Search results for: football results forecasts
37162 Enhancing Project Performance Forecasting using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management
Procedia PDF Downloads 4937161 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails
Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali
Abstract:
When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis
Procedia PDF Downloads 4837160 Soccer Match Result Prediction System (SMRPS) Model
Authors: Ajayi Olusola Olajide, Alonge Olaide Moses
Abstract:
Predicting the outcome of soccer matches poses an interesting challenge for which it is realistically impossible to successfully do so for every match. Despite this, there are lots of resources that are being expended on the correct prediction of soccer matches weekly, and all over the world. Soccer Match Result Prediction System Model (SMRPSM) is a system that is proposed whereby the results of matches between two soccer teams are auto-generated, with the added excitement of giving users a chance to test their predictive abilities. Soccer teams from different league football are loaded by the application, with each team’s corresponding manager and other information like team location, team logo and nickname. The user is also allowed to interact with the system by selecting the match to be predicted and viewing of the results of completed matches after registering/logging in.Keywords: predicting, soccer match, outcome, soccer, matches, result prediction, system, model
Procedia PDF Downloads 49137159 Case Study on Gender Equality in the United Arab Emirates through the Lens of Sport
Authors: Nioofar Margarite Rouhani
Abstract:
Using a case study methodology, this study explores the lived experiences of elite women footballers (soccer) team in the United Arab Emirates (UAE) and the challenges and enablers women in this country encountered in their journey to competing at an international level. Through a series of face-to-face interviews with members of the first all-Emirati (people with UAE passport) women’s football team, members of the team’s coaching staff and key policymakers, the study sought to explore the social and cultural conditions that enabled the emergence of this team. A key aim of the study was to analyze the cultural shifts that have seemingly facilitated changes to gender relations in the UAE and to highlight possibilities for future gender equality work. The study explores the significance of sport in UAE society and its role in disrupting traditional gender boundaries. To do this, the study identifies and analyses contemporary social (religion, class, and culture) conditions that facilitate, and/or restrict, women’s sports participation in the public sphere of sport. Drawing on a feminist poststructural framework the study sought to analyse the discursive enactment of (disruptive) gender identity positions, using lenses such as ‘discourse’ and ‘power’. With a particular focus on elite women’s sport, the study sought to build knowledge around the advance of female participation in what has long been considered as a masculine domain. Here, the study sought to explore the lived experience of social change through a series of face-to-face interviews with members of the first all-Emirati- women’s football team and key support personnel. To maintain representational integrity, the principles of narrative methodology were employed for their ability to privilege the voices of participants while integrating contextual forces that comprised the stories they told about their experiences and the key people who participated in them. This approach supported a key aim of the study, being to analyse the cultural shifts that have supported changes in gender performance in the UAE and to highlight possibilities for future gender disruption. While the results of the study convey a growing sense of opportunity for aspiring sportswomen in the UAE, they also reveal that the participant pathways were full of contestation and restriction. What we learn from the stories of the first Emirate women’s football team is that where the will is strong enough, there can be a way. While it is reasonable to assume that such pathways will become easier in the future, as the participation of women in such sporting arenas becomes less exceptional, there are factors that are likely to enable and disable such journeys. Prominent here is the presence of a ‘powerful’ guardian and mentor who can offer sustained support, and influence. In a society where males continue to have disproportionate access to social and domestic power, such support can be extremely influential. Guardians and mentors can play a crucial role in garnering the support of dominant male figures, or helping to find ways to work around it.Keywords: gender equality, women, sport, Middle East
Procedia PDF Downloads 10937158 Levy Model for Commodity Pricing
Authors: V. Benedico, C. Anacleto, A. Bearzi, L. Brice, V. Delahaye
Abstract:
The aim in present paper is to construct an affordable and reliable commodity prices based on a recalculation of its cost through time which allows visualize the potential risks and thus, take more appropriate decisions regarding forecasts. Here attention has been focused on Levy model, more reliable and realistic than classical random Gaussian one as it takes into consideration observed abrupt jumps in case of sudden price variation. In application to Energy Trading sector where it has never been used before, equations corresponding to Levy model have been written for electricity pricing in European market. Parameters have been set in order to predict and simulate the price and its evolution through time to remarkable accuracy. As predicted by Levy model, the results show significant spikes which reach unconventional levels contrary to currently used Brownian model.Keywords: commodity pricing, Lévy Model, price spikes, electricity market
Procedia PDF Downloads 42937157 Convergence or Divergence of Economic Growth within the ASEAN Community: Challenges for the AEC
Authors: Philippe Gugler
Abstract:
This contribution reflects some important questions regarding inter alia the economic development occurring in the light of the ASEAN’s goal of creating the ASEAN Economic Community (AEC) by 2015. We observe a continuing economic growth of GDP per capita over recent years despite the negative effects of the world economic crisis. IMF forecasts indicate that this trend will continue. The paper focuses on the analysis and comparison of economic growth trends of ASEAN countries.Keywords: ASEAN, convergence, divergence, economic growth, globalization, integration
Procedia PDF Downloads 51837156 Effect of Low to Moderate Altitude on Football Performance: An Analysis of Thirteen Seasons in the South African Premier Soccer League
Authors: Khatija Bahdur, Duane Dell’Oca
Abstract:
There is limited information on how altitude impacts performance in a team sport. Most altitude research in football has been conducted at high elevation ( > 2500m), resulting in a chasm of understanding whether low to moderate altitude affects performance. The South African Premier Soccer League (PSL) fixtures entail matches played at altitudes from sea level to 1700m above mean sea level. Despite coaches highlighting the effect of altitude on performance outcomes in matches, further research is needed to establish whether altitude does impact match results. Greater insight into if and how altitude impacts performance in the PSL will assist coaches in deciding if and how to incorporate altitude in their planning. The purpose of this study is to fill in this gap through the use of a retrospective analysis of PSL matches. This quantitative study is based on a descriptive analysis of 181 PSL matches involving one team based at sea-level, taking place over a period of thirteen seasons. The following data were obtained: altitude at which the match was played, match result, the timing of goals, and timing of substitutions. The altitude was classified in 2 ways: inland ( > 500m) and coastal ( < 500m) and also further subdivided into narrower categories ( < 500m, 500-1000m, 1000-1300m; 1300-1500m, > 1500m). The analysis included a 2-sample t-test to determine differences in total goals scored and timing of goals for inland and coastal matches and the chi-square test to identify the significance of altitude on match results. The level of significance was set at the alpha level of 0.05. Match results are significantly affected by the altitude and level of altitude within inland teams most likely to win when playing at inland venues (p=0.000). The proportion of draws was slightly higher at the coast. At altitudes between 500-1000m, 1300-1500m, and 1500-1700m, a greater percentage of matches were won by coastal teams as opposed to draws. The timing of goals varied based on the team’s base altitude and the match elevation. The most significant differences were between 36-40 minutes (p=0.023), 41-45 minutes (p=0.000) and 50-65 minutes (p=0.000). When breaking down inland team’s matches to different altitude categories, greater differences were highlighted. Inland teams scored more goals per minute between 10-20 minute (p=0.009), 41-45 minutes (p=0.003) and 50-65 minutes (p=0.015). The total number of goals scored per match at different altitudes by a) inland teams (p=0.000), b) coastal teams (p=0.006). Coastal teams made significantly more substitutions when playing at altitude (p=0.034), although there were no significant differences when comparing the different altitude categories. The timing of all three changes, however, did vary significantly at the different altitudes. There were no significant differences in timing or number of substitutions for inland teams. Match results and timing of goals are influenced by altitude, with differences between the level of altitude also playing a role. The trends indicate that inland teams win more matches when playing at altitude against coastal teams, and they score more goals just prior to half-time and in the first quarter of the second half.Keywords: coastal teams, inland teams, timing of goals, results, substitutions
Procedia PDF Downloads 13137155 Determining the Number of Single Models in a Combined Forecast
Authors: Serkan Aras, Emrah Gulay
Abstract:
Combining various forecasting models is an important tool for researchers to attain more accurate forecasts. A great number of papers have shown that selecting single models as dissimilar models, or methods based on different information as possible leads to better forecasting performances. However, there is not a certain rule regarding the number of single models to be used in any combining methods. This study focuses on determining the optimal or near optimal number for single models with the help of statistical tests. An extensive experiment is carried out by utilizing some well-known time series data sets from diverse fields. Furthermore, many rival forecasting methods and some of the commonly used combining methods are employed. The obtained results indicate that some statistically significant performance differences can be found regarding the number of the single models in the combining methods under investigation.Keywords: combined forecast, forecasting, M-competition, time series
Procedia PDF Downloads 35537154 Review on Rainfall Prediction Using Machine Learning Technique
Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya
Abstract:
Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.Keywords: ANN, CNN, supervised learning, machine learning, deep learning
Procedia PDF Downloads 20137153 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 737152 Enhancement of Long Term Peak Demand Forecast in Peninsular Malaysia Using Hourly Load Profile
Authors: Nazaitul Idya Hamzah, Muhammad Syafiq Mazli, Maszatul Akmar Mustafa
Abstract:
The peak demand forecast is crucial to identify the future generation plant up needed in the long-term capacity planning analysis for Peninsular Malaysia as well as for the transmission and distribution network planning activities. Currently, peak demand forecast (in Mega Watt) is derived from the generation forecast by using load factor assumption. However, a forecast using this method has underperformed due to the structural changes in the economy, emerging trends and weather uncertainty. The dynamic changes of these drivers will result in many possible outcomes of peak demand for Peninsular Malaysia. This paper will look into the independent model of peak demand forecasting. The model begins with the selection of driver variables to capture long-term growth. This selection and construction of variables, which include econometric, emerging trend and energy variables, will have an impact on the peak forecast. The actual framework begins with the development of system energy and load shape forecast by using the system’s hourly data. The shape forecast represents the system shape assuming all embedded technology and use patterns to continue in the future. This is necessary to identify the movements in the peak hour or changes in the system load factor. The next step would be developing the peak forecast, which involves an iterative process to explore model structures and variables. The final step is combining the system energy, shape, and peak forecasts into the hourly system forecast then modifying it with the forecast adjustments. Forecast adjustments are among other sales forecasts for electric vehicles, solar and other adjustments. The framework will result in an hourly forecast that captures growth, peak usage and new technologies. The advantage of this approach as compared to the current methodology is that the peaks capture new technology impacts that change the load shape.Keywords: hourly load profile, load forecasting, long term peak demand forecasting, peak demand
Procedia PDF Downloads 17237151 TELUM Land Use Model: An Investigation of Data Requirements and Calibration Results for Chittenden County MPO, U.S.A.
Authors: Georgia Pozoukidou
Abstract:
TELUM software is a land use model designed specifically to help metropolitan planning organizations (MPOs) prepare their transportation improvement programs and fulfill their numerous planning responsibilities. In this context obtaining, preparing, and validating socioeconomic forecasts are becoming fundamental tasks for an MPO in order to ensure that consistent population and employment data are provided to travel demand models. Chittenden County Metropolitan Planning Organization of Vermont State was used as a case study to test the applicability of TELUM land use model. The technical insights and lessons learned from the land use model application have transferable value for all MPOs faced with land use forecasting development and transportation modelling.Keywords: calibration data requirements, land use models, land use planning, metropolitan planning organizations
Procedia PDF Downloads 29237150 Corporate Codes of Ethics and Earnings Discretion: International Evidence
Authors: Chu Chen, Giorgio Gotti, Tony Kang, Michael Wolfe
Abstract:
This study examines the role of codes of ethics in reducing the extent to which managers’ act opportunistically in reporting earnings. Corporate codes of ethics, by clarifying the boundaries of ethical corporate behaviors and making relevant social norms more salient, have the potential to deter managers from engaging in opportunistic financial reporting practices. In a sample of international companies, we find that the quality of corporate codes of ethics is associated with higher earnings quality, i.e., lower discretionary accruals. Our results are confirmed for a subsample of firms more likely to be engaging in opportunistic reporting behavior, i.e., firms that just meet or beat analysts’ forecasts. Further, codes of ethics play a greater role in reducing earnings management for firms in countries with weaker investor protection mechanisms. Our results suggest that corporate codes of ethics can be a viable alternative to country-level investor protection mechanisms in curbing aggressive reporting behaviors.Keywords: corporate ethics policy, code of ethics, business ethics, earnings discretion, accruals
Procedia PDF Downloads 28737149 The Impact of a Leadership Change on Individuals' Behaviour and Incentives: Evidence from the Top Tier Italian Football League
Authors: Kaori Narita, Juan de Dios Tena Horrillo, Claudio Detotto
Abstract:
Decisions on replacement of leaders are of significance and high prevalence in any organization, and concerns many of its stakeholders, whether it is a leader in a political party or a CEO of a firm, as indicated by high media coverage of such events. This merits an investigation into the consequences and implications of a leadership change on the performances and behavior of organizations and their workers. Sport economics provides a fruitful field to explore these issues due to the high frequencies of managerial changes in professional sports clubs and the transparency and regularity of observations of team performance and players’ abilities. Much of the existing research on managerial change focuses on how this affects the performance of an organization. However, there is scarcely attention paid to the consequences of such events on the behavior of individuals within the organization. Changes in behavior and attitudes of a group of workers due to a managerial change could be of great interest in management science, psychology, and operational research. On the other hand, these changes cannot be observed in the final outcome of the organization, as this is affected by many other unobserved shocks, for example, the stress level of workers with the need to deal with a difficult situation. To fill this gap, this study shows the first attempt to evaluate the impact of managerial change on players’ behaviors such as attack intensity, aggressiveness, and efforts. The data used in this study is from the top tier Italian football league (“Serie A”), where an average of 13 within season replacements of head coaches were observed over the period of seasons from 2000/2001 to 2017/18. The preliminary estimation employs Pooled Ordinary Least Square (POLS) and club-season Fixed Effect (FE) in order to assess the marginal effect of having a new manager on the number of shots, corners and red/yellow cards after controlling for a home-field advantage, ex ante abilities and current positions in the league of a team and their opponent. The results from this preliminary estimation suggest that the teams do not show a significant difference in their behaviors before and after the managerial change. To build on these preliminary results, other methods, including propensity score matching and non-linear model estimates, will be used. Moreover, the study will further investigate these issues by considering other measurements of attack intensity, aggressiveness, and efforts, such as possessions, a number of fouls and the athletic performance of players, respectively. Finally, the study is going to investigate whether these results vary over the characteristics of a new head coach, for example, their age and experience as a manager and a player. Thus far, this study suggests that certain behaviours of individuals in an organisation are not immediately affected by a change in leadership. To confirm this preliminary finding and lead to a more solid conclusion, further investigation will be conducted in the aforementioned manner, and the results will be elaborated in the conference.Keywords: behaviour, effort, manager characteristics, managerial change, sport economics
Procedia PDF Downloads 13437148 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 14537147 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 17737146 The Investigate Relationship between Moral Hazard and Corporate Governance with Earning Forecast Quality in the Tehran Stock Exchange
Authors: Fatemeh Rouhi, Hadi Nassiri
Abstract:
Earning forecast is a key element in economic decisions but there are some situations, such as conflicts of interest in financial reporting, complexity and lack of direct access to information has led to the phenomenon of information asymmetry among individuals within the organization and external investors and creditors that appear. The adverse selection and moral hazard in the investor's decision and allows direct assessment of the difficulties associated with data by users makes. In this regard, the role of trustees in corporate governance disclosure is crystallized that includes controls and procedures to ensure the lack of movement in the interests of the company's management and move in the direction of maximizing shareholder and company value. Therefore, the earning forecast of companies in the capital market and the need to identify factors influencing this study was an attempt to make relationship between moral hazard and corporate governance with earning forecast quality companies operating in the capital market and its impact on Earnings Forecasts quality by the company to be established. Getting inspiring from the theoretical basis of research, two main hypotheses and sub-hypotheses are presented in this study, which have been examined on the basis of available models, and with the use of Panel-Data method, and at the end, the conclusion has been made at the assurance level of 95% according to the meaningfulness of the model and each independent variable. In examining the models, firstly, Chow Test was used to specify either Panel Data method should be used or Pooled method. Following that Housman Test was applied to make use of Random Effects or Fixed Effects. Findings of the study show because most of the variables are positively associated with moral hazard with earnings forecasts quality, with increasing moral hazard, earning forecast quality companies listed on the Tehran Stock Exchange is increasing. Among the variables related to corporate governance, board independence variables have a significant relationship with earnings forecast accuracy and earnings forecast bias but the relationship between board size and earnings forecast quality is not statistically significant.Keywords: corporate governance, earning forecast quality, moral hazard, financial sciences
Procedia PDF Downloads 32237145 Evaluating the Performance of Offensive Lineman in the National Football League
Authors: Nikhil Byanna, Abdolghani Ebrahimi, Diego Klabjan
Abstract:
How does one objectively measure the performance of an individual offensive lineman in the NFL? The existing literature proposes various measures that rely on subjective assessments of game film, but has yet to develop an objective methodology to evaluate performance. Using a variety of statistics related to an offensive lineman’s performance, we develop a framework to objectively analyze the overall performance of an individual offensive lineman and determine specific linemen who are overvalued or undervalued relative to their salary. We identify eight players across the 2013-2014 and 2014-2015 NFL seasons that are considered to be overvalued or undervalued and corroborate the results with existing metrics that are based on subjective evaluation. To the best of our knowledge, the techniques set forth in this work have not been utilized in previous works to evaluate the performance of NFL players at any position, including offensive linemen.Keywords: offensive lineman, player performance, NFL, machine learning
Procedia PDF Downloads 14437144 Forecasting for Financial Stock Returns Using a Quantile Function Model
Authors: Yuzhi Cai
Abstract:
In this paper, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.Keywords: DJIA, financial returns, predictive distribution, quantile function model
Procedia PDF Downloads 36737143 Filtering Momentum Life Cycles, Price Acceleration Signals and Trend Reversals for Stocks, Credit Derivatives and Bonds
Authors: Periklis Brakatsoulas
Abstract:
Recent empirical research shows a growing interest in investment decision-making under market anomalies that contradict the rational paradigm. Momentum is undoubtedly one of the most robust anomalies in the empirical asset pricing research and remains surprisingly lucrative ever since first documented. Although predominantly phenomena identified across equities, momentum premia are now evident across various asset classes. Yet few many attempts are made so far to provide traders a diversified portfolio of strategies across different assets and markets. Moreover, literature focuses on patterns from past returns rather than mechanisms to signal future price directions prior to momentum runs. The aim of this paper is to develop a diversified portfolio approach to price distortion signals using daily position data on stocks, credit derivatives, and bonds. An algorithm allocates assets periodically, and new investment tactics take over upon price momentum signals and across different ranking groups. We focus on momentum life cycles, trend reversals, and price acceleration signals. The main effort here concentrates on the density, time span and maturity of momentum phenomena to identify consistent patterns over time and measure the predictive power of buy-sell signals generated by these anomalies. To tackle this, we propose a two-stage modelling process. First, we generate forecasts on core macroeconomic drivers. Secondly, satellite models generate market risk forecasts using the core driver projections generated at the first stage as input. Moreover, using a combination of the ARFIMA and FIGARCH models, we examine the dependence of consecutive observations across time and portfolio assets since long memory behavior in volatilities of one market appears to trigger persistent volatility patterns across other markets. We believe that this is the first work that employs evidence of volatility transmissions among derivatives, equities, and bonds to identify momentum life cycle patterns.Keywords: forecasting, long memory, momentum, returns
Procedia PDF Downloads 10237142 Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments
Authors: Margarita Mayoral-Villa, J. Klapp, L. Di G. Sigalotti, J. E. V. Guzmán
Abstract:
Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency.Keywords: multiphase diffusion, message passing neural network, well interconnection, interwell connectivity, graph neural network, capacitance-resistance models
Procedia PDF Downloads 14937141 The Factors Predicting Credibility of News in Social Media in Thailand
Authors: Ekapon Thienthaworn
Abstract:
This research aims to study the reliability of the forecasting factor in social media by using survey research methods with questionnaires. The sampling is the group of undergraduate students in Bangkok. A multiple-step random number of 400 persons, data analysis are descriptive statistics with multivariate regression analysis. The research found the average of the overall trust at the intermediate level for reading the news in social media and the results of the multivariate regression analysis to find out the factors that forecast credibility of the media found the only content that has the power to forecast reliability of undergraduate students in Bangkok to reading the news on social media at the significance level.at 0.05.These can be factors with forecasts reliability of news in social media by a variable that has the highest influence factor of the media content and the speed is also important for reliability of the news.Keywords: credibility of news, behaviors and attitudes, social media, web board
Procedia PDF Downloads 46837140 Combating and Preventing Unemployment in Sweden
Authors: Beata Wentura-Dudek
Abstract:
In Sweden the needs of the labor market are regularly monitored. Test results and forecasts translate directly into the education system in this country, which is largely a state system. Sweden is one of the first countries in Europe that has used active labor market policies. It is realized that there is an active unemployment which includes a wide range of activities that can be divided into three groups: Active forms of influencing the creation of new jobs, active forms that affect the labor supply and active forms for people with disabilities. Most of the funding is allocated there for subsidized employment and training. Research conducted in Sweden shows that active forms of counteracting unemployment focused on the long-term unemployed can significantly raise the level of employment in this group.Keywords: Sweden, research conducted in Sweden, labour market, labour market policies, unemployment, active forms of influencing the creation of new jobs, active forms of counteracting unemployment, employment, subsidized employment education
Procedia PDF Downloads 28837139 Role of Macro and Technical Indicators in Equity Risk Premium Prediction: A Principal Component Analysis Approach
Authors: Naveed Ul Hassan, Bilal Aziz, Maryam Mushtaq, Imran Ameen Khan
Abstract:
Equity risk premium (ERP) is the stock return in excess of risk free return. Even though it is an essential topic of finance but still there is no common consensus upon its forecasting. For forecasting ERP, apart from the macroeconomic variables attention is devoted to technical indicators as well. For this purpose, set of 14 technical and 14 macro-economic variables is selected and all forecasts are generated based on a standard predictive regression framework, where ERP is regressed on a constant and a lag of a macroeconomic variable or technical indicator. The comparative results showed that technical indicators provide better indications about ERP estimates as compared to macro-economic variables. The relative strength of ERP predictability is also investigated by using National Bureau of Economic Research (NBER) data of business cycle expansion and recessions and found that ERP predictability is more than twice for recessions as compared to expansions.Keywords: equity risk premium, forecasting, macroeconomic indicators, technical indicators
Procedia PDF Downloads 30637138 Pre-Analysis of Printed Circuit Boards Based on Multispectral Imaging for Vision Based Recognition of Electronics Waste
Authors: Florian Kleber, Martin Kampel
Abstract:
The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show that a higher contrast is achieved in the near infrared compared to ultraviolet and visible light.Keywords: electronics waste, multispectral imaging, printed circuit boards, rare-earth elements
Procedia PDF Downloads 41537137 Multimedia Design in Tactical Play Learning and Acquisition for Elite Gaelic Football Practitioners
Authors: Michael McMahon
Abstract:
The use of media (video/animation/graphics) has long been used by athletes, coaches, and sports scientists to analyse and improve performance in technical skills and team tactics. Sports educators are increasingly open to the use of technology to support coach and learner development. However, an overreliance is a concern., This paper is part of a larger Ph.D. study looking into these new challenges for Sports Educators. Most notably, how to exploit the deep-learning potential of Digital Media among expert learners, how to instruct sports educators to create effective media content that fosters deep learning, and finally, how to make the process manageable and cost-effective. Central to the study is Richard Mayers Cognitive Theory of Multimedia Learning. Mayers Multimedia Learning Theory proposes twelve principles that shape the design and organization of multimedia presentations to improve learning and reduce cognitive load. For example, the Prior Knowledge principle suggests and highlights different learning outcomes for Novice and Non-Novice learners, respectively. Little research, however, is available to support this principle in modified domains (e.g., sports tactics and strategy). As a foundation for further research, this paper compares and contrasts a range of contemporary multimedia sports coaching content and assesses how they perform as learning tools for Strategic and Tactical Play Acquisition among elite sports practitioners. The stress tests applied are guided by Mayers's twelve Multimedia Learning Principles. The focus is on the elite athletes and whether current coaching digital media content does foster improved sports learning among this cohort. The sport of Gaelic Football was selected as it has high strategic and tactical play content, a wide range of Practitioner skill levels (Novice to Elite), and also a significant volume of Multimedia Coaching Content available for analysis. It is hoped the resulting data will help identify and inform the future instructional content design and delivery for Sports Practitioners and help promote best design practices optimal for different levels of expertise.Keywords: multimedia learning, e-learning, design for learning, ICT
Procedia PDF Downloads 10337136 Three or Four Tonics and a Wave: The Trajectory of Health Insurance Regulation in Brazil
Authors: João Boaventura Branco De Matos
Abstract:
Currently, in Brazil, there is a considerable collection of publications on the supplementary health sector, but the vast majority is limited to retrospective examination of the sector. The present contribution starts from the diagnosis of an overwhelming change in the role of the State and its institutions, as well as an accelerated and no less forceful change in the way of producing goods and services, resulting in a clash between these different waves (state and market). This shock produces unique energy, capable of imposing major changes in the most varied sectors. Based on this diagnosis, there was an opportunity to offer the perspective and propositional study of regulatory measures relevant to the best conduct and performance of this sector in the future.Keywords: private health regulation, state and market, forecasts in Brazilian regulation, political economy
Procedia PDF Downloads 15137135 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network
Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem
Abstract:
This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting
Procedia PDF Downloads 23137134 Natural Gas Production Forecasts Using Diffusion Models
Authors: Md. Abud Darda
Abstract:
Different options for natural gas production in wide geographic areas may be described through diffusion of innovation models. This type of modeling approach provides an indirect estimate of an ultimately recoverable resource, URR, capture the quantitative effects of observed strategic interventions, and allow ex-ante assessments of future scenarios over time. In order to ensure a sustainable energy policy, it is important to forecast the availability of this natural resource. Considering a finite life cycle, in this paper we try to investigate the natural gas production of Myanmar and Algeria, two important natural gas provider in the world energy market. A number of homogeneous and heterogeneous diffusion models, with convenient extensions, have been used. Models validation has also been performed in terms of prediction capability.Keywords: diffusion models, energy forecast, natural gas, nonlinear production
Procedia PDF Downloads 22737133 Digital Platform of Crops for Smart Agriculture
Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye
Abstract:
In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.Keywords: prediction, machine learning, artificial intelligence, digital agriculture
Procedia PDF Downloads 80