Search results for: distributed frequent itemset mining
3890 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques
Authors: Faisal Alshuwaier, Ali Areshey
Abstract:
Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound method to simplify the texts.Keywords: extraction, max-prod, fuzzy relations, text mining, memberships, classification, memberships, classification
Procedia PDF Downloads 5853889 Predicting Customer Purchasing Behaviour in Retail Marketing: A Research for a Supermarket Chain
Authors: Sabri Serkan Güllüoğlu
Abstract:
Analysis can be defined as the process of gathering, recording and researching data related to products and services, in order to learn something. But for marketers, analyses are not only used for learning but also an essential and critical part of the business, because this allows companies to offer products or services which are focused and well targeted. Market analysis also identify market trends, demographics, customer’s buying habits and important information on the competition. Data mining is used instead of traditional research, because it extracts predictive information about customer and sales from large databases. In contrast to traditional research, data mining relies on information that is already available. Simply the goal is to improve the efficiency of supermarkets. In this study, the purpose is to find dependency on products. For instance, which items are bought together, using association rules in data mining. Moreover, this information will be used for improving the profitability of customers such as increasing shopping time and sales of fewer sold items.Keywords: data mining, association rule mining, market basket analysis, purchasing
Procedia PDF Downloads 4883888 Small-Scale Mining Policies in Ghana: Miners' Knowledge, Attitudes and Practices
Authors: Franklin Nantui Mabe, Robert Osei
Abstract:
Activities and operations of artisanal small scale mining (ASM) have recently appealed to the attention of policymakers, researchers, and the general public in Ghana. This stems from the negative impacts of ASM operations on the environment and livelihoods of local inhabitants, as well as the disregard for available ASM mining policies. This study, therefore, investigates whether or not artisanal small-scale miners have enough knowledge of the mining policies and their implementations. The study adopted the Knowledge, Attitudes, and Practices (KAP) framework approach to design the research, collect and analyze primary data. The most aware ASM policy provision is the one that mandates the government to reserve demarcated ASM areas for Ghanaians, whilst the least aware provision is the one that admonishes the government to promote co-operative saving among ASM. The awareness index is lower than the attitude index towards the policy provisions. In terms of practices, miners continued to use bad practices with the associated negative impacts on the environment and rural livelihoods. It is therefore important for the government through mineral commission, district, municipal and metropolitan assemblies to intensify the education on the ASM policies. These could be done with the help of ASM associations. The current systems where a cluster of districts have a single Mineral Commission Office should be restructured to make sure that each mining district has an office.Keywords: mining policies, KAP, awareness, artisanal small-scale mining
Procedia PDF Downloads 1923887 Dietary Risk Assessment of Green Leafy Vegetables (GLV) Due to Heavy Metals from Selected Mining Areas
Authors: Simon Mensah Ofosu
Abstract:
Illicit surface mining activities pollutes agricultural lands and water bodies and results in accumulation of heavy metals in vegetables cultivated in such areas. Heavy metal (HM) accumulation in vegetables is a serious food safety issues due to the adverse effects of metal toxicities, hence the need to investigate the levels of these metals in cultivated vegetables in the eastern region. Cocoyam leaves, cabbage and cucumber were sampled from selected farms in mining areas (Atiwa District) and non -mining areas (Yilo Krobo and East Akim District) of the region for the study. Levels of Cadmium, Lead, Mercury and Arsenic were investigated in the vegetables with Atomic Absorption Spectrometer, and the results statistically analyzed with Microsoft Office Excel (2013) Spread Sheet and ANOVA. Cadmium (Cd) and arsenic (As) were the highest and least concentrated HM in the vegetables sampled, respectively. The mean concentrations of Cd and Pb in cabbage (0.564 mg/kg, 0.470 mg/kg), cucumber (0.389 mg/kg, 0.190 mg/kg), cocoyam leaves (0.410 mg/kg, 0.256 mg/kg) respectively from the mining areas exceeded the permissible limits set by Joint FAO/WHO. The mean concentrations of the metals in vegetables from the mining and non-mining areas varied significantly (P<0.05). The Target Hazard Quotient (THQ) was used to assess the health risk posed to the human population via vegetable consumption. The THQ values of cadmium, mercury, and lead in adults and children through vegetable consumption in the mining areas were greater than 1 (THQ >1). This indicates the potential health risk that the children and adults may be facing. The THQ values of adults and children in the non-mining areas were less than the safe limit of 1 (THQ<1), hence no significant health risk posed to the population from such areas.Keywords: food safety, risk assessment, illicit mining, public health, contaminated vegetables
Procedia PDF Downloads 973886 Correction of Frequent English Writing Errors by Using Coded Indirect Corrective Feedback and Error Treatment
Authors: Chaiwat Tantarangsee
Abstract:
The purposes of this study are: 1) to study the frequent English writing errors of students registering the course: Reading and Writing English for Academic Purposes II, and 2) to find out the results of writing error correction by using coded indirect corrective feedback and writing error treatments. Samples include 28 2nd year English Major students, Faculty of Education, Suan Sunandha Rajabhat University. Tool for experimental study includes the lesson plan of the course; Reading and Writing English for Academic Purposes II, and tool for data collection includes 4 writing tests of short texts. The research findings disclose that frequent English writing errors found in this course comprise 7 types of grammatical errors, namely Fragment sentence, Subject-verb agreement, Wrong form of verb tense, Singular or plural noun endings, Run-ons sentence, Wrong form of verb pattern and Lack of parallel structure. Moreover, it is found that the results of writing error correction by using coded indirect corrective feedback and error treatment reveal the overall reduction of the frequent English writing errors and the increase of students’ achievement in the writing of short texts with the significance at .05.Keywords: coded indirect corrective feedback, error correction, error treatment, frequent English writing errors
Procedia PDF Downloads 2373885 A Survey of Domain Name System Tunneling Attacks: Detection and Prevention
Authors: Lawrence Williams
Abstract:
As the mechanism which converts domains to internet protocol (IP) addresses, Domain Name System (DNS) is an essential part of internet usage. It was not designed securely and can be subject to attacks. DNS attacks have become more frequent and sophisticated and the need for detecting and preventing them becomes more important for the modern network. DNS tunnelling attacks are one type of attack that are primarily used for distributed denial-of-service (DDoS) attacks and data exfiltration. Discussion of different techniques to detect and prevent DNS tunneling attacks is done. The methods, models, experiments, and data for each technique are discussed. A proposal about feasibility is made. Future research on these topics is proposed.Keywords: DNS, tunneling, exfiltration, botnet
Procedia PDF Downloads 793884 Concept Drifts Detection and Localisation in Process Mining
Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa
Abstract:
Process mining provides methods and techniques for analyzing event logs recorded in modern information systems that support real-world operations. While analyzing an event-log, state-of-the-art techniques available in process mining believe that the operational process as a static entity (stationary). This is not often the case due to the possibility of occurrence of a phenomenon called concept drift. During the period of execution, the process can experience concept drift and can evolve with respect to any of its associated perspectives exhibiting various patterns-of-change with a different pace. Work presented in this paper discusses the main aspects to consider while addressing concept drift phenomenon and proposes a method for detecting and localizing the sudden concept drifts in control-flow perspective of the process by using features extracted by processing the traces in the process log. Our experimental results are promising in the direction of efficiently detecting and localizing concept drift in the context of process mining research discipline.Keywords: abrupt drift, concept drift, sudden drift, control-flow perspective, detection and localization, process mining
Procedia PDF Downloads 3503883 Data Mining and Knowledge Management Application to Enhance Business Operations: An Exploratory Study
Authors: Zeba Mahmood
Abstract:
The modern business organizations are adopting technological advancement to achieve competitive edge and satisfy their consumer. The development in the field of Information technology systems has changed the way of conducting business today. Business operations today rely more on the data they obtained and this data is continuously increasing in volume. The data stored in different locations is difficult to find and use without the effective implementation of Data mining and Knowledge management techniques. Organizations who smartly identify, obtain and then convert data in useful formats for their decision making and operational improvements create additional value for their customers and enhance their operational capabilities. Marketers and Customer relationship departments of firm use Data mining techniques to make relevant decisions, this paper emphasizes on the identification of different data mining and Knowledge management techniques that are applied to different business industries. The challenges and issues of execution of these techniques are also discussed and critically analyzed in this paper.Keywords: knowledge, knowledge management, knowledge discovery in databases, business, operational, information, data mining
Procedia PDF Downloads 5393882 The Fusion of Blockchain and AI in Supply Chain Finance: Scalability in Distributed Systems
Authors: Wu You, Burra Venkata Durga Kumar
Abstract:
This study examines the promising potential of integrating Blockchain and Artificial Intelligence (AI) technologies to scalability in Distributed Systems within the field of supply chain finance. The finance industry is continually confronted with scalability challenges in its Distributed Systems, particularly within the supply chain finance sector, impacting efficiency and security. Blockchain, with its inherent attributes of high scalability and secure distributed ledger system, coupled with AI's strengths in optimizing data processing and decision-making, holds the key to innovating the industry's approach to these issues. This study elucidates the synergistic interplay between Blockchain and AI, detailing how their fusion can drive a significant transformation in the supply chain finance sector's Distributed Systems. It offers specific use-cases within this field to illustrate the practical implications and potential benefits of this technological convergence. The study also discusses future possibilities and current challenges in implementing this groundbreaking approach within the context of supply chain finance. It concludes that the intersection of Blockchain and AI could ignite a new epoch of enhanced efficiency, security, and transparency in the Distributed Systems of supply chain finance within the financial industry.Keywords: blockchain, artificial intelligence (AI), scaled distributed systems, supply chain finance, efficiency and security
Procedia PDF Downloads 963881 Reclamation of Mining Using Vegetation - A Comparative Study of Open Pit Mining
Authors: G. Surendra Babu
Abstract:
We all know the importance of mineral wealth, which has been buried inside the layers of the earth for decades. These are the natural energy sources that are used in our day to day life like fuel, electricity, construction, etc. but the process of extraction causes damage to the nature that can’t be returned back and which are left over after completion of mining we can see these are barren from decades these remain unused degraded land. Most of them are covered with vegetation before the start during mining which damages the native vegetation of the region and disturbs the watershed boundary of the regions and it also disturbs the biodiversity of the reign. The major motto of the study is to understand the various issues that are found and to understand various methods of reclamations process that are suitable for revegetating and also variously practiced which are carried out in the different case studies and government guidelines procedure of lease licenses which includes the environmental clearances and also to study the vegetation pattern according to the major issues identified. And finally suggesting the new guidelines with respect to the old guidelines which helps in the revegetation of the mine-sites which helps in establishing of its own sustainable ecosystem in future.Keywords: reclamation, open-pit mining, revegetation, reclamation methods
Procedia PDF Downloads 2003880 Harmonic Data Preparation for Clustering and Classification
Authors: Ali Asheibi
Abstract:
The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.Keywords: data mining, harmonic data, clustering, classification
Procedia PDF Downloads 2523879 A Hybrid Distributed Algorithm for Solving Job Shop Scheduling Problem
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a distributed hybrid algorithm is proposed for solving the job shop scheduling problem. The suggested method executes different artificial neural networks, heuristics and meta-heuristics simultaneously on more than one machine. The neural networks are used to control the constraints of the problem while the meta-heuristics search the global space and the heuristics are used to prevent the premature convergence. To attain an efficient distributed intelligent method for solving big and distributed job shop scheduling problems, Apache Spark and Hadoop frameworks are used. In the algorithm implementation and design steps, new approaches are applied. Comparison between the proposed algorithm and other efficient algorithms from the literature shows its efficiency, which is able to solve large size problems in short time.Keywords: distributed algorithms, Apache Spark, Hadoop, job shop scheduling, neural network
Procedia PDF Downloads 3923878 A New Distributed Computing Environment Based On Mobile Agents for Massively Parallel Applications
Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah
Abstract:
In this paper, we propose a new distributed environment for High Performance Computing (HPC) based on mobile agents. It allows us to perform parallel programs execution as distributed one over a flexible grid constituted by a cooperative mobile agent team works. The distributed program to be performed is encapsulated on team leader agent which deploys its team workers as Agent Virtual Processing Unit (AVPU). Each AVPU is asked to perform its assigned tasks and provides the computational results which make the data and team works tasks management difficult for the team leader agent and that influence the performance computing. In this work we focused on the implementation of the Mobile Provider Agent (MPA) in order to manage the distribution of data and instructions and to ensure a load balancing model. It grants also some interesting mechanisms to manage the others computing challenges thanks to the mobile agents several skills.Keywords: image processing, distributed environment, mobile agents, parallel and distributed computing
Procedia PDF Downloads 4123877 Modelling of Powered Roof Supports Work
Authors: Marcin Michalak
Abstract:
Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles.Keywords: machine modelling, underground mining, coal mining, structure
Procedia PDF Downloads 3703876 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study
Authors: Faisal Aburub, Wael Hadi
Abstract:
Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.Keywords: classification, data mining, evaluation measures, groundwater
Procedia PDF Downloads 2863875 A Recommender System Fusing Collaborative Filtering and User’s Review Mining
Authors: Seulbi Choi, Hyunchul Ahn
Abstract:
Collaborative filtering (CF) algorithm has been popularly used for recommender systems in both academic and practical applications. It basically generates recommendation results using users’ numeric ratings. However, the additional use of the information other than user ratings may lead to better accuracy of CF. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's review can be regarded as the new informative source for identifying user's preference with accuracy. Under this background, this study presents a hybrid recommender system that fuses CF and user's review mining. Our system adopts conventional memory-based CF, but it is designed to use both user’s numeric ratings and his/her text reviews on the items when calculating similarities between users.Keywords: Recommender system, Collaborative filtering, Text mining, Review mining
Procedia PDF Downloads 3643874 Analyzing Tools and Techniques for Classification In Educational Data Mining: A Survey
Authors: D. I. George Amalarethinam, A. Emima
Abstract:
Educational Data Mining (EDM) is one of the newest topics to emerge in recent years, and it is concerned with developing methods for analyzing various types of data gathered from the educational circle. EDM methods and techniques with machine learning algorithms are used to extract meaningful and usable information from huge databases. For scientists and researchers, realistic applications of Machine Learning in the EDM sectors offer new frontiers and present new problems. One of the most important research areas in EDM is predicting student success. The prediction algorithms and techniques must be developed to forecast students' performance, which aids the tutor, institution to boost the level of student’s performance. This paper examines various classification techniques in prediction methods and data mining tools used in EDM.Keywords: classification technique, data mining, EDM methods, prediction methods
Procedia PDF Downloads 1213873 The Women-In-Mining Discourse: A Study Combining Corpus Linguistics and Discourse Analysis
Authors: Ylva Fältholm, Cathrine Norberg
Abstract:
One of the major threats identified to successful future mining is that women do not find the industry attractive. Many attempts have been made, for example in Sweden and Australia, to create organizational structures and mining communities attractive to both genders. Despite such initiatives, many mining areas are developing into gender-segregated fly-in/fly out communities dominated by men with both social and economic consequences. One of the challenges facing many mining companies is thus to break traditional gender patterns and structures. To do this increased knowledge about gender in the context of mining is needed. Since language both constitutes and reproduces knowledge, increased knowledge can be gained through an exploration and description of the mining discourse from a gender perspective. The aim of this study is to explore what conceptual ideas are activated in connection to the physical/geographical mining area and to work within the mining industry. We use a combination of critical discourse analysis implying close reading of selected texts, such as policy documents, interview materials, applications and research and innovation agendas, and analyses of linguistic patterns found in large language corpora covering millions of words of contemporary language production. The quantitative corpus data serves as a point of departure for the qualitative analysis of the texts, that is, suggests what patterns to explore further. The study shows that despite technological and organizational development, one of the most persistent discourses about mining is the conception of dangerous and unfriendly areas infused with traditional notions of masculinity ideals and manual hard work. Although some of the texts analyzed highlight gender issues, and describe gender-equalizing initiatives, such as wage-mapping systems, female networks and recruitment efforts for women executives, and thereby render the discourse less straightforward, it is shown that these texts are not unambiguous examples of a counter-discourse. They rather illustrate that discourses are not stable but include opposing discourses, in dialogue with each other. For example, many texts highlight why and how women are important to mining, at the same time as they suggest that gender and diversity are all about women: why mining is a problem for them, how they should be, and what they should do to fit in. Drawing on a constitutive view of discourse, knowledge about such conflicting perceptions of women is a prerequisite for succeeding in attracting women to the mining industry and thereby contributing to the development of future mining.Keywords: discourse, corpus linguistics, gender, mining
Procedia PDF Downloads 2663872 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 1163871 Identify Users Behavior from Mobile Web Access Logs Using Automated Log Analyzer
Authors: Bharat P. Modi, Jayesh M. Patel
Abstract:
Mobile Internet is acting as a major source of data. As the number of web pages continues to grow the Mobile web provides the data miners with just the right ingredients for extracting information. In order to cater to this growing need, a special term called Mobile Web mining was coined. Mobile Web mining makes use of data mining techniques and deciphers potentially useful information from web data. Web Usage mining deals with understanding the behavior of users by making use of Mobile Web Access Logs that are generated on the server while the user is accessing the website. A Web access log comprises of various entries like the name of the user, his IP address, a number of bytes transferred time-stamp etc. A variety of Log Analyzer tools exists which help in analyzing various things like users navigational pattern, the part of the website the users are mostly interested in etc. The present paper makes use of such log analyzer tool called Mobile Web Log Expert for ascertaining the behavior of users who access an astrology website. It also provides a comparative study between a few log analyzer tools available.Keywords: mobile web access logs, web usage mining, web server, log analyzer
Procedia PDF Downloads 3663870 Application of the Discrete Rationalized Haar Transform to Distributed Parameter System
Authors: Joon-Hoon Park
Abstract:
In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.Keywords: distributed parameter system, rationalized Haar transform, operational matrix, system identification
Procedia PDF Downloads 5123869 Reduction of Plants Biodiversity in Hyrcanian Forest by Coal Mining Activities
Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch
Abstract:
Considering that coal mining is one of the important industrial activities, it may cause damages to environment. According to the author’s best knowledge, the effect of traditional coal mining activities on plant biodiversity has not been investigated in the Hyrcanian forests. Therefore, in this study, the effect of coal mining activities on vegetation and tree diversity was investigated in Hyrcanian forest, North Iran. After filed visiting and determining the mine, 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity, and it is considered as the control area. In each plot, the data about trees such as number and type of species were recorded. The biodiversity of vegetation cover was considered 5 square sub-plots (1 m2) in each plot. PAST software and Ecological Methodology were used to calculate Biodiversity indices. The value of Shannon Wiener and Simpson diversity indices for tree cover in control area (1.04±0.34 and 0.62±0.20) was significantly higher than mining area (0.78±0.27 and 0.45±0.14). The value of evenness indices for tree cover in the mining area was significantly lower than that of the control area. The value of Shannon Wiener and Simpson diversity indices for vegetation cover in the control area (1.37±0.06 and 0.69±0.02) was significantly higher than the mining area (1.02±0.13 and 0.50±0.07). The value of evenness index in the control area was significantly higher than the mining area. Plant communities are a good indicator of the changes in the site. Study about changes in vegetation biodiversity and plant dynamics in the degraded land can provide necessary information for forest management and reforestation of these areas.Keywords: vegetation biodiversity, species composition, traditional coal mining, Caspian forest
Procedia PDF Downloads 1883868 Parallel Querying of Distributed Ontologies with Shared Vocabulary
Authors: Sharjeel Aslam, Vassil Vassilev, Karim Ouazzane
Abstract:
Ontologies and various semantic repositories became a convenient approach for implementing model-driven architectures of distributed systems on the Web. SPARQL is the standard query language for querying such. However, although SPARQL is well-established standard for querying semantic repositories in RDF and OWL format and there are commonly used APIs which supports it, like Jena for Java, its parallel option is not incorporated in them. This article presents a complete framework consisting of an object algebra for parallel RDF and an index-based implementation of the parallel query engine capable of dealing with the distributed RDF ontologies which share common vocabulary. It has been implemented in Java, and for validation of the algorithms has been applied to the problem of organizing virtual exhibitions on the Web.Keywords: distributed ontologies, parallel querying, semantic indexing, shared vocabulary, SPARQL
Procedia PDF Downloads 2073867 Exploring Legal Liabilities of Mining Companies for Human Rights Abuses: Case Study of Mongolian Mine
Authors: Azzaya Enkhjargal
Abstract:
Context: The mining industry has a long history of human rights abuses, including forced labor, environmental pollution, and displacement of communities. In recent years, there has been growing international pressure to hold mining companies accountable for these abuses. Research Aim: This study explores the legal liabilities of mining companies for human rights abuses. The study specifically examines the case of Erdenet Mining Corporation (EMC), a large mining company in Mongolia that has been accused of human rights abuses. Methodology: The study used a mixed-methods approach, which included a review of legal literature, interviews with community members and NGOs, and a case study of EMC. Findings: The study found that mining companies can be held liable for human rights abuses under a variety of regulatory frameworks, including soft law and self-regulatory instruments in the mining industry, international law, national law, and corporate law. The study also found that there are a number of challenges to holding mining companies accountable for human rights abuses, including the lack of effective enforcement mechanisms and the difficulty of proving causation. Theoretical Importance: The study contributes to the growing body of literature on the legal liabilities of mining companies for human rights abuses. The study also provides insights into the challenges of holding mining companies accountable for human rights abuses. Data Collection: The data for the study was collected through a variety of methods, including a review of legal literature, interviews with community members and NGOs, and a case study of EMC. Analysis Procedures: The data was analyzed using a variety of methods, including content analysis, thematic analysis, and case study analysis. Conclusion: The study concludes that mining companies can be held liable for human rights abuses under a variety of legal and regulatory frameworks. There are positive developments in ensuring greater accountability and protection of affected communities and the environment in countries with a strong economy. Regrettably, access to avenues of redress is reasonably low in less developed countries, where the governments have not implemented a robust mechanism to enforce liability requirements in the mining industry. The study recommends that governments and mining companies take more ambitious steps to enhance corporate accountability.Keywords: human rights, human rights abuses, ESG, litigation, Erdenet Mining Corporation, corporate social responsibility, soft law, self-regulation, mining industry, parent company liability, sustainability, environment, UN
Procedia PDF Downloads 843866 Bankruptcy Prediction Analysis on Mining Sector Companies in Indonesia
Authors: Devina Aprilia Gunawan, Tasya Aspiranti, Inugrah Ratia Pratiwi
Abstract:
This research aims to classify the mining sector companies based on Altman’s Z-score model, and providing an analysis based on the Altman’s Z-score model’s financial ratios to provide a picture about the financial condition in mining sector companies in Indonesia and their viability in the future, and to find out the partial and simultaneous impact of each of the financial ratio variables in the Altman’s Z-score model, namely (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), toward the financial condition represented by the Z-score itself. Among 38 mining sector companies listed in Indonesia Stock Exchange (IDX), 28 companies are selected as research sample according to the purposive sampling criteria.The results of this research showed that during 3 years research period at 2010-2012, the amount of the companies that was predicted to be healthy in each year was less than half of the total sample companies and not even reach up to 50%. The multiple regression analysis result showed that all of the research hypotheses are accepted, which means that (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), both partially and simultaneously had an impact towards company’s financial condition.Keywords: Altman’s Z-score model, financial condition, mining companies, Indonesia
Procedia PDF Downloads 5303865 Personalize E-Learning System Based on Clustering and Sequence Pattern Mining Approach
Authors: H. S. Saini, K. Vijayalakshmi, Rishi Sayal
Abstract:
Network-based education has been growing rapidly in size and quality. Knowledge clustering becomes more important in personalized information retrieval for web-learning. A personalized-Learning service after the learners’ knowledge has been classified with clustering. Through automatic analysis of learners’ behaviors, their partition with similar data level and interests may be discovered so as to produce learners with contents that best match educational needs for collaborative learning. We present a specific mining tool and a recommender engine that we have integrated in the online learning in order to help the teacher to carry out the whole e-learning process. We propose to use sequential pattern mining algorithms to discover the most used path by the students and from this information can recommend links to the new students automatically meanwhile they browse in the course. We have Developed a specific author tool in order to help the teacher to apply all the data mining process. We tend to report on many experiments with real knowledge so as to indicate the quality of using both clustering and sequential pattern mining algorithms together for discovering personalized e-learning systems.Keywords: e-learning, cluster, personalization, sequence, pattern
Procedia PDF Downloads 4343864 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks
Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.Keywords: distributed generation, heuristic approach, optimization, planning
Procedia PDF Downloads 5283863 Designing an Enterprise Architecture for Mining Company by Using Togaf Framework
Authors: Rika Yuliana, Budi Rahardjo
Abstract:
The Role of ICT in the organization will continue to experience growth in line with business growth. However, in reality, there is a gap between ICT initiatives with the development (needs) of company business that is caused by yet inadequate of ICT strategic alignment. Therefore, this study was conducted with the aim to create an enterprise architectural model rule, particularly in mining companies, using the TOGAF framework. The results from the design development phase of the mining enterprise architecture meta model represents the domain of business, applications, data, and technology. The results of the design as a whole were analyzed from four perspectives, namely the perspective of contextual, conceptual, logical and physical. In the end, the quality assessment of the mining enterprise architecture is conducted to assess the suitability of the design standards and architectural principles.Keywords: design and development the information technology architecture, enterprise architecture, enterprise architecture design result, TOGAF architecture development method (ADM)
Procedia PDF Downloads 4493862 The Need of Sustainable Mining: Communities, Government and Legal Mining in Central Andes of Peru
Authors: Melissa R. Quispe-Zuniga, Daniel Callo-Concha, Christian Borgemeister, Klaus Greve
Abstract:
The Peruvian Andes have a high potential for mining, but many of the mining areas overlay with campesino community lands, being these key actors for agriculture and livestock production. Lead by economic incentives, some communities are renting their lands to mining companies for exploration or exploitation. However, a growing number of campesino communities, usually social and economically marginalized, have developed resistance, alluding consequences, such as water pollution, land-use change, insufficient economic compensation, etc. what eventually end up in Socio-Environmental Conflicts (SEC). It is hypothesized that disclosing the information on environmental pollution and enhance the involvement of communities in the decision-making process may contribute to prevent SEC. To assess whether such complains are grounded on the environmental impact of mining activities, we measured the heavy metals concentration in 24 indicative samples from rivers that run across mining exploitations and farming community lands. Samples were taken during the 2016 dry season and analyzed by inductively-coupled-plasma-atomic-emission-spectroscopy. The results were contrasted against the standards of monitoring government institutions (i.e., OEFA). Furthermore, we investigated the water/environmental complains related to mining in the neighboring 14 communities. We explored the relationship between communities and mining companies, via open-ended interviews with community authorities and non-participatory observations of community assemblies. We found that the concentrations of cadmium (0.023 mg/L), arsenic (0.562 mg/L) and copper (0.07 mg/L), surpass the national water quality standards for Andean rivers (0.00025 mg/L of cadmium, 0.15 mg/L of arsenic and 0.01 mg/L of copper). 57% of communities have posed environmental complains, but 21% of the total number of communities were receiving an annual economic benefit from mining projects. However, 87.5% of the communities who had posed complains have high concentration of heavy metals in their water streams. The evidence shows that mining activities tend to relate to the affectation and vulnerability of campesino community water streams, what justify the environmental complains and eventually the occurrence of a SEC.Keywords: mining companies, campesino community, water, socio-environmental conflict
Procedia PDF Downloads 2023861 Evaluating the Potential of Microwave Treatment as a Rock Pre-Conditioning Method in Achieving a More Sustainable Mining
Authors: Adel Ahmadi Hosseini, Fatemeh Tavanaei, Alessandro Navarra, Ferri Hassani
Abstract:
Mining engineering, as a part of geoscience, must address modern concerns. Traditional mining methods incorporate drill and blast technologies, which are followed by different issues, including excessive noise, vibration, air pollution, and safety hazards. Over the past two decades, mining engineers have sought alternative solutions to move from drill and blast to continuous methods to prevent such issues and improve sustainability in mining. Among the suggested methods, microwave treatment has shown promising results by creating micro/macro cracks in the rock structure prior to the operations. This research utilizes an energy-based analysis methodology to evaluate the efficiency of the microwave treatment in improving mining operations. The data analysis shows that increasing the input microwave energy dosage intensifies the rock damage. However, this approach can decrease the energy efficiency of the method by more than 50% in some cases. In this study, rock samples were treated with three power levels (3 kW, 7 kW, and 12 kW) and two energy dosages (20 kWh/t and 50 kWh/t), resulting in six conditions. To evaluate the impact of microwave treatment on the geomechanical behavior of the rocks, Unconfined Compressive Strength (UCS) tests were conducted on the microwave-treated samples, yielding stress-strain curves. Using the stress-strain curves, the effect of the different powers and energy dosages of microwaves are discussed. This research shows the potential of using microwave treatment to lead the industry to more sustainable mining.Keywords: microwave treatment, microwave energy dosage, sustainable mining, rock fragmentation
Procedia PDF Downloads 45