Search results for: pile design
12481 Investigation of Ground Disturbance Caused by Pile Driving: Case Study
Authors: Thayalan Nall, Harry Poulos
Abstract:
Piling is the most widely used foundation method for heavy structures in poor soil conditions. The geotechnical engineer can choose among a variety of piling methods, but in most cases, driving piles by impact hammer is the most cost-effective alternative. Under unfavourable conditions, driving piles can cause environmental problems, such as noise, ground movements and vibrations, with the risk of ground disturbance leading to potential damage to proposed structures. In one of the project sites in which the authors were involved, three offshore container terminals, namely CT1, CT2 and CT3, were constructed over thick compressible marine mud. The seabed was around 6m deep and the soft clay thickness within the project site varied between 9m and 20m. CT2 and CT3 were connected together and rectangular in shape and were 2600mx800m in size. CT1 was 400m x 800m in size and was located on south opposite of CT2 towards its eastern end. CT1 was constructed first and due to time and environmental limitations, it was supported on a “forest” of large diameter driven piles. CT2 and CT3 are now under construction and are being carried out using a traditional dredging and reclamation approach with ground improvement by surcharging with vertical drains. A few months after the installation of the CT1 piles, a 2600m long sand bund to 2m above mean sea level was constructed along the southern perimeter of CT2 and CT3 to contain the dredged mud that was expected to be pumped. The sand bund was constructed by sand spraying and pumping using a dredging vessel. About 2000m length of the sand bund in the west section was constructed without any major stability issues or any noticeable distress. However, as the sand bund approached the section parallel to CT1, it underwent a series of deep seated failures leading the displaced soft clay materials to heave above the standing water level. The crest of the sand bund was about 100m away from the last row of piles. There were no plausible geological reasons to conclude that the marine mud only across the CT1 region was weaker than over the rest of the site. Hence it was suspected that the pile driving by impact hammer may have caused ground movements and vibrations, leading to generation of excess pore pressures and cyclic softening of the marine mud. This paper investigates the probable cause of failure by reviewing: (1) All ground investigation data within the region; (2) Soil displacement caused by pile driving, using theories similar to spherical cavity expansion; (3) Transfer of stresses and vibrations through the entire system, including vibrations transmitted from the hammer to the pile, and the dynamic properties of the soil; and (4) Generation of excess pore pressure due to ground vibration and resulting cyclic softening. The evidence suggests that the problems encountered at the site were primarily caused by the “side effects” of the pile driving operations.Keywords: pile driving, ground vibration, excess pore pressure, cyclic softening
Procedia PDF Downloads 23412480 Load-Settlement Behaviour of Geogrid-Reinforced Sand Bed over Granular Piles
Authors: Sateesh Kumar Pisini, Swetha Priya Darshini Thammadi, Sanjay Kumar Shukla
Abstract:
Granular piles are a popular ground improvement technique in soft cohesive soils as well as for loose non-cohesive soils. The present experimental study has been carried out on granular piles in loose (Relative density = 30%) and medium dense (Relative density = 60%) sands with geogrid reinforcement within the sand bed over the granular piles. A group of five piles were installed in the sand at different spacing, s = 2d, 3d and 4d, d being the diameter of the pile. The length (L = 0.4 m) and diameter (d = 50 mm) of the piles were kept constant for all the series of experiments. The load-settlement behavior of reinforced sand bed and granular piles system was studied by applying the load on a square footing. The results show that the effect of reinforcement increases the load bearing capacity of the piles. It is also found that an increase in spacing between piles decreases the settlement for both loose and medium dense soil.Keywords: granular pile, load-carrying capacity, settlement, geogrid reinforcement, sand
Procedia PDF Downloads 38912479 Numerical Evaluation of Lateral Bearing Capacity of Piles in Cement-Treated Soils
Authors: Reza Ziaie Moayed, Saeideh Mohammadi
Abstract:
Soft soil is used in many of civil engineering projects like coastal, marine and road projects. Because of low shear strength and stiffness of soft soils, large settlement and low bearing capacity will occur under superstructure loads. This will make the civil engineering activities more difficult and costlier. In the case of soft soils, improvement is a suitable method to increase the shear strength and stiffness for engineering purposes. In recent years, the artificial cementation of soil by cement and lime has been extensively used for soft soil improvement. Cement stabilization is a well-established technique for improving soft soils. Artificial cementation increases the shear strength and hardness of the natural soils. On the other hand, in soft soils, the use of piles to transfer loads to the depths of ground is usual. By using cement treated soil around the piles, high bearing capacity and low settlement in piles can be achieved. In the present study, lateral bearing capacity of short piles in cemented soils is investigated by numerical approach. For this purpose, three dimensional (3D) finite difference software, FLAC 3D is used. Cement treated soil has a strain hardening-softening behavior, because of breaking of bonds between cement agent and soil particle. To simulate such behavior, strain hardening-softening soil constitutive model is used for cement treated soft soil. Additionally, conventional elastic-plastic Mohr Coulomb constitutive model and linear elastic model are used for stress-strain behavior of natural soils and pile. To determine the parameters of constitutive models and also for verification of numerical model, the results of available triaxial laboratory tests on and insitu loading of piles in cement treated soft soil are used. Different parameters are considered in parametric study to determine the effective parameters on the bearing of the piles on cemented treated soils. In the present paper, the effect of various length and height of the artificial cemented area, different diameter and length of the pile and the properties of the materials are studied. Also, the effect of choosing a constitutive model for cemented treated soils in the bearing capacity of the pile is investigated.Keywords: bearing capacity, cement-treated soils, FLAC 3D, pile
Procedia PDF Downloads 12512478 Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests
Authors: Md. Kausar Alam, Ramin Motamed
Abstract:
The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures.Keywords: excess pore water pressure, foundation settlement, press-in sheet pile, soil liquefaction
Procedia PDF Downloads 9512477 Using Bamboo Structures for Protecting Mangrove Ecosystems: A Nature-Based Approach
Authors: Sourabh Harihar, Henk Jan Verhagen
Abstract:
The nurturing of a mangrove ecosystem requires a protected coastal environment with adequate drainage of the soil substratum. In a conceptual design undertaken for a mangrove rejuvenation project along the eastern coast of Mumbai (India), various engineering alternatives have been thought of as a protective coastal structure and drainage system. One such design uses bamboo-pile walls in creating shielded compartments in the form of various layouts, coupled with bamboo drains. The bamboo-based design is found to be environmentally and economically advantageous over other designs like sand-dikes which are multiple times more expensive. Moreover, employing a natural material such as bamboo helps the structure naturally blend with the developing mangrove habitat, allaying concerns about dismantling the structure post mangrove growth. A cost-minimising and eco-friendly bamboo structure, therefore, promises to pave the way for large rehabilitation projects in future. As mangrove ecosystems in many parts of the world increasingly face the threat of destruction due to urban development and climate change, protective nature-based designs that can be built in a short duration are the need of the hour.Keywords: bamboo, environment, mangrove, rehabilitation
Procedia PDF Downloads 28112476 Design Charts for Strip Footing on Untreated and Cement Treated Sand Mat over Underlying Natural Soft Clay
Authors: Sharifullah Ahmed, Sarwar Jahan Md. Yasin
Abstract:
Shallow foundations on unimproved soft natural soils can undergo a high consolidation and secondary settlement. For low and medium rise building projects on such soil condition, pile foundation may not be cost effective. In such cases an alternative to pile foundations may be shallow strip footings placed on a double layered improved soil system soil. The upper layer of this system is untreated or cement treated compacted sand and underlying layer is natural soft clay. This system will reduce the settlement to an allowable limit. The current research has been conducted with the settlement of a rigid plane-strain strip footing of 2.5 m width placed on the surface of a soil consisting of an untreated or cement treated sand layer overlying a bed of homogeneous soft clay. The settlement of the mentioned shallow foundation has been studied considering both cases with the thicknesses of the sand layer are 0.3 to 0.9 times the width of footing. The response of the clay layer is assumed as undrained for plastic loading stages and drained during consolidation stages. The response of the sand layer is drained during all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0. A natural clay deposit of 15 m thickness and 18 m width has been modeled using Hardening Soil Model, Soft Soil Model, Soft Soil Creep Model, and upper improvement layer has been modeled using only Hardening Soil Model. The groundwater level is at the top level of the clay deposit that made the system fully saturated. Parametric study has been conducted to determine the effect of thickness, density, cementation of the sand mat and density, shear strength of the soft clay layer on the settlement of strip foundation under the uniformly distributed vertical load of varying value. A set of the chart has been established for designing shallow strip footing on the sand mat over thick, soft clay deposit through obtaining the particular thickness of sand mat for particular subsoil parameter to ensure no punching shear failure and no settlement beyond allowable level. Design guideline in the form of non-dimensional charts has been developed for footing pressure equivalent to medium-rise residential or commercial building foundation with strip footing on soft inorganic Normally Consolidated (NC) soil of Bangladesh having void ratio from 1.0 to 1.45.Keywords: design charts, ground improvement, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay
Procedia PDF Downloads 12212475 Subsurface Exploration for Soil Geotechnical Properties and its Implications for Infrastructure Design and Construction in Victoria Island, Lagos, Nigeria
Authors: Sunday Oladele, Joseph Oluwagbeja Simeon
Abstract:
Subsurface exploration, integrating methods of geotechnics and geophysics, of a planned construction site in the coastal city of Lagos, Nigeria has been carried out with the aim of characterizing the soil properties and their implication for the proposed infrastructural development. Six Standard Penetration Tests (SPT), fourteen Dutch Cone Penetrometer Tests (DCPT) and 2D Electrical Resistivity Imaging employing Dipole-dipole and Pole-dipole arrays were implemented on the site. The topsoil (0 - 4m) consists of highly compacted sandy lateritic clay(10 to 5595Ωm) to 1.25m in some parts and dense sand in other parts to 5.50m depth. This topsoil was characterized as a material of very high shear strength (≤ 150kg/m2) and allowable bearing pressure value of 54kN/m2 to 85kN/m2 and a safety factor of 2.5. Soft amorphous peat/peaty clay (0.1 to 11.4Ωm), 3-6m thick, underlays the lateritic clay to about 18m depth. Grey, medium dense to very dense sand (0.37 to 2387Ωm) with occasional gravels underlies the peaty clay down to 30m depth. Within this layer, the freshwater bearing zones are characterized by high resistivity response (83 to 2387Ωm), while the clayey sand/saline water intruded sand produced subdued resistivity output (0.37 to 40Ωm). The overall ground-bearing pressure for the proposed structure would be 225kN/m2. Bored/cast-in-place pile at 18.00m depth with any of these diameters and respective safe working loads 600mm/1,140KN, 800mm/2,010KN and 1000mm/3,150KN is recommended for the proposed multi-story structure.Keywords: subsurface exploration, Geotechnical properties, resistivity imaging, pile
Procedia PDF Downloads 9112474 Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand
Authors: A. C. Galvis-Castro, R. D. Tovar, R. Salgado, M. Prezzi
Abstract:
It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles.Keywords: digital image correlation, piles, sand, shaft resistance
Procedia PDF Downloads 27112473 Experimental Study on Weak Cohesion Less Soil Using Granular Piles with Geogrid Reinforcement
Authors: Sateesh Kumar Pisini, Swetha Priya Pisini
Abstract:
Granular piles are becoming popular as a technique of deep ground improvement not only in soft cohesive soils but also in loose cohesionless deposits. The present experimental study has been carried out on granular piles in sand (loose sand and medium dense sand i.e. relative density at 15% and 30%) with geogrid reinforcement. In this experimental study, a group of five piles installed in sand (at different spacing i.e s = 2d, 3d and 4d) the length and diameter of the pile (L = 0.4 m and d= 50 mm) kept as same for all series of experiments. Geogrid reinforcement is provided on granular piles with a limited number of laboratory tests. It has been conducted in laboratory to study the behavior of a granular pile with reinforced geogrid layers supporting a square footing at different s/d ratios. The influence of geogrid layers providing on granular piles investigated through model tests. In this paper the experimental study carried out results in significant increase in load carrying capacity and decrease in settlement reduction of the weak cohesionless soil. Also, the behavior of load carrying capacity and settlement with changing the s/d ratio has been carried out through a parametric study.Keywords: granular piles, cohesionless soil, geogrid reinforcement, load carrying capacity
Procedia PDF Downloads 25812472 A Textile-Based Scaffold for Skin Replacements
Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel
Abstract:
The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization
Procedia PDF Downloads 25612471 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor
Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park
Abstract:
A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system
Procedia PDF Downloads 21612470 Cantilever Shoring Piles with Prestressing Strands: An Experimental Approach
Authors: Hani Mekdash, Lina Jaber, Yehia Temsah
Abstract:
Underground space is becoming a necessity nowadays, especially in highly congested urban areas. Retaining underground excavations using shoring systems is essential in order to protect adjoining structures from potential damage or collapse. Reinforced Concrete Piles (RCP) supported by multiple rows of tie-back anchors are commonly used type of shoring systems in deep excavations. However, executing anchors can sometimes be challenging because they might illegally trespass neighboring properties or get obstructed by infrastructure and other underground facilities. A technique is proposed in this paper, and it involves the addition of eccentric high-strength steel strands to the RCP section through ducts without providing the pile with lateral supports. The strands are then vertically stressed externally on the pile cap using a hydraulic jack, creating a compressive strengthening force in the concrete section. An experimental study about the behavior of the shoring wall by pre-stressed piles is presented during the execution of an open excavation in an urban area (Beirut city) followed by numerical analysis using finite element software. Based on the experimental results, this technique is proven to be cost-effective and provides flexible and sustainable construction of shoring works.Keywords: deep excavation, prestressing, pre-stressed piles, shoring system
Procedia PDF Downloads 11612469 Provision of Slope Stability with Barette Piles: A Case Analysis
Authors: Leyla Yesilbas, M. Sukru Ozcoban, M. Ergenekon Selcuk
Abstract:
From past to present, there is a constant need for engineering structures such as high-rise buildings, wide-span bridges, airports and stadiums, business towers due to technological developments and increasing population. Because of the large loads transferred from the superstructure to the ground layers in these types of structures, the bearing strength and seating problems usually occur on the floors. In order to solve these problems, piled foundations are used by passing the weak soil layers and transferring the loads from the superstructure to the solid soil layers. Considering the factors such as the characteristics of the building to be constructed, the purpose and location of the building, the basic cost of the pile should be at normal levels. When these requirements are taken into consideration, a new basic system called 'Barette Foundation' has been developed. In this thesis, an application made to provide slope stability with 'Baret Piles' was investigated. In addition, the ground parameters obtained from the field and laboratory experiments were numerically modeled using a PLAXİS 2D finite element software and barette piles. The effects of barette piles on slope stability were investigated by numerical analysis, and the results of inclinometer measurements in the field were compared with numerical analysis results.Keywords: barette pile, PLAXİS 2D, slope, soil
Procedia PDF Downloads 12412468 Reliability-based Condition Assessment of Offshore Wind Turbines using SHM data
Authors: Caglayan Hizal, Hasan Emre Demirci, Engin Aktas, Alper Sezer
Abstract:
Offshore wind turbines consist of a long slender tower with a heavy fixed mass on the top of the tower (nacelle), together with a heavy rotating mass (blades and hub). They are always subjected to environmental loads including wind and wave loads in their service life. This study presents a three-stage methodology for reliability-based condition assessment of offshore wind-turbines against the seismic, wave and wind induced effects considering the soil-structure interaction. In this context, failure criterions are considered as serviceability limits of a monopile supporting an Offshore Wind Turbine: (a) allowable horizontal displacement at pile head should not exceed 0.2 m, (b) rotations at pile head should not exceed 0.5°. A Bayesian system identification framework is adapted to the classical reliability analysis procedure. Using this framework, a reliability assessment can be directly implemented to the updated finite element model without performing time-consuming methods. For numerical verification, simulation data of the finite model of a real offshore wind-turbine structure is investigated using the three-stage methodology.Keywords: Offshore wind turbines, SHM, reliability assessment, soil-structure interaction
Procedia PDF Downloads 52712467 Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values
Authors: K. Ivandic, F. Dodigovic, D. Stuhec, S. Strelec
Abstract:
A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared.Keywords: characteristic values, engineering judgement, Eurocode 7, statistical methods
Procedia PDF Downloads 29412466 Research on Comfort Degree Design and Practical Design of Wearing Type Headphones
Authors: Kuan-Wu Lin, Tsu-Wu Hu
Abstract:
In recent years, product design has already begun to comfort and humanize, and for different user needs to design products, In particular, closer relationship with the people of the products, Such as headphones and other consumer electronics products. In this study, will for general comfort design principles and field survey results through the use of a headset, including adolescents, young and middle-aged groups such as three users, Further identify the general design principles belong to the headset comfortable design. The study results will include the significance of headphones design and differences between product design principles, Provide the basis for future product design.Keywords: wearing type headphones , comfort degree design, general design principles, product design
Procedia PDF Downloads 32512465 Using Mind Mapping and Morphological Analysis within a New Methodology for Teaching Students of Products’ Design
Authors: Kareem Saber
Abstract:
Many products’ design instructors search for how to help students to develop their designs simply by reducing design stages and extrapolating simple design process forms to achieve design creativity. So, the researcher extrapolated a new design process form called “hierarchical design” which reduced design process into three stages and he had tried that methodology on about two hundred students. That trial had led to great results as students could develop their designs which characterized by creativity and innovation. That proved the success and effectiveness of the proposed methodology.Keywords: mind mapping, morphological analysis, product design, design process
Procedia PDF Downloads 17512464 A Comparison of Design and Off-Design Performances of a Centrifugal Compressor
Authors: Zeynep Aytaç, Nuri Yücel
Abstract:
Today, as the need for high efficiency and fuel-efficient engines have increased, centrifugal compressor designs are expected to be high-efficient and have high-pressure ratios than ever. The present study represents a design methodology of centrifugal compressor placed in a mini jet engine for the design and off-design points with the utilization of computational fluid dynamics (CFD) and compares the performance characteristics at the mentioned two points. Although the compressor is expected to provide the required specifications at the design point, it is known that it is important for the design to deliver the required parameters at the off-design point also as it will not operate at the design point always. It was observed that the obtained mass flow rate, pressure ratio, and efficiency values are within the limits of the design specifications for the design and off-design points. Despite having different design inputs for the mentioned two points, they reveal similar flow characteristics in the general frame.Keywords: centrifugal compressor, computational fluid dynamics, design point, off-design point
Procedia PDF Downloads 14312463 Three-Dimensional Finite Element Analysis of Geogrid-Reinforced Piled Embankments on Soft Clay
Authors: Mahmoud Y. Shokry, Rami M. El-Sherbiny
Abstract:
This paper aims to highlight the role of some parameters that may be of a noticeable impact on numerical analysis/design of embankments. It presents the results of a three-dimensional (3-D) finite element analysis of a monitored earth embankment that was constructed on soft clay formation stabilized by cast in-situ piles using software PLAXIS 3D. A comparison between the predicted and the monitored responses is presented to assess the adequacy of the adopted numerical model. The model was used in the targeted parametric study. Moreover, a comparison was performed between the results of the 3-D analyses and the analytical solutions. This paper concluded that the effect of using mono pile caps led to decrease both the total and differential settlement and increased the efficiency of the piled embankment system. The study of using geogrids revealed that it can contribute in decreasing the settlement and maximizing the part of the embankment load transferred to piles. Moreover, it was found that increasing the stiffness of the geogrids provides higher values of tensile forces and hence has more effective influence on embankment load carried by piles rather than using multi-number of layers with low values of geogrid stiffness. The efficiency of the piled embankments system was also found to be greater when higher embankments are used rather than the low height embankments. The comparison between the numerical 3-D model and the theoretical design methods revealed that many analytical solutions are conservative and non-accurate rather than the 3-D finite element numerical models.Keywords: efficiency, embankment, geogrids, soft clay
Procedia PDF Downloads 32012462 Structural Performance of a Bridge Pier on Dubious Deep Foundation
Authors: Víctor Cecilio, Roberto Gómez, J. Alberto Escobar, Héctor Guerrero
Abstract:
The study of the structural behavior of a support/pier of an elevated viaduct in Mexico City is presented. Detection of foundation piles with uncertain integrity prompted the review of possible situations that could jeopardy the structural safety of the pier. The objective of this paper is to evaluate the structural conditions of the support, taking into account the type of anomaly reported and the depth at which it is located, the position of the pile with uncertain integrity in the foundation system, the stratigraphy of the surrounding soil and the geometry and structural characteristics of the pier. To carry out the above, dynamic analysis, spectral modal, and step-by-step, with elastic and inelastic material models, were performed. Results were evaluated in accordance with the standards used for the design of the original structural project and with the Construction Regulations for Mexico’s Federal District (RCDF-2017, 2017). Comments on the response of the analyzed models are issued, and the conclusions are presented from a structural point of view.Keywords: dynamic analysis, inelastic models, dubious foundation, bridge pier
Procedia PDF Downloads 13412461 The Role of Industrial Design in Fashion
Authors: Rojean Ghafariasar, Leili Nosrati
Abstract:
The article introduces the categories and characteristics of cross-design, respectively, between industry and industry designers, artists, brands and brands, science, technology, and fashion. It focuses on the combination of technology and fashion cross-design methods, corresponding case studies on the combination of new technology fabrics, fashion design, smart devices, and also 3D printing technology, emphasizing the integration and application value of technology and fashion. The document also introduces design elements into fashion design through scientific and technological intelligence, promoting fashion innovation as well as research and development of new materials and functions, and incubates an ecosystem for the fashion industry through science and technology.Keywords: fashion, design, industrial design, crossover design
Procedia PDF Downloads 9012460 Emulation Model in Architectural Education
Authors: Ö. Şenyiğit, A. Çolak
Abstract:
It is of great importance for an architectural student to know the parameters through which he/she can conduct his/her design and makes his/her design effective in architectural education. Therefore; an empirical application study was carried out through the designing activity using the emulation model to support the design and design approaches of architectural students. During the investigation period, studies were done on the basic design elements and principles of the fall semester, and the emulation model, one of the designing methods that constitute the subject of the study, was fictionalized as three phased “recognition-interpretation-application”. As a result of the study, it was observed that when students were given a key method during the design process, their awareness increased and their aspects improved as well.Keywords: basic design, design education, design methods, emulation
Procedia PDF Downloads 23412459 Exploring the Dualistic Nature of Design: Integrative Perspectives and Methodological Approaches in Design Research
Authors: Joni Agung Sudarmanto
Abstract:
The concept of design has historically been elusive and characterized by its fluidity, leading to divergent viewpoints on its fundamental nature. Guy Julier views design as inherent in material culture, while Sanders sees it as a collective endeavor focusing on the outcome. Design's dualistic nature, procedural and outcome-oriented, spans various domains, including objects, individuals, and the environment. This comprehensive view of design challenges the notion that design practice is distinct from research, highlighting their shared exploratory nature. The article explores methodological techniques in design research and the three prevalent approaches: "into design," "through design," and "for design." The contradictory meanings of design arise from its etymology and its duality as both process and result, leading to its integrative nature across objects, humans, and the environment. The parallels between design and research activities, underscoring their exploratory and knowledge-generating nature, are situated within creative research, challenging the perception of design practice as separate from research endeavors. The "into design" approach encourages interdisciplinary collaboration, enriching design research with diverse perspectives. The "through design" approach bridges theory and practice, producing more practical outcomes. The "for design" approach supports specific design solutions, providing designers with valuable guidance.Keywords: dualistic nature of design, integrative perspectives, methodological approaches, design research
Procedia PDF Downloads 7112458 Effect of Size and Soil Characteristic on Contribution of Side and Tip Resistance of the Drilled Shafts Axial Load Carrying Capacity
Authors: Mehrak Zargaryaeghoubi, Masood Hajali
Abstract:
Drilled shafts are the most popular of deep foundations, because they have the capability that one single shaft can easily carry the entire load of a large column from a bridge or tall building. Drilled shaft may be an economical alternative to pile foundations because a pile cap is not needed, which not only reduces that expense, but also provides a rough surface in the border of soil and concrete to carry a more axial load. Due to the larger construction sizes of drilled shafts, they have an excellent axial load carrying capacity. Part of the axial load carrying capacity of the drilled shaft is resisted by the soil below the tip of the shaft which is tip resistance and the other part is resisted by the friction developed around the drilled shaft which is side resistance. The condition at the bottom of the excavation can affect the end bearing capacity of the drilled shaft. Also, type of the soil and size of the drilled shaft can affect the frictional resistance. The main loads applied on the drilled shafts are axial compressive loads. It is important to know how many percent of the maximum applied load will be shed inside friction and how much will be transferred to the base. The axial capacity of the drilled shaft foundation is influenced by the size of the drilled shaft, and soil characteristics. In this study, the effect of the size and soil characteristic will be investigated on the contribution of side resistance and end-bearing capacity. Also, the study presents a three-dimensional finite element modeling of a drilled shaft subjected to axial load using ANSYS. The top displacement and settlement of the drilled shaft are verified with analytical results. The soil profile is considered as Table 1 and for a drilled shaft with 7 ft diameter and 95 ft length the stresses in z-direction are calculated through the length of the shaft. From the stresses in z-direction through the length of the shaft the side resistance can be calculated and with the z-direction stress at the tip, the tip resistance can be calculated. The result of the side and tip resistance for this drilled shaft are compared with the analytical results.Keywords: Drilled Shaft Foundation, size and soil characteristic, axial load capacity, Finite Element
Procedia PDF Downloads 37812457 Quality Assurance in Software Design Patterns
Authors: Rabbia Tariq, Hannan Sajjad, Mehreen Sirshar
Abstract:
Design patterns are widely used to make the process of development easier as they greatly help the developers to develop the software. Different design patterns have been introduced till now but the behavior of same design pattern may differ in different domains that can lead to the wrong selection of the design pattern. The paper aims to discover the design patterns that suits best with respect to their domain thereby helping the developers to choose an effective design pattern. It presents the comprehensive analysis of design patterns based on different methodologies that include simulation, case study and comparison of various algorithms. Due to the difference of the domain the methodology used in one domain may be inapplicable to the other domain. The paper draws a conclusion based on strength and limitation of each design pattern in their respective domain.Keywords: design patterns, evaluation, quality assurance, software domains
Procedia PDF Downloads 51812456 An Exploratory Study of Chinese Paper-Cut Art in Household Product Design
Authors: Ruining Wu, Na Song
Abstract:
Paper-cut, as one of the Chinese traditional folk decoration art, has become a unique visual aesthetic characteristics of the Chinese nation in the long-term evolution of cultural symbols. Chinese paper-cut art is the treasure-house for product design in natural resources. This paper first analyzed Chinese folk art of historical origin, cultural background, cultural values, aesthetic value, style features of Chinese paper cut art, then analyzed the design thought and design cases of paper-cut art application in different areas, such as clothing design, logo design and product design areas. Through the research of Chinese paper-cut art culture and design elements, this paper aims to build a household product design concept of Chinese traditional culture.Keywords: paper-cut art, culture, household products, design
Procedia PDF Downloads 61012455 The Development of Statistical Analysis in Agriculture Experimental Design Using R
Authors: Somruay Apichatibutarapong, Chookiat Pudprommart
Abstract:
The purpose of this study was to develop of statistical analysis by using R programming via internet applied for agriculture experimental design. Data were collected from 65 items in completely randomized design, randomized block design, Latin square design, split plot design, factorial design and nested design. The quantitative approach was used to investigate the quality of learning media on statistical analysis by using R programming via Internet by six experts and the opinions of 100 students who interested in experimental design and applied statistics. It was revealed that the experts’ opinions were good in all contents except a usage of web board and the students’ opinions were good in overall and all items.Keywords: experimental design, r programming, applied statistics, statistical analysis
Procedia PDF Downloads 36512454 International Comparison in Component of Design-Potential
Authors: Kazuko Sakamoto
Abstract:
It is difficult to explain the factor of design preference only in culture or a geographical environment. It is necessary to turn one's eyes also to the factor in an individual. The purpose of this research is to clarify design potential which is inherent in consumers. Design potential is the consciousness and interpretation to an individual design. That is, it catches quantitatively the preparatory state which faces design. For example, a mobile phone differs in designs, such as a color and a form, by the country or the area. It is considered because a regional consumer taste exists. The root is design potential. This consists of design participation, design knowledge, and design sensitivity. Having focused this time is by design sensitivity, and international comparison of the Netherlands, Bangladesh, China, and Japan was performed. As a result, very interesting finding has been derived. For example, although Bangladesh caught the similarity of goods by the color, other three nations were caught in the form. Moreover, although the Netherlands, Bangladesh, and China liked symmetry, only Japan liked asymmetry. This shows that history and a cultural background have had big influence to the design.Keywords: design-potential, cultural difference, form characteristic, product development
Procedia PDF Downloads 37512453 Designing for Wearable Interactions: Exploring Care Design for Design Anthropology and Participatory Design
Authors: Wei-Chen Chang, Yu-Cheng Pei
Abstract:
This research examines wearable interaction design to mediate the design anthropology and participatory design found in technology and fashion. We will discuss the principles of design anthropology and participatory design using a wearable and fashion product process to transmit the ‘people-situation-reason-object’ method and analyze five sense applied examples that provide new thinking for designers engaged in future industry. Design anthropology and Participatory Design attempt to engage physiological and psychological design through technology-function, meaning-form and fashion aesthetics to achieve cognition between user and environment. The wearable interaction provides technological characteristics and semantic ideas transmitted to craft-cultural, collective, cheerful and creative performance. It is more confident and innovative attempt, that is able to achieve a joyful, fundamental interface. This study takes two directions for cultural thinking as the basis to establish a set of life-craft designs with interactive experience objects by users that assist designers in examining the sensual feelings to initiate a new lifestyle value.Keywords: design anthropology, wearable design, design communication, participatory design
Procedia PDF Downloads 23512452 Application of Proper Foundation in Building Construction
Authors: Chukwuma Anya, Mekwa Eme
Abstract:
Foundation is popularly defined as the lowest load-bearing part of a building, typically below the ground level. It serves as an underlying base which acts as the principle on which every building stands. There are various types of foundations in practice, which includes the strip, pile, pad, and raft foundations, and each of these have their various applications in building construction. However due to lack of professional knowledge, cost, or scheduled time frame to complete a certain project, some of these foundation types are some times neglected or used interchangeably, resulting to misuse or abuse of the building materials man, power, and some times altering the stability, balance and aesthetics of most buildings. This research work is aimed at educating the academic community on the proper application of the various foundation types to suit different environments such as the rain forest, desert, swampy area, rocky area etc. A proper application of the foundation will ensure the safety of the building from acid grounds, damping and weakening of foundation, even building settlement and stability. In addition to those, it will improve aesthetics, maintain cost effectiveness both construction cost and maintenance cost. Finally it will ensure the safety of the building and its inhabitants. At the end of this research work we will be able to differentiate the various foundation types and there proper application in the design and construction of buildings.Keywords: foundation, application, stability, aesthetics
Procedia PDF Downloads 71