the traditional patterns that make easily to introduce the image of Vietnam to other nations all over the world. Therefore, the purpose of this research is to classify Vietnamese traditional patterns according to the era and dynasties. Vietnamese traditional patterns through the dynasties of Vietnamese history are done and classified by five groups of patterns including the geometric patterns, the natural patterns, the animal patterns, the floral patterns, and the character patterns in the Prehistoric times, the Bronze and Iron age, the Chinese domination, the Ngo-Dinh-TienLe-Ly-Tran-Ho dynasty, and the LeSo-Mac-LeTrinh-TaySon-Nguyen dynasty. Besides, there are some special kinds of Vietnamese traditional patterns like buffalo, lotus, bronze-drum, Phuc Loc Tho character, and so on. Extensive research was conducted for modernizing scarf collection applied Vietnamese traditional patterns which the fashion trend is used on creating works. The concept, target, image map, lifestyle map, motif, colours, arrangement and completion of patterns on scarf were set up. The scarf collection is designed and developed by the Adobe Illustrator program with three colour ways for each scarf. Upon completion of the research, digital printing technology is chosen for using on scarf collection which Vietnamese traditional patterns were researched deeply and widely with the purpose of establishment the basic background for Vietnamese culture in order to identify Vietnamese national personality as well as establish and preserve the cultural heritage.

Keywords: scarf collection, Vietnamese traditional patterns, printing methods, fabric design

Procedia PDF Downloads 342
6759 Material Selection for Footwear Insole Using Analytical Hierarchal Process

Authors: Mohammed A. Almomani, Dina W. Al-Qudah

Abstract:

Product performance depends on the type and quality of its building material. Successful product must be made using high quality material, and using the right methods. Many foot problems took place as a result of using poor insole material. Therefore, selecting a proper insole material is crucial to eliminate these problems. In this study, the analytical hierarchy process (AHP) is used to provide a systematic procedure for choosing the best material adequate for this application among three material alternatives (polyurethane, poron, and plastzote). Several comparison criteria are used to build the AHP model including: density, stiffness, durability, energy absorption, and ease of fabrication. Poron was selected as the best choice. Inconsistency testing indicates that the model is reasonable, and the materials alternative ranking is effective.

Keywords: AHP, footwear insole, insole material, materials selection

Procedia PDF Downloads 349
6758 The Low-Cost Design and 3D Printing of Structural Knee Orthotics for Athletic Knee Injury Patients

Authors: Alexander Hendricks, Sean Nevin, Clayton Wikoff, Melissa Dougherty, Jacob Orlita, Rafiqul Noorani

Abstract:

Knee orthotics play an important role in aiding in the recovery of those with knee injuries, especially athletes. However, structural knee orthotics is often very expensive, ranging between $300 and $800. The primary reason for this project was to answer the question: can 3D printed orthotics represent a viable and cost-effective alternative to present structural knee orthotics? The primary objective for this research project was to design a knee orthotic for athletes with knee injuries for a low-cost under $100 and evaluate its effectiveness. The initial design for the orthotic was done in SolidWorks, a computer-aided design (CAD) software available at Loyola Marymount University. After this design was completed, finite element analysis (FEA) was utilized to understand how normal stresses placed upon the knee affected the orthotic. The knee orthotic was then adjusted and redesigned to meet a specified factor-of-safety of 3.25 based on the data gathered during FEA and literature sources. Once the FEA was completed and the orthotic was redesigned based from the data gathered, the next step was to move on to 3D-printing the first design of the knee brace. Subsequently, physical therapy movement trials were used to evaluate physical performance. Using the data from these movement trials, the CAD design of the brace was refined to accommodate the design requirements. The final goal of this research means to explore the possibility of replacing high-cost, outsourced knee orthotics with a readily available low-cost alternative.

Keywords: 3D printing, knee orthotics, finite element analysis, design for additive manufacturing

Procedia PDF Downloads 181