Search results for: critical decision method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26087

Search results for: critical decision method

25967 The Relationship between the Competence Perception of Student and Graduate Nurses and Their Autonomy and Critical Thinking Disposition

Authors: Zülfiye Bıkmaz, Aytolan Yıldırım

Abstract:

This study was planned as a descriptive regressive study in order to determine the relationship between the competency levels of working nurses, the levels of competency expected by nursing students, the critical thinking disposition of nurses, their perceived autonomy levels, and certain socio demographic characteristics. It is also a methodological study with regard to the intercultural adaptation of the Nursing Competence Scale (NCS) in both working and student samples. The sample of the study group of nurses at a university hospital for at least 6 months working properly and consists of 443 people filled out questionnaires. The student group, consisting of 543 individuals from the 4 public university nursing 3rd and 4th grade students. Data collection tools consisted of a questionnaire prepared in order to define the socio demographic, economic, and personal characteristics of the participants, the ‘Nursing Competency Scale’, the ‘Autonomy Subscale of the Sociotropy – Autonomy Scale’, and the ‘California Critical Thinking Disposition Inventory’. In data evaluation, descriptive statistics, nonparametric tests, Rasch analysis and correlation and regression tests were used. The language validity of the ‘NCS’ was performed by translation and back translation, and the context validity of the scale was performed with expert views. The scale, which was formed into its final structure, was applied in a pilot application from a group consisting of graduate and student nurses. The time constancy of the test was obtained by analysis testing retesting method. In order to reduce the time problems with the two half reliability method was used. The Cronbach Alfa coefficient of the scale was found to be 0.980 for the nurse group and 0.986 for the student group. Statistically meaningful relationships between competence and critical thinking and variables such as age, gender, marital status, family structure, having had critical thinking training, education level, class of the students, service worked in, employment style and position, and employment duration were found. Statistically meaningful relationships between autonomy and certain variables of the student group such as year, employment status, decision making style regarding self, total duration of employment, employment style, and education status were found. As a result, it was determined that the NCS which was adapted interculturally was a valid and reliable measurement tool and was found to be associated with autonomy and critical thinking.

Keywords: nurse, nursing student, competence, autonomy, critical thinking, Rasch analysis

Procedia PDF Downloads 393
25966 Determining of Importance Level of Factors Affecting Job Selection with the Method of AHP

Authors: Nurullah Ekmekci, Ömer Akkaya, Kazım Karaboğa, Mahmut Tekin

Abstract:

Job selection is one of the most important decisions that affect their lives in the name of being more useful to themselves and the society. There are many criteria to consider in the job selection. The amount of criteria in the job selection makes it a multi-criteria decision-making (MCDM) problem. In this study; job selection has been discussed as multi-criteria decision-making problem and has been solved by Analytic Hierarchy Process (AHP), one of the multi-criteria decision making methods. A survey, contains 5 different job selection criteria (finding a job friendliness, salary status, job , social security, work in the community deems reputation and business of the degree of difficulty) within many job selection criteria and 4 different job alternative (being academician, working at the civil service, working at the private sector and working at in their own business), has been conducted to the students of Selcuk University Faculty of Economics and Administrative Sciences. As a result of pairwise comparisons, the highest weighted criteria in the job selection and the most coveted job preferences were identified.

Keywords: analytical hierarchy process, job selection, multi-criteria, decision making

Procedia PDF Downloads 399
25965 Parameters Influencing Human Machine Interaction in Hospitals

Authors: Hind Bouami

Abstract:

Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedbacks helps to identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.

Keywords: life-critical systems, situation awareness, human-machine interaction, decision-making

Procedia PDF Downloads 181
25964 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables

Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi

Abstract:

In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.

Keywords: fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem

Procedia PDF Downloads 383
25963 Promoting Critical Thinking in a Robotics Class

Authors: Ian D. Walker

Abstract:

This paper describes the creation and teaching of an undergraduate course aimed at promoting critical thinking among the students in the course. The class, Robots in Business and Society, taught at Clemson University, is open to all undergraduate students of any discipline. It is taught as part of Clemson’s online class program and is structured to promote critical thinking via a series of interactive discussion boards and assignments. Critical thinking is measured via pre- and post-testing using a benchmark standardized test. The paper will detail the class organization, and describe and discuss the results and lessons learned with respect to improvement of student critical thinking from three offerings of the class.

Keywords: critical thinking, pedagogy, robotics, undergraduate teaching

Procedia PDF Downloads 288
25962 Discerning Divergent Nodes in Social Networks

Authors: Mehran Asadi, Afrand Agah

Abstract:

In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.

Keywords: online social networks, data mining, social cloud computing, interaction and collaboration

Procedia PDF Downloads 157
25961 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection

Procedia PDF Downloads 470
25960 A Machine Learning Decision Support Framework for Industrial Engineering Purposes

Authors: Anli Du Preez, James Bekker

Abstract:

Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.

Keywords: Data analytics, Industrial engineering, Machine learning, Value creation

Procedia PDF Downloads 168
25959 VISSIM Modeling of Driver Behavior at Connecticut Roundabouts

Authors: F. Clara Fang, Hernan Castaneda

Abstract:

The Connecticut Department of Transportation (ConnDOT) has constructed four roundabouts in the State of Connecticut within the past ten years. VISSIM traffic simulation software was utilized to analyze these roundabouts during their design phase. The queue length and level of service observed in the field appear to be better than predicted by the VISSIM model. The objectives of this project are to: identify VISSIM input variables most critical to accurate modeling; recommend VISSIM calibration factors; and, provide other recommendations for roundabout traffic operations modeling. Traffic data were collected at these roundabouts using Miovision Technologies. Cameras were set up to capture vehicle circulating activity and entry behavior for two weekdays. A large sample size of filed data was analyzed to achieve accurate and statistically significant results. The data extracted from the videos include: vehicle circulating speed; critical gap estimated by Maximum Likelihood Method; peak hour volume; follow-up headway; travel time; and, vehicle queue length. A VISSIM simulation of existing roundabouts was built to compare both queue length and travel time predicted from simulation with measured in the field. The research investigated a variety of simulation parameters as calibration factors for describing driver behaviors at roundabouts. Among them, critical gap is the most effective calibration variable in roundabout simulation. It has a significant impact to queue length, particularly when the volume is higher. The results will improve the design of future roundabouts in Connecticut and provide decision makers with insights on the relationship between various choices and future performance.

Keywords: driver critical gap, roundabout analysis, simulation, VISSIM modeling

Procedia PDF Downloads 288
25958 Conceptualizing Thoughtful Intelligence for Sustainable Decision Making

Authors: Musarrat Jabeen

Abstract:

Thoughtful intelligence offers a sustainable position to enhance the influence of decision-makers. Thoughtful Intelligence implies the understanding to realize the impact of one’s thoughts, words and actions on the survival, dignity and development of the individuals, groups and nations. Thoughtful intelligence has received minimal consideration in the area of Decision Support Systems, with an end goal to evaluate the quantity of knowledge and its viability. This pattern degraded the imbibed contribution of thoughtful intelligence required for sustainable decision making. Given the concern, this paper concentrates on the question: How to present a model of Thoughtful Decision Support System (TDSS)? The aim of this paper is to appreciate the concepts of thoughtful intelligence and insinuate a Decision Support System based on thoughtful intelligence. Thoughtful intelligence includes three dynamic competencies: i) Realization about long term impacts of decisions that are made in a specific time and space, ii) A great sense of taking actions, iii) Intense interconnectivity with people and nature and; seven associate competencies, of Righteousness, Purposefulness, Understanding, Contemplation, Sincerity, Mindfulness, and Nurturing. The study utilizes two methods: Focused group discussion to count prevailing Decision Support Systems; 70% results of focus group discussions found six decision support systems and the positive inexistence of thoughtful intelligence among decision support systems regarding sustainable decision making. Delphi focused on defining thoughtful intelligence to model (TDSS). 65% results helped to conceptualize (definition and description) of thoughtful intelligence. TDSS is offered here as an addition in the decision making literature. The clients are top leaders.

Keywords: thoughtful intelligence, sustainable decision making, thoughtful decision support system

Procedia PDF Downloads 135
25957 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States

Authors: Angela Meyer

Abstract:

The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.

Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines

Procedia PDF Downloads 167
25956 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making

Authors: Babek Erdebilli

Abstract:

The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.

Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model

Procedia PDF Downloads 651
25955 Application Potential of Selected Tools in Context of Critical Infrastructure Protection and Risk Analysis

Authors: Hromada Martin

Abstract:

Risk analysis is considered as a fundamental aspect relevant for ensuring the level of critical infrastructure protection, where the critical infrastructure is seen as system, asset or its part which is important for maintaining the vital societal functions. Article actually discusses and analyzes the potential application of selected tools of information support for the implementation and within the framework of risk analysis and critical infrastructure protection. Use of the information in relation to their risk analysis can be viewed as a form of simplifying the analytical process. It is clear that these instruments (information support) for these purposes are countless, so they were selected representatives who have already been applied in the selected area of critical infrastructure, or they can be used. All presented fact were the basis for critical infrastructure resilience evaluation methodology development.

Keywords: critical infrastructure, protection, resilience, risk analysis

Procedia PDF Downloads 638
25954 CFD Simulation and Investigation of Critical Two-Phase Flow Rate in Wellhead Choke

Authors: Alireza Rafie Boldaji, Ahmad Saboonchi

Abstract:

Chokes are commonly used in oil and gas production systems. A choke is a restriction basically designed to control flow rates of oil and gas wells, to prevent the downstream disturbances from propagating upstream (critical flow), and to protect the surface equipment facilities against slugging at high flowing pressures. There are different methods to calculate the multiphase flow rate, one of the multiphase flow measurement methods is the separation and measurement by on¬e-phaseFlow meter, another common method is the use of movable separator, their operations are very labor-intensive and costly. The current method used is based on the flow differential pressure on both sides of choke. Three groups of correlations describing two-phase flow through wellhead chokes were examined. The first group involved simple empirical equations similar to those of Gilbert, the second group comprised derived equations of two-phase flow incorporating PVT properties, and third group is computational method. In the article we calculate the flow of oil and gas through choke with simulation of this two phase flow bye computational fluid dynamic method, we use Ansys- fluent for this simulation and finally compared results of computational simulation whit empirical equations, the results show good agreement between experimental and numerical results.

Keywords: CFD, two-phase, choke, critical

Procedia PDF Downloads 277
25953 Long Term Examination of the Profitability Estimation Focused on Benefits

Authors: Stephan Printz, Kristina Lahl, René Vossen, Sabina Jeschke

Abstract:

Strategic investment decisions are characterized by high innovation potential and long-term effects on the competitiveness of enterprises. Due to the uncertainty and risks involved in this complex decision making process, the need arises for well-structured support activities. A method that considers cost and the long-term added value is the cost-benefit effectiveness estimation. One of those methods is the “profitability estimation focused on benefits – PEFB”-method developed at the Institute of Management Cybernetics at RWTH Aachen University. The method copes with the challenges associated with strategic investment decisions by integrating long-term non-monetary aspects whilst also mapping the chronological sequence of an investment within the organization’s target system. Thus, this method is characterized as a holistic approach for the evaluation of costs and benefits of an investment. This participation-oriented method was applied to business environments in many workshops. The results of the workshops are a library of more than 96 cost aspects, as well as 122 benefit aspects. These aspects are preprocessed and comparatively analyzed with regards to their alignment to a series of risk levels. For the first time, an accumulation and a distribution of cost and benefit aspects regarding their impact and probability of occurrence are given. The results give evidence that the PEFB-method combines precise measures of financial accounting with the incorporation of benefits. Finally, the results constitute the basics for using information technology and data science for decision support when applying within the PEFB-method.

Keywords: cost-benefit analysis, multi-criteria decision, profitability estimation focused on benefits, risk and uncertainty analysis

Procedia PDF Downloads 445
25952 Factors Affecting Employee Decision Making in an AI Environment

Authors: Yogesh C. Sharma, A. Seetharaman

Abstract:

The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision-making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation, and workplace motivation. Hybrid human-AI systems require the development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.

Keywords: employee decision making, artificial intelligence (AI) environment, human trust, technology innovation, psychological safety

Procedia PDF Downloads 108
25951 A Value-Oriented Metamodel for Small and Medium Enterprises’ Decision Making

Authors: Romain Ben Taleb, Aurélie Montarnal, Matthieu Lauras, Mathieu Dahan, Romain Miclo

Abstract:

To be competitive and sustainable, any company has to maximize its value. However, unlike listed companies that can assess their values based on market shares, most Small and Medium Enterprises (SMEs) which are non-listed cannot have direct and live access to this critical information. Traditional accounting reports only give limited insights to SME decision-makers about the real impact of their day-to-day decisions on the company’s performance and value. Most of the time, an SME’s financial valuation is made one time a year as the associated process is time and resource-consuming, requiring several months and external expertise to be completed. To solve this issue, we propose in this paper a value-oriented metamodel that enables real-time and dynamic assessment of the SME’s value based on the large definition of their assets. These assets cover a wider scope of resources of the company and better account for immaterial assets. The proposal, which is illustrated in a case study, discusses the benefits of incorporating assets in the SME valuation.

Keywords: SME, metamodel, decision support system, financial valuation, assets

Procedia PDF Downloads 92
25950 Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach

Authors: Kamalendu Pal

Abstract:

This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a combination of linguistic variables, fuzzy numbers, and by using defuzzification process. The results show that the designed evaluation method creates suitable mechanism in order to improve the performance of the knowledge-based system.

Keywords: case-based reasoning, fuzzy number, legal decision-support system, linguistic variable, rule-based reasoning, system evaluation

Procedia PDF Downloads 367
25949 An Integrated Framework for Seismic Risk Mitigation Decision Making

Authors: Mojtaba Sadeghi, Farshid Baniassadi, Hamed Kashani

Abstract:

One of the challenging issues faced by seismic retrofitting consultants and employers is quick decision-making on the demolition or retrofitting of a structure at the current time or in the future. For this reason, the existing models proposed by researchers have only covered one of the aspects of cost, execution method, and structural vulnerability. Given the effect of each factor on the final decision, it is crucial to devise a new comprehensive model capable of simultaneously covering all the factors. This study attempted to provide an integrated framework that can be utilized to select the most appropriate earthquake risk mitigation solution for buildings. This framework can overcome the limitations of current models by taking into account several factors such as cost, execution method, risk-taking and structural failure. In the newly proposed model, the database and essential information about retrofitting projects are developed based on the historical data on a retrofit project. In the next phase, an analysis is conducted in order to assess the vulnerability of the building under study. Then, artificial neural networks technique is employed to calculate the cost of retrofitting. While calculating the current price of the structure, an economic analysis is conducted to compare demolition versus retrofitting costs. At the next stage, the optimal method is identified. Finally, the implementation of the framework was demonstrated by collecting data concerning 155 previous projects.

Keywords: decision making, demolition, construction management, seismic retrofit

Procedia PDF Downloads 237
25948 Strict Liability as a Means of Standardising Sentencing Outcomes for Shoplifting Offences Dealt with in UK Magistrates Courts

Authors: Mariam Shah

Abstract:

Strict liability is frequently used in magistrate’s courts for TV license and driving offences.There is existing research suggesting that the strict liability approach to criminal offences can result in ‘absurd’ judicial outcomes, or potentially ‘injustice’.This paper will discuss the potential merits of strict liability as a method for dealing with shoplifting offences.Currently, there is disparity in sentencing outcomes in the UK, particularly in relation to shoplifting offences.This paper will question whether ‘injustice’ is actually in the differentiation of defendants based upon their ‘perceived’ circumstances, which could be resulting in arbitrary judicial decision making.

Keywords: arbitrary, decision making, judicial decision making, shoplifting, stereotypes, strict liability

Procedia PDF Downloads 307
25947 The Mediator as an Evaluator: An Analysis of Evaluation as a Method for the Lawyer’s Reform to Mediation

Authors: Dionne Coley B. A.

Abstract:

The role of a lawyer as a mediator is to be impartial in assisting parties to arrive at a decision. This decision should be made in a voluntary and mutually acceptable manner where the mediator encourages the parties to communicate, identify their interests, assess risks and consider settlement options. One of the key components to mediation is impartiality where mediators are to have a duty to remain impartial throughout the course of mediation and uphold an “objective” demeanor with both parties. The question is whether a mediator should take on evaluative role while encouraging the parties to come to a decision. This means that the mediator would not only encourage dialogue and responses between the parties but also assess and provide an opinion on the matter. This paper submits the argument that the role of a mediator should not be one of evaluation as this does not encourage the dialogue, process or desired outcomes associated with mediation.

Keywords: evaluation, lawyer, mediation, reform

Procedia PDF Downloads 418
25946 Alvaro Siza’s Design Strategy: An Insight into Critical Regionalism

Authors: Rahmatollah Amirjani

Abstract:

By the emergence of the debate over the failure of Regionalism in the late 1970s, Critical Regional­ism was introduced as a different way to respond to the state of architecture in the post-war era. Critical Regionalism is most often understood as a discourse that not only mediates the language of modern architecture with the local cultures but also revives the relation between architecture and spectator as indexed by capitalism. Since the inception of Critical Regionalism, a large number of architectural practices have emerged around the globe; however, the work of the well-known Portuguese architect, Álvaro Siza, is considered as a unique case amongst works associated with the discourse of Critical Regionalism. This paper intends to respond to a number of questions, including; what are the origins of Critical Regionalism? How does Siza’s design strategy correspond to the thematic of Critical Regionalism? How does Siza recover the relation between object and subject in most of his projects? Using Siza’s housing project for the Malagueira district in Évora, Portugal, this article will attempt to answer these questions, and highlight Alvaro Siza’s design procedure which goes beyond the existing discourse of Critical Regionalism and contributes to our understanding of this practice.

Keywords: Alvaro Siza, critical regionalism, Malagueira housing, placelessness

Procedia PDF Downloads 180
25945 The Role of Self-Confidence, Adversity Quotient, and Self-Efficacy Critical Thinking: Path Model

Authors: Bayu Dwi Cahyo, Ekohariadi, Theodorus Wiyanto Wibowo, I. G. P. Asto Budithahjanto, Eppy Yundra

Abstract:

The objective of this study is to examine the effects of self-confidence, adversity quotient, and self-efficacy variables on critical thinking. This research's participants are 137 cadets of Aviation Polytechnics of Surabaya with the sampling technique that was purposive sampling. In this study, the data collection method used a questionnaire with Linkert-scale and distributed or given to respondents by the specified number of samples. The SPSS AMOS v23 was used to test a number of a priori multivariate growth curve models and examining relationships between the variables via path analysis. The result of path analysis was (χ² = 88.463, df= 71, χ² /df= 1.246, GFI= .914, CFI= .988, P= .079, AGFI= .873, TLI= .985, RMSEA= .043). According to the analysis, there is a positive and significant relationship between self-confidence, adversity quotient, and self-efficacy variables on critical thinking.

Keywords: self-confidence, adversity quotient, self-efficacy variables, critical thinking

Procedia PDF Downloads 144
25944 Sfard’s Commognitive Framework as a Method of Discourse Analysis in Mathematics

Authors: Dong-Joong Kim, Sangho Choi, Woong Lim

Abstract:

This paper discusses Sfard’s commognitive approach and provides an empirical study as an example to illustrate the theory as method. Traditionally, research in mathematics education focused on the acquisition of mathematical knowledge and the didactic process of knowledge transfer. Through attending to a distinctive form of language in mathematics, as well as mathematics as a discursive subject, alternative views of making meaning in mathematics have emerged; these views are therefore “critical,” as in critical discourse analysis. The commognitive discourse analysis method has the potential to bring more clarity to our understanding of students’ mathematical thinking and the process through which students are socialized into school mathematics.

Keywords: commognitive framework, discourse analysis, mathematical discourse, mathematics education

Procedia PDF Downloads 333
25943 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management

Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige

Abstract:

Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.

Keywords: discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability

Procedia PDF Downloads 279
25942 Possibilistic Aggregations in the Investment Decision Making

Authors: I. Khutsishvili, G. Sirbiladze, B. Ghvaberidze

Abstract:

This work proposes a fuzzy methodology to support the investment decisions. While choosing among competitive investment projects, the methodology makes ranking of projects using the new aggregation OWA operator – AsPOWA, presented in the environment of possibility uncertainty. For numerical evaluation of the weighting vector associated with the AsPOWA operator the mathematical programming problem is constructed. On the basis of the AsPOWA operator the projects’ group ranking maximum criteria is constructed. The methodology also allows making the most profitable investments into several of the project using the method developed by the authors for discrete possibilistic bicriteria problems. The article provides an example of the investment decision-making that explains the work of the proposed methodology.

Keywords: expert evaluations, investment decision making, OWA operator, possibility uncertainty

Procedia PDF Downloads 558
25941 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management

Authors: M. Shahab Uddin, Pennung Warnitchai

Abstract:

Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.

Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system

Procedia PDF Downloads 227
25940 Critical Behaviour and Filed Dependence of Magnetic Entropy Change in K Doped Manganites Pr₀.₈Na₀.₂−ₓKₓMnO₃ (X = .10 And .15)

Authors: H. Ben Khlifa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou

Abstract:

The orthorhombic Pr₀.₈Na₀.₂−ₓKₓMnO₃ (x = 0.10 and 0.15) manganites are prepared by using the solid-state reaction at high temperatures. The critical exponents (β, γ, δ) are investigated through various techniques such as modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis based on the data of the magnetic measurements recorded around the Curie temperature. The critical exponents are derived from the magnetization data using the Kouvel-Fisher method, are found to be β = 0.32(4) and γ = 1.29(2) at TC ~ 123 K for x = 0.10 and β = 0.31(1) and γ = 1.25(2) at TC ~ 133 K for x = 0.15. The critical exponent values obtained for both samples are comparable to the values predicted by the 3D-Ising model and have also been verified by the scaling equation of state. Such results demonstrate the existence of ferromagnetic short-range order in our materials. The magnetic entropy changes of polycrystalline samples with a second-order phase transition are investigated. A large magnetic entropy change deduced from isothermal magnetization curves, is observed in our samples with a peak centered on their respective Curie temperatures (TC). The field dependence of the magnetic entropy changes are analyzed, which shows power-law dependence ΔSmax ≈ a(μ0 H)n at the transition temperature. The values of n obey the Curie Weiss law above the transition temperature. It is shown that for the investigated materials, the magnetic entropy change follows a master curve behavior. The rescaled magnetic entropy change curves for different applied fields collapse onto a single curve for both samples.

Keywords: manganites, critical exponents, magnetization, magnetocaloric, master curve

Procedia PDF Downloads 164
25939 Financial Decision-Making among Finance Students: An Empirical Study from the Czech Republic

Authors: Barbora Chmelíková

Abstract:

Making sound financial decisions is an essential skill which can have an impact on life of each consumer of financial products. The aim of this paper is to examine decision-making concerning financial matters and personal finance. The selected target group was university students majoring in finance related fields. The study was conducted in the Czech Republic at Masaryk University in 2015. In order to analyze financial decision-making questions related to basic finance decisions were developed to address the research objective. The results of the study suggest gaps in detecting best solutions to given financial decision-making questions among finance students. The analysis results indicate relation between financial decision-making and own experience with holding and using concrete financial products.

Keywords: financial decision-making, financial literacy, personal finance, university students

Procedia PDF Downloads 326
25938 Artificial Neural Networks with Decision Trees for Diagnosis Issues

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.

Keywords: neural networks, decision trees, diagnosis, behaviors

Procedia PDF Downloads 505