Search results for: data encoding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25199

Search results for: data encoding

25079 Cloning and Expression of the ansZ Gene from Bacillus sp. CH11 Isolated from Chilca salterns in Peru

Authors: Stephy Saavedra, Annsy C. Arredondo, Gisele Monteiro, Adalberto Pessoa Jr, Carol N. Flores-Fernandez, Amparo I. Zavaleta

Abstract:

L-asparaginase from bacterial sources is used in leukemic treatment and food industry. This enzyme is classified based on its affinity towards L-asparagine and L-glutamine. Likewise, ansZ genes express L-asparaginase with higher affinity to L-asparagine. The aim of this work was to clone and express of ansZ gene from Bacillus sp. CH11 isolated from Chilca salterns in Peru. The gene encoding L-asparaginase was cloned into pET15b vector and transformed in Escherichia coli BL21 (DE3) pLysS. The expression was carried out in a batch culture using LB broth and 0.5 mM IPTG. The recombinant L-asparaginase showed a molecular weight of ~ 39 kDa by SDS PAGE and a specific activity of 3.19 IU/mg of protein. The cloning and expression of ansZ gene from this halotolerant Bacillus sp. CH11 allowed having a biological input to improve a future scaling-up.

Keywords: ansZ gene, Bacillus sp, Chilca salterns, recombinant L-asparaginase

Procedia PDF Downloads 175
25078 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: deep learning, data mining, gender predication, MOOCs

Procedia PDF Downloads 147
25077 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm

Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima

Abstract:

In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.

Keywords: cloud space, AES, FTP, NetBeans IDE

Procedia PDF Downloads 204
25076 Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography

Authors: D. M. S. Bandara, Yunqi Lei, Ye Luo

Abstract:

Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances.

Keywords: arnold cat map, biometric encryption, block cipher, elliptic curve cryptography, fingerprint encryption, Koblitz’s encoding

Procedia PDF Downloads 202
25075 Business Intelligence for Profiling of Telecommunication Customer

Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro

Abstract:

Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.

Keywords: business intelligence, customer segmentation, data warehouse, data mining

Procedia PDF Downloads 481
25074 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics

Procedia PDF Downloads 572
25073 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework

Authors: Lutful Karim, Mohammed S. Al-kahtani

Abstract:

Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.

Keywords: big data, clustering, tree topology, data aggregation, sensor networks

Procedia PDF Downloads 343
25072 Impact of Totiviridae L-A dsRNA Virus on Saccharomyces Cerevisiae Host: Transcriptomic and Proteomic Approach

Authors: Juliana Lukša, Bazilė Ravoitytė, Elena Servienė, Saulius Serva

Abstract:

Totiviridae L-A virus is a persistent Saccharomyces cerevisiae dsRNA virus. It encodes the major structural capsid protein Gag and Gag-Pol fusion protein, responsible for virus replication and encapsulation. These features also enable the copying of satellite dsRNAs (called M dsRNAs) encoding a secreted toxin and immunity to it (known as killer toxin). Viral capsid pore presumably functions in nucleotide uptake and viral mRNA release. During cell division, sporogenesis, and cell fusion, the virions remain intracellular and are transferred to daughter cells. By employing high throughput RNA sequencing data analysis, we describe the influence of solely L-A virus on the expression of genes in three different S. cerevisiae hosts. We provide a new perception into Totiviridae L-A virus-related transcriptional regulation, encompassing multiple bioinformatics analyses. Transcriptional responses to L-A infection were similar to those induced upon stress or availability of nutrients. It also delves into the connection between the cell metabolism and L-A virus-conferred demands to the host transcriptome by uncovering host proteins that may be associated with intact virions. To better understand the virus-host interaction, we applied differential proteomic analysis of virus particle-enriched fractions of yeast strains that harboreither complete killer system (L-A-lus and M-2 virus), M-2 depleted orvirus-free. Our analysis resulted in the identification of host proteins, associated with structural proteins of the virus (Gag and Gag-Pol). This research was funded by the European Social Fund under the No.09.3.3-LMT-K-712-19-0157“Development of Competences of Scientists, other Researchers, and Students through Practical Research Activities” measure.

Keywords: totiviridae, killer virus, proteomics, transcriptomics

Procedia PDF Downloads 144
25071 An Efficient Process Analysis and Control Method for Tire Mixing Operation

Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park

Abstract:

Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.

Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process

Procedia PDF Downloads 265
25070 Identification of Odorant Receptors through the Antennal Transcriptome of the Grapevine Pest, Lobesia botrana (Lepidoptera: Tortricidae)

Authors: Ricardo Godoy, Herbert Venthur, Hector Jimenez, Andres Quiroz, Ana Mutis

Abstract:

In agriculture, grape production has great economic importance at global level, considering that in 2013 it reached 7.4 million hectares (ha) covered by plantations of this fruit worldwide. Chile is the number one exporter in the world with 800,000 tons. However, these values have been threatened by the attack of the grapevine moth, Lobesia botrana (Denis & Schiffermuller) (Lepidoptera: Tortricidae), since its detection in 2008. Nowadays, the use of semiochemicals, in particular the major component of the sex pheromone, (E,Z)-7.9-dodecadienil acetate, are part of mating disruption methods to control L. botrana. How insect pests can recognize these molecules, is being part of huge efforts to deorphanize their olfactory mechanism at molecular level. Thus, an interesting group of proteins has been identified in the antennae of insects, where odorant-binding proteins (OBPs) are known by transporting molecules to odorant receptors (ORs) and a co-receptor (ORCO) causing a behavioral change in the insect. Other proteins such as chemosensory proteins (CSPs), ionotropic receptors (IRs), odorant degrading enzymes (ODEs) and sensory neuron membrane proteins (SNMPs) seem to be involved, but few studies have been performed so far. The above has led to an increasing interest in insect communication at a molecular level, which has contributed to both a better understanding of the olfaction process and the design of new pest management strategies. To date, it has been reported that the ORs can detect one or a small group of odorants in a specific way. Therefore, the objective of this study is the identification of genes that encode these ORs using the antennal transcriptome of L. botrana. Total RNA was extracted for females and males of L. botrana, and the antennal transcriptome sequenced by Next Generation Sequencing service using an Illumina HiSeq2500 platform with 50 million reads per sample. Unigenes were assembled using Trinity v2.4.0 package and transcript abundance was obtained using edgeR. Genes were identified using BLASTN and BLASTX locally installed in a Unix system and based on our own Tortricidae database. Those Unigenes related to ORs were characterized using ORFfinder and protein Blastp server. Finally, a phylogenetic analysis was performed with the candidate amino acid sequences for LbotORs including amino acid sequences of other moths ORs, such as Bombyx mori, Cydia pomonella, among others. Our findings suggest 61 genes encoding ORs and one gene encoding an ORCO in both sexes, where the greatest difference was found in the OR6 because of the transcript abundance according to the value of FPKM in females and males was 1.48 versus 324.00. In addition, according to phylogenetic analysis OR6 is closely related to OR1 in Cydia pomonella and OR6, OR7 in Epiphyas postvittana, which have been described as pheromonal receptors (PRs). These results represent the first evidence of ORs present in the antennae of L. botrana and a suitable starting point for further functional studies with selected ORs, such as OR6, which is potentially related to pheromonal recognition.

Keywords: antennal transcriptome, lobesia botrana, odorant receptors (ORs), phylogenetic analysis

Procedia PDF Downloads 199
25069 The Expression of a Novel Gene Encoding an Ankyrin-Repeat Protein, DRA1, Is Regulated by Drought-Responsive Alternative Splicing

Authors: H. Sakamoto, Y. Nakagawara, S. Oguri

Abstract:

Drought stress is a critical environmental factor that adversely affects crop productivity and quality. Because of their immobile nature, plants have evolved mechanisms to sense and respond to drought stress. We identified a novel locus of Arabidopsis, designated DRA1 (drought responsive ankyrin 1), whose disruption leads to increased drought stress tolerance. DRA1 encodes a transmembrane protein with an ankyrin repeat motif that has been implicated in diverse cellular processes such as signal transduction. RT-PCR analysis revealed that there were at least two splicing variants of DRA1 transcripts in wild type plants. In response to drought stress, the levels of DRA1 transcripts retaining second and third introns were increased, whereas these introns were removed under unstressed conditions. These results suggest that DRA1 protein may negatively regulate plant drought tolerance and that the expression of DRA1 is regulated in response to drought stress by alternative splicing.

Keywords: alternative splicing, ankyrin repeat, Arabidopsis, drought tolerance

Procedia PDF Downloads 322
25068 Control the Flow of Big Data

Authors: Shizra Waris, Saleem Akhtar

Abstract:

Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.

Keywords: computer, it community, industry, big data

Procedia PDF Downloads 192
25067 Characterization of the GntR Family Transcriptional Regulator Rv0792c: A Potential Drug Target for Mycobacterium tuberculosis

Authors: Thanusha D. Abeywickrama, Inoka C. Perera, Genji Kurisu

Abstract:

Tuberculosis, considered being as the ninth leading cause of death worldwide, cause from a single infectious agent M. tuberculosis and the drug resistance nature of this bacterium is a continuing threat to the world. Therefore TB preventing treatment is expanding, where this study designed to analyze the regulatory mechanism of GntR transcriptional regulator gene Rv0792c, which lie between several genes codes for some hypothetical proteins, a monooxygenase and an oxidoreductase. The gene encoding Rv0792c was cloned into pET28a and expressed protein was purified to near homogeneity by Nickel affinity chromatography. It was previously reported that the protein binds within the intergenic region (BS region) between Rv0792c gene and monooxygenase (Rv0793). This resulted in binding of three protein molecules with the BS region suggesting tight control of monooxygenase as well as its own gene. Since monooxygenase plays a key role in metabolism, this gene may have a global regulatory role. The natural ligand for this regulator is still under investigation. In relation to the Rv0792 protein structure, a Circular Dichroism (CD) spectrum was carried out to determine its secondary structure elements. Percentage-wise, 17.4% Helix, 21.8% Antiparallel, 5.1% Parallel, 12.3% turn and 43.5% other were revealed from CD spectrum data under room temperature. Differential Scanning Calorimetry (DSC) was conducted to assess the thermal stability of Rv0792, which the melting temperature of protein is 57.2 ± 0.6 °C. The graph of heat capacity (Cp) versus temperature for the best fit was obtained for non-two-state model, which concludes the folding of Rv0792 protein occurs through stable intermediates. Peak area (∆HCal ) and Peak shape (∆HVant ) was calculated from the graph and ∆HCal / ∆HVant was close to 0.5, suggesting dimeric nature of the protein.

Keywords: CD spectrum, DSC analysis, GntR transcriptional regulator, protein structure

Procedia PDF Downloads 221
25066 High Performance Computing and Big Data Analytics

Authors: Branci Sarra, Branci Saadia

Abstract:

Because of the multiplied data growth, many computer science tools have been developed to process and analyze these Big Data. High-performance computing architectures have been designed to meet the treatment needs of Big Data (view transaction processing standpoint, strategic, and tactical analytics). The purpose of this article is to provide a historical and global perspective on the recent trend of high-performance computing architectures especially what has a relation with Analytics and Data Mining.

Keywords: high performance computing, HPC, big data, data analysis

Procedia PDF Downloads 518
25065 A Landscape of Research Data Repositories in Re3data.org Registry: A Case Study of Indian Repositories

Authors: Prashant Shrivastava

Abstract:

The purpose of this study is to explore re3dat.org registry to identify research data repositories registration workflow process. Further objective is to depict a graph for present development of research data repositories in India. Preliminarily with an approach to understand re3data.org registry framework and schema design then further proceed to explore the status of research data repositories of India in re3data.org registry. Research data repositories are getting wider relevance due to e-research concepts. Now available registry re3data.org is a good tool for users and researchers to identify appropriate research data repositories as per their research requirements. In Indian environment, a compatible National Research Data Policy is the need of the time to boost the management of research data. Registry for Research Data Repositories is a crucial tool to discover specific information in specific domain. Also, Research Data Repositories in India have not been studied. Re3data.org registry and status of Indian research data repositories both discussed in this study.

Keywords: research data, research data repositories, research data registry, re3data.org

Procedia PDF Downloads 322
25064 Hotel Guests’ Service Fulfillment: Bangkok, Thailand

Authors: Numtana Ladplee, Cherif Haberih

Abstract:

The value of service evaluation depends critically on guests’ understanding of the evaluation objectives and their roles. The present research presents a three-phase investigation of the impact of evaluating participants’ theories about their roles: (a) identifying the theories, (b) testing the process consequences of participants’ role theories, and (c) gaining insights into the impact of participants’ role theories by testing key moderator/s. The findings of this study will hopefully indicate that (a) when forewarned of an upcoming evaluation task, consumers tend to believe that the evaluation objective is to identify aspects that need improvement, (b) this expectation produces a conscious attempt to identify negative aspects, although the encoding of attribute information is not affected, and (c) cognitive load during the evaluation experience greatly decreases the negativity of expected evaluations. The present study can be applied to other market research techniques and thereby improve our understanding of consumer inputs derived from market research. Such insights can help diminish biases produced by participants’ correct or incorrect theories regarding their roles.

Keywords: fulfillment, hotel guests, service, Thailand

Procedia PDF Downloads 275
25063 A Study of Cloud Computing Solution for Transportation Big Data Processing

Authors: Ilgin Gökaşar, Saman Ghaffarian

Abstract:

The need for fast processed big data of transportation ridership (eg., smartcard data) and traffic operation (e.g., traffic detectors data) which requires a lot of computational power is incontrovertible in Intelligent Transportation Systems. Nowadays cloud computing is one of the important subjects and popular information technology solution for data processing. It enables users to process enormous measure of data without having their own particular computing power. Thus, it can also be a good selection for transportation big data processing as well. This paper intends to examine how the cloud computing can enhance transportation big data process with contrasting its advantages and disadvantages, and discussing cloud computing features.

Keywords: big data, cloud computing, Intelligent Transportation Systems, ITS, traffic data processing

Procedia PDF Downloads 465
25062 Harmonic Data Preparation for Clustering and Classification

Authors: Ali Asheibi

Abstract:

The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.

Keywords: data mining, harmonic data, clustering, classification

Procedia PDF Downloads 245
25061 Linguistic Summarization of Structured Patent Data

Authors: E. Y. Igde, S. Aydogan, F. E. Boran, D. Akay

Abstract:

Patent data have an increasingly important role in economic growth, innovation, technical advantages and business strategies and even in countries competitions. Analyzing of patent data is crucial since patents cover large part of all technological information of the world. In this paper, we have used the linguistic summarization technique to prove the validity of the hypotheses related to patent data stated in the literature.

Keywords: data mining, fuzzy sets, linguistic summarization, patent data

Procedia PDF Downloads 270
25060 Proposal of Data Collection from Probes

Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik

Abstract:

In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.

Keywords: communication, computer network, data collection, probe

Procedia PDF Downloads 358
25059 Transcriptional Evidence for the Involvement of MyD88 in Flagellin Recognition: Genomic Identification of Rock Bream MyD88 and Comparative Analysis

Authors: N. Umasuthan, S. D. N. K. Bathige, W. S. Thulasitha, I. Whang, J. Lee

Abstract:

The MyD88 is an evolutionarily conserved host-expressed adaptor protein that is essential for proper TLR/ IL1R immune-response signaling. A previously identified complete cDNA (1626 bp) of OfMyD88 comprised an ORF of 867 bp encoding a protein of 288 amino acids (32.9 kDa). The gDNA (3761 bp) of OfMyD88 revealed a quinquepartite genome organization composed of 5 exons (with the sizes of 310, 132, 178, 92 and 155 bp) separated by 4 introns. All the introns displayed splice signals consistent with the consensus GT/AG rule. A bipartite domain structure with two domains namely death domain (24-103) coded by 1st exon, and TIR domain (151-288) coded by last 3 exons were identified through in silico analysis. Moreover, homology modeling of these two domains revealed a similar quaternary folding nature between human and rock bream homologs. A comprehensive comparison of vertebrate MyD88 genes showed that they possess a 5-exonic structure. In this structure, the last three exons were strongly conserved, and this suggests that a rigid structure has been maintained during vertebrate evolution. A cluster of TATA box-like sequences were found 0.25 kb upstream of cDNA starting position. In addition, putative 5'-flanking region of OfMyD88 was predicted to have TFBS implicated with TLR signaling, including copies of NFB1, APRF/ STAT3, Sp1, IRF1 and 2 and Stat1/2. Using qPCR technique, a ubiquitous mRNA expression was detected in liver and blood. Furthermore, a significantly up-regulated transcriptional expression of OfMyD88 was detected in head kidney (12-24 h; >2-fold), spleen (6 h; 1.5-fold), liver (3 h; 1.9-fold) and intestine (24 h; ~2-fold) post-Fla challenge. These data suggest a crucial role for MyD88 in antibacterial immunity of teleosts.

Keywords: MyD88, innate immunity, flagellin, genomic analysis

Procedia PDF Downloads 412
25058 A Review on Big Data Movement with Different Approaches

Authors: Nay Myo Sandar

Abstract:

With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.

Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques

Procedia PDF Downloads 83
25057 Optimized Approach for Secure Data Sharing in Distributed Database

Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal

Abstract:

In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.

Keywords: ER-schema, electronic record, P2P framework, API, query formulation

Procedia PDF Downloads 331
25056 Altered Gene Expression: Induction/Suppression of some Pathogenesis Related Protein Genes in an Egyptian Isolate of Potato Leafroll Virus (PLRV)

Authors: Dalia G. Aseel

Abstract:

The potato (Solanum tubersum, L.) has become one of the major vegetable crops in Egypt and all over the world. Potato leafroll virus(PLRV) was observed on potato plants collected from different governorates in Egypt. Three cultivars, Spunta, Diamont, and Cara, infected with PLRV were collected; RNA was extracted and subjected to Real-Time PCR using the coat protein gene primers. The results showed that the expression of the coat protein was 39.6-fold, 12.45-fold, and 47.43-fold, respectively, for Spunta, Diamont, and Cara cultivars. Differential Display Polymerase Chain Reaction (DD-PCR) using pathogenesis-related protein 1 (PR-1), β-1,3-glucanases (PR-2), chitinase (PR-3), peroxidase (POD), and polyphenol oxidase (PPO) forward primers for pathogenesis-related proteins (PR). The obtained data revealed different banding patterns depending on the viral type and the region of infection. Regarding PLRV, 58 up-regulated and 19 down-regulated genes were detected. Sequence analysis of the up-and down-regulated genes revealed that infected plants were observed in comparison with the healthy control. Sequence analysis of the up-regulated gene was performed, and the encoding sequence analysis showed that the obtained genes include: induced stolen tip protein. On the other hand, two down-regulated genes were identified: disease resistance RPP-like protein and non-specific lipid-transfer protein. In this study, the expressions of PR-1, PR-2, PR-3, POD, and PPO genes in the infected leaves of three potato cultivars were estimated by quantitative real-time PCR. We can conclude that the PLRV-infection of potato plants inhibited the expression of the five PR genes. On the contrary, infected leaves by PLRV elevated the expression of some defense genes. This interaction may also induce and/or suppress the expression of some genes responsible for the plant's defense mechanisms.

Keywords: PLRV, pathogenesis-related proteins (PRs), DD-PCR, sequence, real-time PCR

Procedia PDF Downloads 141
25055 Use of Zikani’s Ribosome Modulating Agents for Treating Recessive Dystrophic & Junctional Epidermolysis Bullosa with Nonsense Mutations

Authors: Mei Chen, Yingping Hou, Michelle Hao, Soheil Aghamohammadzadeh, Esteban Terzo, Roger Clark, Vijay Modur

Abstract:

Background: Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a genetic skin condition characterized by skin tearing and unremitting blistering upon minimal trauma. Repeated blistering, fibrosis, and scarring lead to aggressive squamous cell carcinoma later in life. RDEB is caused by mutations in the COL7A1 gene encoding collagen type VII (C7), the major component of anchoring fibrils mediating epidermis-dermis adherence. Nonsense mutations in the COL7A1 gene of a subset of RDEB patients leads to premature termination codons (PTC). Similarly, most Junctional Epidermolysis Bullosa (JEB) cases are caused by nonsense mutations in the LAMB3 gene encoding the β3 subunit of laminin 332. Currently, there is an unmet need for the treatment of RDEB and JEB. Zikani Therapeutics has discovered an array of macrocyclic compounds with ring structures similar to macrolide antibiotics that can facilitate readthrough activity of nonsense mutations in the COL7A1 and LAMB3 genes by acting as Ribosome Modulating Agents (RMAs). The medicinal chemistry synthetic advancements of these macrocyclic compounds have allowed targeting the human ribosome while preserving the structural elements responsible for the safety and pharmacokinetic profile of clinically used macrolide antibiotics. Methods: C7 expression was used as a measure of readthrough activity by immunoblot assays in two primary human fibroblasts from RDEB patients (R578X/R578X and R163X/R1683X-COL7A1). Similarly, immunoblot assays in C325X/c.629-12T > A-LAMB3 keratinocytes were used to measure readthrough activity for JEB. The relative readthrough activity of each compound was measured relative to Gentamicin. An imaging-based fibroblast migration assay was used as an assessment of C7 functionality in RDEB-fibroblasts over 16-20 hrs. The incubation period for the above experiments was 48 hrs for RDEB fibroblasts and 72 hours for JEB keratinocytes. Results: 9 RMAs demonstrated increased protein expression in both patient RDEB fibroblasts. The highest readthrough activity at tested concentrations without cytotoxicities increased protein expression up to 179% of Gentamicin (400 µg/ml), with favored readthrough activity in R163X/R1683X-COL7A1 fibroblasts. Concurrent with protein expression, fibroblast hypermotility phenotype observed in RDEB was rescued by reducing motility by ~35% to WT levels (the same level as 690 µM Gentamicin treated cells). Laminin β3 expression was also shown to be increased by 6 RMAs in keratinocytes to 33-83% of (400 µg/ml) Gentamicin. Conclusions: To date, 9 RMAs have been identified that enhance the expression of functional C7 in a mutation-dependent manner in two different RDEB patient fibroblast backgrounds (R578X/R578X and R163X/R1683X-COL7A1). A further 6 RMAs have been identified that enhance the readthrough of C325X-LAMB3 in JEB patient keratinocytes. Based on the clinical trial conducted by us with topical gentamycin in 2017, Zikani’s RMAs achieve clinically significant levels of read-through for the treatment of recessive dystrophic and Junctional Epidermolysis Bullosa.

Keywords: epidermolysis bullosa, nonsense mutation, readthrough, ribosome modulation

Procedia PDF Downloads 97
25054 Data Mining Algorithms Analysis: Case Study of Price Predictions of Lands

Authors: Julio Albuja, David Zaldumbide

Abstract:

Data analysis is an important step before taking a decision about money. The aim of this work is to analyze the factors that influence the final price of the houses through data mining algorithms. To our best knowledge, previous work was researched just to compare results. Furthermore, before using the data of the data set, the Z-Transformation were used to standardize the data in the same range. Hence, the data was classified into two groups to visualize them in a readability format. A decision tree was built, and graphical data is displayed where clearly is easy to see the results and the factors' influence in these graphics. The definitions of these methods are described, as well as the descriptions of the results. Finally, conclusions and recommendations are presented related to the released results that our research showed making it easier to apply these algorithms using a customized data set.

Keywords: algorithms, data, decision tree, transformation

Procedia PDF Downloads 372
25053 Application of Blockchain Technology in Geological Field

Authors: Mengdi Zhang, Zhenji Gao, Ning Kang, Rongmei Liu

Abstract:

Management and application of geological big data is an important part of China's national big data strategy. With the implementation of a national big data strategy, geological big data management becomes more and more critical. At present, there are still a lot of technology barriers as well as cognition chaos in many aspects of geological big data management and application, such as data sharing, intellectual property protection, and application technology. Therefore, it’s a key task to make better use of new technologies for deeper delving and wider application of geological big data. In this paper, we briefly introduce the basic principle of blockchain technology at the beginning and then make an analysis of the application dilemma of geological data. Based on the current analysis, we bring forward some feasible patterns and scenarios for the blockchain application in geological big data and put forward serval suggestions for future work in geological big data management.

Keywords: blockchain, intellectual property protection, geological data, big data management

Procedia PDF Downloads 87
25052 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 431
25051 The Role Of Data Gathering In NGOs

Authors: Hussaini Garba Mohammed

Abstract:

Background/Significance: The lack of data gathering is affecting NGOs world-wide in general to have good data information about educational and health related issues among communities in any country and around the world. For example, HIV/AIDS smoking (Tuberculosis diseases) and COVID-19 virus carriers is becoming a serious public health problem, especially among old men and women. But there is no full details data survey assessment from communities, villages, and rural area in some countries to show the percentage of victims and patients, especial with this world COVID-19 virus among the people. These data are essential to inform programming targets, strategies, and priorities in getting good information about data gathering in any society.

Keywords: reliable information, data assessment, data mining, data communication

Procedia PDF Downloads 178
25050 Chloride Ion Channels Play a Role in Mediating Immune Response during Pseudomonas aeruginosa Infection

Authors: Hani M. Alothaid, Louise Robson, Richmond Muimo

Abstract:

Cystic fibrosis (CF) is a disease that affects respiratory function and in EU it affects about 1 in 2,500 live births with an average 40-year life expectancy. This disease caused by mutations within the gene encoding the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) chloride channel leading to dysregulation of epithelial fluid transport and chronic lung inflammation, suggesting functional alterations of immune cells. In airways, CFTR been found to form a functional complex with S100A10 and AnxA2 in a cAMP/PKA dependent manner. The multiprotein complex of AnxA2-S100A10 and CFTR is also regulated by calcineurin. The aim of this study was i) to investigate whether chloride ion (Cl−) channels are activated by Pseudomonas aeruginosa lipopolysaccharide (LPS from PA), ii) if this activation is regulated by cAMP/PKA/calcineurin pathway and iii) to investigate the role of LPS-activated Cl− channels in the release of pro-inflammatory cytokines by immune cells. Human peripheral blood monocytes were used in the study. Whole-cell patch records showed that LPS from PA can activate Cl− channels, including CFTR and outwardly-rectifying Cl− channel (ORCC). This activation appears to require an intact PKA/calcineurin signalling pathway. The Gout in the presence of LPS was significantly inhibited by diisothiocyanatostilbene-disulfonic acid (DIDS), an ORCC blocker (p<0.001). The Gout was further suppressed by CFTR(inh)-172, a specific inhibitor for CFTR channels (p<0.001). Monocytes pre-incubated with PKA inhibitor or calcineurin inhibitor before stimulated with LPS from PA that were resulted in DIDS and CFTR(inh)-172 insensitive currents. Activation of both ORCC and CFTR was however, observed in response to monocytes exposure to LPS. Additionally, ELISA showed that the CFTR and ORCC play a role in mediating the release of pro-inflammatory cytokines such as IL-1β upon exposure of monocytes to LPS. However, this secretion was significantly inhibited due to CFTR and ORCC inhibition. However, Cl− may play a role in IL-1β release independent of cAMP/PKA/calcineurin signalling due to the enhancement of IL-1β secretion even when cAMP/PKA/calcineurin pathway was inhibited. In conclusion, our data confirmed that LPS from PA activates Cl− channels in human peripheral blood monocytes. Our data also confirmed that Cl− channels were involved in IL-1β release in monocytes upon exposure to LPS. However, it has been found that PKA and calcineurin does not seem to influence the Cl− dependent cytokine release.

Keywords: cystic fibrosis, CFTR, Annexin A2, S100A10, PP2B, PKA, outwardly-rectifying Cl− channel, Pseudomonas aeruginosa

Procedia PDF Downloads 176